A Caltech Library Service

Dislocation movement and hysteresis in Maraging blades

Di Cintio, Arianna and Marchesoni, Fabio and Ascione, Maria and Bhawal, Abhik and De Salvo, Riccardo (2009) Dislocation movement and hysteresis in Maraging blades. Classical and Quantum Gravity, 26 (20). Art. No. 204018. ISSN 0264-9381.

[img] PDF - Published Version
Restricted to Repository administrators only
See Usage Policy.


Use this Persistent URL to link to this item:


All seismic isolation systems developed for gravitational-wave interferometric detectors, such as LIGO, Virgo and TAMA, make use of Maraging steel blades. The dissipation properties of these blades have been studied at low frequencies, by using a geometric anti-spring (GAS) filter, which allowed the exploration of resonant frequencies below 100 mHz. At this frequency an anomalous transfer function was observed in the GAS filter: this is one of several motivations for this work. The many unexpected effects observed and measured are explainable by the collective movement of dislocations inside the material described with the statistic of self-organised criticality. At low frequencies, below 200 mHz, the dissipation mechanism can subtract elasticity from the system even leading to sudden collapse. While Young's modulus is weaker, excess dissipation is observed. At higher frequencies the applied stress is probably too fast to allow the full growth of dislocation avalanches, and less losses are observed, thus explaining the higher Q-factor in this frequency range. The domino effect that leads to the release of entangled dislocations allows the understanding of the random walk of the Virgo and TAMA inverted pendula, the anomalous GAS filter transfer function as well as the loss of predictability of the ring-down decay in the LIGO seismic attenuation system inverted pendula.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:Copyright © Institute of Physics and IOP Publishing Limited 2009. Received 14 April 2009, in final form 10 August 2009. Published 6 October 2009. Print publication: Issue 20 (21 October 2009). We would like to thank Christian Cepeda and John Miller for their help in making these measurements possible. We gratefully thank the National Science Foundation, cooperative agreement number PHY-0823459. This document has LIGO number LIGO-P0900028-v2.
Funding AgencyGrant Number
Other Numbering System:
Other Numbering System NameOther Numbering System ID
LIGO Document Control Center numberLIGO-P0900028-v2
Issue or Number:20
Classification Code:PACS numbers: 05.65.+b, 61.72.Hh, 77.80.Dj, 04.80.Nn
Record Number:CaltechAUTHORS:20091022-114232624
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:16450
Deposited By: George Porter
Deposited On:22 Oct 2009 21:33
Last Modified:03 Oct 2019 01:12

Repository Staff Only: item control page