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Reinforcement Learning Model. Reinforcement Learning (RL) is
concerned with learning the value of taking particular actions in
different states of the world in which subjects do not have complete
knowledge about the underlying reward generating process. Thus,
it is ideally suited to model how subjects learn the value of taking
the different actions over time.

We used a version of RL called Q-learning, where action values
are updated using a simple Rescorla-Wagner rule. If an action is not
selected in a trial its value is not updated. In contrast, if action a is
selected on trial t, its value is updated via a prediction error, �, as
follows: Va (t � 1) � Va (t) � �(t), where � is a learning rate between
0 and 1. The prediction error �(t) is calculated by comparing the
actual reward received, r(t), with the reward that the subject
expected to receive from that action in that trial; that is, �(t) � r(t) �
Va (t). Probabilistic rewards were delivered in free choice and forced
choice trials and these trials were included in updating the value
predictions. In null trials, subjects neither expected nor got any
reward; hence no learning occurred and values were not updated.

To generate choices, we first used a soft-max procedure where in
every trial, the probability (P) of choosing action a is given by: Pat
� �(�(Va (t) � Vb(t)) � �, where �(z) � 1/(1 � e�z) is the Luce
choice rule or logistic sigmoid, � � 0 denotes the indecision point
(at which both actions are selected with equal probability), and �
determines the degree of stochasticity involved in making decisions.
In the paper we refer to Ve as the action value of the eye movement
and Vh as the action value of the button press.

The model decision probabilities Pe and Ph were fitted against the
discrete behavioral data Be and Bh to estimate the free parameters
(� and �). This was done using maximum likelihood estimation and
a log likelihood function given by:

logL �
¥Be log Pe

Ne
�

�Bh log Ph

Nh
,

where Ne and Nh denote, respectively, the number of trials in
which eye and hand were chosen, and Be (Bh) equals one if eye
(hand) was chosen in that trial, and zero otherwise.

We also fitted a model with an additional parameter that allowed
the unchosen value to decay toward 0.5. However, we found that in
our rather simple task with only two choice options the BIC
corrected fit of this model was not significantly better than that of
our simple learning rule.

The Competition Difference Model of the Decision Process. Based on
our finding of a robust correlation between activity in the anterior
cingulated cortex (ACC) and a variable equal to the difference
between the value of the unchosen and chosen actions, we propose
a simple conceptual model for how this value difference might be
implemented in the brain to guide value-based choice.

Importantly, the model that we propose has two key properties:
(1) it leads to stochastic choices, and (2) its output is sensitive to
both the choice that is made and to the action values of the two
alternatives.

The model consists of a neural network with N ‘neurons.’ Each
neuron could take on either an ON or OFF state at every particular
instant. These neurons were split into two discrete populations of
N/2 neurons each: one population was associated with the value of
an eye movement, the other with the value of a finger movement.
In each trial the comparison process is initialized by turning ON a
fraction of neurons in each population that is proportional to the
action value of the associated action. Thus, for example, if Ve � 0.56

and n � 200, then 56 out of the 100 eye neurons were set to the ON
state (see Fig. S4 for an illustration).

The network was then allowed to evolve in discrete steps as
follows: 1. In every step every active neuron for one of the two
actions is paired with a randomly chosen neuron (with replacement)
for the other action. Once the assignment is made for all neurons
the following rule is implemented: if the matching unit is ON, the
neuron is switched OFF, otherwise no change is made on the state
of the neuron. (Note: this rule is implemented simultaneously for
all of the neurons, so there are no order effects).

2. Noise is injected after every iteration as follows: the state of
every unit in the network is flipped to its opposite state with a
probability that is given by the product of a noise parameter � and
the number of active units encoding the value of the same action.

The basic idea behind the CDM is that the decision process works
by virtue of a stochastic mutual inhibitory competition between the
two distinct populations of neurons encoding the value of the two
actions. A ‘‘winner’’ is declared when one of the two populations
reaches zero. At this point the population that has a positive number
of ON neurons is declared the winner. Note that the model
incorporates two desirable features: (1) higher value actions have a
higher chance to win the competition process, which means that the
better action is chosen with higher probability; and (2) the change
in activity in every step scales with the amount of existing activity
in the network.

We then added an additional layer (with constant positive input
from which the previous result is subtracted) to the model to invert
the output to the value difference between the action not chosen
and the action chosen.

We simulated the model using a population of n � 200 as follows.
First, we simulated the stochastic comparison process 1,000 times
for each possible value difference between the two actions. Second,
after the model converged in each simulation (which always oc-
curred in less than 50 steps) we computed the number of ON units
in the population that won the competition. Note that, since the
model is stochastic, in some simulation it converged to the action
with the larger value, but in others it converged toward the action
with the smaller value. Third, we averaged the 1,000 simulations for
each possible action value difference to estimate a reference output
value for later use in the comparison regressor in the general linear
models of the fMRI data described below. As depicted in Fig. S6,
the averaging was done conditional on whether the optimal choice
was made or not. We constructed a trial-by-trial parametric mod-
ulator by retrieving the stored values from this analysis in each trial
for the current value difference and dependant on whether the
subject chose optimally (action with the higher action value) or the
action with the lower action value from either the red or blue curve
in Fig. S6.

To validate our model behaviorally, we determined for each
possible value difference (Ve � Vh) in 1,000 model runs the
fraction of runs in which the model settled on the eye choice. For
this purpose, a noise parameter � was estimated for each subject
using the maximum likelihood procedure described in the RL
section above. The resulting psychometric choice functions (prob-
ability of the model to choose eye dependant on Ve-Vh) are
compatible with subjects’ observed behavior and model perfor-
mance is very similar to the reinforcement learning soft-max
procedure (Table S3).

Note a few things about the model. First, it leads to stochastic
choices, consistent with the behavior in Fig. 1D. Second, unlike
other models such as the drift diffusion model (see the discussion
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in the next section), the output signal depends on the action value
difference when the best item is chosen (and is constant otherwise).

The Drift Diffusion Model of the Decision Process. A very popular
model of how the comparison is made is called the drift diffusion
model (DDM, sometimes also called race-to-barrier model) (1–3).
This model has proven extremely useful in explaining the psycho-
physics of perceptual choice as well as some aspects of neural
activity in areas such as LIP during perceptual decision tasks (4, 5).

The basic idea of the model, as applied to value-based decision-
making, is illustrated in Fig. S5. The process computes a net value
signal (say Vh � Ve) that fluctuates between two barriers until a
decision is made. A decision is reached when the net value signal
crosses either of the two barriers. If the top barrier is crossed the
hand action is chosen. If the bottom barrier is crossed the eye action
is chosen. The net value signal climbs to the hand barrier with a
slope proportional to Vh � Ve, but it is also affected by white
Gaussian noise. In the simple version of the model the net value
signal commences the integration process mid-way between the two
barriers, which implies that there is no bias between the two options
(i.e., when Vh � Ve both options are chosen with equal probability).

Note that this is a ‘‘high-level’’ computational model, which is
silent about how the brain might implement these computations.
This question needs to be answered to be able to make predictions
about how to identify areas that might implement this process using
fMRI. Consider an extremely simple neural implementation of the
DDM. There are two populations of neurons: one encodes for the
net value of a hand movement (Vh � Ve), the other encodes for the
net value of an eye movement (Ve � Vh). Both populations encode
a signal with a dynamic range 0 to M. Both signals begin the
competition process at M/2 and the decision process stops when one
of the signals reaches M. The signal in the two populations evolves
in discrete time until a choice is made. Each of the populations is
connected to an output signal that encodes the selected motor
movement, triggered once the integration threshold M is reached.
Note a few interesting properties of the neural implementation of
the DDM. First, the sum of activity in all neurons at every instant
during the comparison equals M. Second, the sum of activity in both
output signals is also equal to a constant, call it B, independent of
Ve and Vh.

These properties imply that an area implementing the compar-
ison should have a level of neural activity equal to M (independent
of Ve and Vh) from the onset of the trial until a choice is made. They
also imply that the output of the process is characterized by a
constant level of activity B (again, independent of Ve and Vh) that
is on from the moment the decision is made to the time the motor
output is executed.

These properties mean that the comparator activity of the DDM
should be modeled in the general linear models of BOLD activity
described below as an unmodulated regressor that begins with the
onset of a free trial and ends with the deployment of one of the two
actions (i.e., it has a duration equal to the reaction time). In
contrast, the output activity should be modeled as an unmodulated
regressor at the time of (either) action execution with a duration of
0 seconds.

Although these regressors provide a full characterization of the
neural activity associated with the DDM, and they are easily
incorporated in the general linear models described below, they
present a major problem for fMRI. Consider, for example, the
regressor for the comparator process. The activity for this process
is perfectly correlated with those of other processes that come
on-line during the evaluation process, that are also unmodulated by
value, and that also last until a choice is made. Given that a large
number of such processes are likely to exist (and in fact a large
number of distinct areas are robustly activated by this type of
contrasts in decision-making tasks), it is difficult to isolate the
location of the DDM comparator process using fMRI, particularly
for the range of reaction times taken for decisions in a standard

fast-paced decision task such as the one featured here. A similar
problem holds for the output signal of the DDM, since it is perfectly
correlated with motor activity that is not modulated by action
values.

Given these issues, we concluded that the neural signatures of the
DDM cannot be identified using the fMRI methods deployed in the
present study. It is important to emphasize that these measurement
problems are not present in single-unit electrophysiology since this
technique permits the independent measurement of neural activity
in a putative decision region with sufficiently high spatial and
temporal resolution. Moreover, the output of the model does not
resemble the value difference signal we observed in the ACC in the
present study. Thus, while we cannot assess the relevance of the
DDM model to value-based decision making in the present study,
it is the case that such a model does not provide a good account for
the value comparison signal we observed in the ACC.

FMRI Data Acquisition. Functional images were taken with a gradient
echo T2*-weighted echo-planar sequence (TR � 2.65 s, flip angle �
90°, TE � 30 ms, 64 � 64 matrix). Whole brain coverage was
achieved by taking 45 slices (3 mm thickness, no gap, in-plane
resolution 3 � 3 mm), tilted in an oblique orientation at 30° to the
AC-PC line to minimize signal dropout in OFC. Subjects’ head was
restrained with foam pads to limit head movement during acqui-
sition. Functional imaging data were acquired in two separate
568-volume runs, each lasting about 24 min. A high-resolution
T1-weighted anatomical scan of the whole brain (MPRAGE se-
quence, 1 � 1 � 1 mm resolution) was also acquired for each
subject.

FMRI Data Analysis. Image analysis was performed using SPM5
(Wellcome Department of Imaging Neuroscience, Institute of
Neurology, London, U.K.). Images were first slice time corrected to
TR/2, realigned to the first volume to correct for subject motion,
spatially normalized to a standard T2* template with a voxel size of
3 mm, and spatially smoothed with a Gaussian kernel of 8-mm
FWHM. Intensity normalization and high pass temporal filtering
(using a filter width of 128 s) were also applied to the data.

We estimated several general linear models (GLM) for each
individual.

GLM 1. Two events were modeled in each trial: the time of the choice
cue, parametrically modulated by the trial-by-trial action values Ve
and Vh, and the time of the presentation of the outcome, modulated
by the prediction error �. Trials in which subjects chose the eye
action and trials in which subjects chose the hand action were
modeled as separate regressors. Trials were further split to build
separate regressors for each trial type: free choice, forced choice,
and null trials. Choice and forced trials were modulated by the
estimated action values to find neural representations of those
signals. In null trials there were no modulators. The model also
included an orthogonalized version of the parametric action value
modulators described in the previous paragraph during the inter-
trial interval. The rationale behind this last set of regressors was to
allow for the possibility that participants might already be consid-
ering which option to choose next after receiving the feedback on
the previous trial. In such a case, the ITI window would be part of
the decision process. However, we did not find any correlates of
value related signals during the ITI, which led us to focus our
analysis on the time of the choice cue. All regressors were convolved
with the canonical hemodynamic response function. In addition, the
6 scan-to-scan motion parameters produced during realignment
and two session constants were included as additional regressors of
no interest. We then computed contrasts of interest at the individual
level using linear combinations of the regressors: Value chosen:
Ve�eye�chosen � Vh�hand�hosen; Value difference (Vunchosen �
Vchosen): Ve�hand�chosen � Vh�eye�chosen � Ve�eye�chosen �
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Vh�hand�chosen. This model was used to generate the statistics
reported in Figs. 2, 3, and 4A.

GLM 2. This model was identical to the first GLM except for the
addition of following two regressors:

1. A Dirac delta function 700 ms into every trial (which is equal
to the average response across subjects) modulated by the estimated
output signal of the DCM given the values of Vh and Ve and the
optimality of the choice made. The values of these modulators are
depicted in Fig. S6, dependant on the action value difference and
whether the subject chose optimally (red curve) or non-optimally
(blue curve).

2. An indicator for the time of cue presentation modulated by a
decision difficulty measure given by � � Ve � Vh �. Note that this
modulator takes a maximum value when Ve � Vh. We also tested
alternatively for subject specific conflict by taking into account
individual choice biases in calculating the value difference � � Ve �
Vh � � �. For example, if a participant had a slight overall bias
toward saccading, the difficulty would be centered on this subject’s
individual point of equilibrium. For this purpose we estimated a
subject specific indecision point � by fitting the RL model with a
third free parameter that allowed for horizontal shifts of the
sigmoidal choice function.

As before, note that the value of the output signal of the CDM
model used in every trial computed is obtained by averaging over
1,000 simulations, and that, due to the stochasticity of the CDM, it
is a noisy measure of the actual activity during the trial.

The goal of this second GLM was to look for regions in which
activity correlated with the output signal of the DCM. The results
of this second GLM were used to generate the statistics reported
in Fig. 4 B and C.

GLM 3 and 4. We carried out two further analyses to rule out the
possibility that action-value signals observed in SMA and pre-SEF
could be attributed to motor preparation. In the first such additional
analysis, we estimated a GLM in which trials involving hand or eye
movements were entered as separate indicator variables, and re-
action times (RTs) for those hand and eye movements were used
as parametric modulators around those indicator variables. We then
tested for areas correlating separately with RTs for eye and hand
movements (as a proxy for motor preparation).

In a fourth GLM, we re-ran the same analysis as in GLM 1, except
this time with the inclusion of additional parametric modulators of
RTs for hand and eye movements, to establish whether motor
preparation as indexed by RTs could account even in part for the
regions found to correlate with action-values.

To enable inference at the group level, we calculated second-level
group contrasts using a one-sample t test. Results are reported at
P � 0.001 uncorrected in the entire brain and tested in areas of

interest at P � 0.05 after small volume correction (SVC) for
multiple comparisons.

ROI Analyses. The effect size plots in Fig. 2B were computed by
averaging GLM’s beta values across subjects. To ensure the inde-
pendence of the data used to compute the effect sizes from the data
used to select the ROI we performed the following steps. First, for
each subject we randomly selected half of the choice trials across the
entire experiment and then created another design matrix in which
we modeled the selected 50% of the trials (T1) and the remaining
50% of the trials (T2) as separate regressors. Similar to the GLM
1 (described above), regressors T1 and T2 each consisted of an
onset time regressor and parametric modulators for Ve and Vh.
Second, to define our ROIs we performed a whole-brain SPM
analysis similar to the one shown in Fig. 1A, but this time restricted
to the T1 trials only. Note that the activation map produced by this
step (with a threshold set at P � 0.005 unc.) looks very similar to
the one shown in Fig. 2A. Third, we defined the SMA/preSEF ROIs
using a 6-mm sphere around the individual subject peak voxel
within the activated cluster for T1. Finally, we extracted average
effect sizes within these spheres from the remaining T2 regressor.
Very similar results were obtained if instead of splitting the data
into two groups of trials within subject, data from 50% of the
subjects were used to define the ROIs, while data from the
remaining 50% were used for extracting the effect sizes (from the
co-ordinates defined in the first group of subjects). The effect size
plots for vmPFC shown in Fig. 3B were calculated using an identical
procedure.

Small Volume Corrections. Seed region coordinates for small volume
correction were defined by two alternative methods: First, we used
an anatomical definition for supplementary motor cortex provided
by the AAL human brain atlas (6), and we corrected for small
volume within the entire area of supplementary motor cortex
defined by this atlas (comprising both SEF and SMA), superim-
posed on the normalized average structural scan from our study.
Second, we took the average peak co-ordinate from 16 previous
fMRI studies identifying activation in SMA and defined a sphere
of 12 mm around that averaged peak co-ordinate in which to
perform the small volume correction (7–9). The size of the sphere
in the functionally defined seed region was set to 1.5 times the size
of the smoothing kernel used during preprocessing of the fMRI
dataset. Using each and every one of these criteria, our effects
survived correction for small volume with family wise error at P �
0.05.

The structural T1 images were co-registered to the mean func-
tional EPI images for each subject and normalized using the
parameters derived from the EPI images. Anatomical localization
was carried out by overlaying the t-maps on a normalized structural
image averaged across subjects, and with reference to an anatomical
atlas (10).
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Fig. S1. A region of pre-SEF showing correlations with action-values for eye movements (Ve, top) and a region of supplementary motor area showing correlations
with action-values for hand movement (Vh, bottom). T-maps are shown from a whole brain analysis thresholded at P � 0.001 uncorrected. The color bars indicate the
magnitude of the t-scores. These same two contrasts are also shown combined in Fig. 2A.
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Fig. S2. Posthoc plots of effect sizes (expressed as percent signal change) averaged across all voxels in the activated clusters at the group level for each subject and
then averaged across subjects separately for the pre-SEF (shown in A) and SMA (shown in B). (A). The graph on the left hand shows average % signal change extracted
from pre-SEF separately for trials in which the action value of the eye movement is low (Veye� � 0.5 percentile) and high (Veye �0.5 percentile), further separated
by trials in which either the eye movement or hand movement was actually chosen. As expected (given this area correlates with action-values for eye movements), the
% change plots discriminate high and low eye values irrespective of whether that action is chosen on that trial. Importantly however, when activity within the same
area is plotted as a function of the action value for the hand movement (shown on the right hand side), the signal change on high and low hand value trials does not
discriminate between high and low hand values. Although for eye�chosen trials the value hand signal does appear to separate in the direction of and high and low
hand values, this difference is not statistically significant [paired t test t � 1.8; P � 0.08; note this post-hoc comparison for the value of hand is independent of the
parametric contrast used to select the voxels (value�eye)]. (B). Similar plot for SMA showing that this region distinguishes high and low action�values for hand
movements irrespective of whether that action is chosen, but does not distinguish the value of eye movements.
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Fig. S3. (A) Correlations with eye action value Veye (red, same as in Fig. 2A) don’t overlap with correlations of the local predominant choice bias for eye (blue). Areas
in blue indicate regions that are significantly more active during periods in which the subject predominantly chooses eye. (B) Similarly, the correlation with hand action
valueVhand inSMA(green, sameasdisplayed inFig.2A) isnotoverlappingwithareas thatare significantlymoreactiveat timeswhenthesubjectpredominantly chooses
hand actions (blue).
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Fig. S4. Illustration of the competition difference model. The decision process was modeled as an iterative algorithm of mutual competition between the neuronal
populations associated with the valuation of eye and hand actions. Model inputs were action-values for eye and hand movements. The evolution of the model output
over time within a trial is illustrated in a hypothetical case with action-values of Vh � 0.8 and Ve � 0.5 at the time of model initialization (left), during competition
between populations (middle), and after convergence (right). The model includes an additional final layer (with constant positive input from which the previous result
is subtracted) that inverts the output of the network to compute the value difference between the action not chosen and the action chosen.
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Fig. S5. Illustration of the drift diffusion model. During the decision making process the model computes a net value signal (say Vh � Ve) that fluctuates between
two barriers. A decision is reached when the net value signal crosses either of the two barriers. If the top barrier is crossed the hand action is chosen. If the bottom barrier
is crossed the eye action is chosen. The net value signal climbs to the hand barrier with a slope proportional to Vh � Ve, but it is also affected by white Gaussian noise.
In the case depicted in the figure, Vh � Ve so that hand is the correct choice.
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Fig. S6. Average steady state output of the computational decision model of the choice process as a function of value difference between the two action values.
The remaining number of ON units after 50 iterations was averaged across 1,000 model runs. The red curve displays the average remaining total ON units in the model
in trial that the model converged toward the action with the larger action value. In contrast, the blue curve displays the same statistic for trials in which the model
selected the action with the lower action value.
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Table S1. Characteristics of each value signal type in terms of the specific variable that activity in a given region should be correlated
with as a function of the action performed (choice taken)

Action performed

Value signal categories Eye chosen Hand chosen

Action�value: eye Veye Veye

Action�value: hand Vhand Vhand

Value�chosen Veye Vhand

Value�chosen: eye only Veye —
Value�chosen: hand only — Vhand
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Table S2. Locations of significant correlation with parametric contrasts in the fmri analysis (threshold P < 0.001) MNI coordinates
denote the group peak voxel of each cluster

x y Z T
No.

voxels

Vh (Fig 2A)

01 �21 �90 �18 6.29 46 Left occipital cortex
02 57 �54 �09 5.68 65 Right inferior temporal gyrus
03 �30 �24 75 5.58 59 Left postcentral sulcus
04 00 �12 78 4.61 33 SMA*
05 39 �78 39 4.34 32 Left intraparietal sulcus

Ve (Fig 2A)

01 27 15 �03 4.27 5 ventral striatum
02 �06 09 60 4.16 4 preSMA*

Vchosen (Fig 3A)

01 �39 �36 69 6.37 142 Left postcentral gyrus
02 21 �48 60 5.84 133 Right postcentral sulcus
03 36 �21 39 5.59 24 Right central sulcus
04 �15 �36 45 5.37 34 Left cingulate sulcus
05 �48 �15 51 5.19 50 Left central sulcus
06 06 45 �18 4.76 51 Ventromedial prefrontal cortex*
07 �60 �09 �06 4.72 38 Sup. Temporal sulcus
08 �54 �30 03 4.43 64 Planum temporale

Vunchosen-Vchosen (Fig 4A)

01 �27 24 00 8.02 249 Left anterior insula
02 36 24 06 7.0 176 Right anterior insula
03 03 24 51 5.64 268 Dorsomedial frontal cortex & anterior

cingulate*
04 �33 �54 42 5.47 48 Intraparietal sulcus
05 �48 12 36 5.1 214 Inferior frontal sulcus

Hand bias (Fig S3)

01 �39 �21 51 7.61 558 Left precentral gyrus
02 21 �45 �30 6.4 144 Right cerebellum
03 06 21 66 6.16 158 Right dorsal medial frontal cortex
04 �39 �66 �39 6.02 168 Left cerebellum
05 66 �27 �21 5.93 132 Right temporal lobe
06 21 �39 60 5.76 32 Right central sulcus
07 �39 �66 57 5.54 83 Left superior parietal gyrus
08 48 �51 54 5.26 320 Right superior parietal gyrus
09 30 15 45 5.02 58 Right middle frontal gyrus
10 33 �27 69 4.92 30 Right precentral gyrus
11 �12 �42 30 4.57 126 Left posterior cingulated gyrus
12 45 �72 �33 4.56 44 Right cerebellum

Eye bias (Fig S3)

01 12 �72 12 7.76 2,734 Occipital lobe (bilateral)
02 �27 12 00 5.26 25 Left striatum
03 24 �42 45 5.08 20 Right parietal cortex

*, P � 0.05 SVC corrected.
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Table S3. Model performance in predicting individual subject choices of the soft-max model and the CDM model

Subject

Soft-max model CDM model

R2 P � R2 P �

1 0.57 0.000 0.54 0.000
2 0.65 0.000 0.65 0.000
3 0.20 0.000 0.15 0.000
4 0.20 0.000 0.20 0.000
5 0.18 0.000 0.15 0.000
6 0.04 0.019 0.02 0.118
7 0.13 0.000 0.11 0.000
8 0.54 0.000 0.54 0.000
9 0.04 0.011 0.05 0.009
10 0.18 0.000 0.17 0.000
11 0.64 0.000 0.62 0.000
12 0.06 0.003 0.05 0.004
13 0.36 0.000 0.35 0.000
14 0.25 0.000 0.22 0.000
15 0.56 0.000 0.53 0.000
16 0.58 0.000 0.57 0.000
17 0.31 0.000 0.27 0.000
18 0.38 0.000 0.39 0.000
19 0.46 0.000 0.44 0.000
20 0.56 0.000 0.57 0.000
21 0.61 0.000 0.62 0.000
22 0.19 0.000 0.18 0.000
23 0.06 0.003 0.06 0.004

0.34 0.32
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