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Distributed Multi-Parametric Quadratic Programming
Nader Motee, Member, IEEE, and Ali Jadbabaie, Senior Member, IEEE

Abstract—One of the fundamental problems in the area of
large-scale optimization is to study locality features of spatially
distributed optimization problems in which the variables are cou-
pled in the cost function as well as constraints. Such problems can
motivate the development of fast and well-conditioned distributed
algorithms. In this paper, we study spatial locality features of
large-scale multi-parametric quadratic programming (MPQP)
problems with linear inequality constraints. Our main application
focus is receding horizon control of spatially distributed linear sys-
tems with input and state constraints. We propose a new approach
for analysis of large-scale MPQP problems by blending tools
from duality theory with operator theory. The class of spatially
decaying matrices is introduced to capture couplings between
optimization variables in the cost function and the constraints.
We show that the optimal solution of a convex MPQP is piecewise
affine- represented as convolution sums. More importantly, we
prove that the kernel of each convolution sum decays in the spatial
domain at a rate proportional to the inverse of the corresponding
coupling function of the optimization problem.

Index Terms—Multi-parametric quadratic programming
(MPQP), receding horizon control, spacially decaying (SD)
matrix.

I. INTRODUCTION

T HE problem of performing distributed computations
over a network to implicitly solve a global optimization

problem has been an active area of research over the past few
years [1]. There are many important problems that have been
cast in the form of a large-scale finite-dimensional or an infi-
nite-dimensional constraint optimization problem. Substantial
progress has been made in understanding of the fundamental
issues regarding this class of problems (cf. [1]–[3] and refer-
ences therein). One of the fundamental problems in this area is
to study locality features of spatially distributed optimization
problems. Such features can be exploited in the development
of fast and well-conditioned parallel and distributed algorithms
that are scalable to large interconnected systems.

In parallel to this progress, there has been a rapidly growing
interest in systems and control community in the study of co-
ordination and control algorithms for networked dynamic sys-
tems. From consensus and agreement problems to formation
control, sensing, and coverage, researchers have been interested
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in algorithms that are spatially distributed and would achieve
a global objective using local interactions [4]–[7]. Despite the
resurgence of interest in this area, there are few results on opti-
mality of the proposed distributed control schemes [8]–[10].

Among such results, only a handful of proposed methods can
handle state and control constraints. With advances in real-time
optimization, this has started to change. There have been several
recent attempts to develop distributed control algorithms that are
based on receding horizon control, where the control action is
obtained by solving an online, finite horizon, open-loop optimal
control problem, and applying the first step of the optimal con-
trol trajectory. Repeating this process and moving the horizon
gives rise to a time-invariant feedback policy [11].

While receding horizon control has been around for more
than three decades, emergence of its distributed implementa-
tions is more recent. Examples of recent application of dis-
tributed receding horizon control range from formation control
of multi-vehicle systems [12]–[14] to applications in manufac-
turing and process industry where multiple units cooperatively
produce a product [15], [16], and large scale power systems
[17]–[22].

In [23], the authors proposed a distributed receding horizon
control algorithm for systems which consist of subsystems
whose dynamics and constraints are uncoupled, and couplings
are imposed through a single performance cost function.
Stability analysis is based on the fact that the optimal state
trajectory of each subsystem satisfies a compatibility con-
straints condition, and that the receding horizon updates happen
sufficiently fast. In [13], a decentralized receding horizon
control scheme for systems whose coupling is through cost
function and constraints, is proposed. Each subsystems uses
only local information of itself and every neighbor to compute
the optimal trajectory. Stability and feasibility issues regarding
this distributed algorithm is also discussed and compared to
those of others being proposed earlier in the literature. Another
related work on this subject was reported in [24] where the
authors solve a min-max problem for each subsystem. In this
work, coupling comes from dynamics and the stability of
the proposed algorithm is ensured by imposing a contractive
constraint, called stability constraint. In [18], [22], [25], un-
constrained coupled subsystems are addressed with a separable
quadratic cost function. The primary objective of these papers
is to develop decomposition algorithms, with stability and
feasibility guarantees, to solve the centralized receding horizon
control problem in a distributed fashion.

Despite the above recent advances, connections between cen-
tralized and decentralized implementations of receding horizon
control problems on spatially distributed systems is not clear.
Such systems consist of large, possibly infinite, number of sub-
systems coupled either through their dynamics or through a
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single cost function, which represents some common goal or ob-
jective. Our main objective is to explore and quantify the locality
features of solutions of receding horizon control problems for
spatially distributed systems in which coupling between subsys-
tems decay as function of distance between them. In this paper,
we focus our attention on analyzing properties of Multi-Para-
metric Quadratic Programming (MPQP) problems. We refer to
[26], [27] for finite-dimensional analysis of MPQP problems.

The key idea is to employ the operator theoretic tools devel-
oped in [28] to study spatially distributed systems. We intro-
duce the Banach algebra of infinite-dimensional spatially de-
caying (SD) matrices. Furthermore, under some mild conditions
we show that the algebra of SD matrices is also closed under in-
version operation [29]. Using duality theory and complimentary
slackness, we show that the optimal solution of an infinite-di-
mensional MPQP problem is a piecewise affine map of param-
eters, and can be represented as convolution sums. Most impor-
tantly, we prove that the kernel of each convolution sum decays
in the spatial domain at a rate proportional to the inverse of the
corresponding coupling function of the optimization problem.
In other words, a change of parameters in one node mainly af-
fects the optimal solution of its nearest neighbors. It is impor-
tant to stress that this locality feature is inherent and, therefore,
verify the feasibility of spatial truncation without too much loss
of performance. Indeed, in a MPQP problem we can quantify the
relations between couplings in the cost function and constraints
and locality features of the optimal solution. The importance
of this result is that a significant drop-off in complexity can be
achieved by localization.

This paper is organized as follows. We introduce the notation
and the basic concepts used throughout the paper in Section II.
The MPQP problem is presented in Section III. In Section IV,
it is shown that receding horizon control of spatially distributed
linear systems can be formulated as MPQP. The class of SD ma-
trices is introduced in Section V. This sections studies various
properties of SD matrices. In Section VI, we study the locality
features of large-scale MPQP problems. Simulations results are
discussed in Section VII.

II. PRELIMINARIES

The notation used in this paper is fairly standard. Symbol
denotes the set of real numbers, the set of nonnegative

real numbers, the set of integer numbers, the set of com-
plex numbers, and the unit circle in . We refer to as
the spatial domain. Examples of typical spatial domains include

for some positive integer . The Banach space for
is defined to be the set of all sequences

in which satisfying

endowed with the norm

The Banach space denotes the set of all bounded se-
quences endowed with the norm

Throughout the paper, we will use the shorthand notation for
. A linear functional on the space is a linear mapping

from to . We will use the notation to denote .
An operator for , is bounded if it has
a finite induced norm, i.e., the following quantity:

(1)

is bounded. The same definition holds when . The
identity operator is denoted by . The set of all bounded linear
operators of into for some (also for ) is
denoted by . The space equipped with norm (1)
is a Banach space (cf. [30]). The dual space of a Banach space

, denoted by , is the space of all bounded linear functionals
on . Since we are interested in Banach space in this paper,
we have where .

An operator has an algebraic inverse [30] if it
has an inverse in .

Definition 1: Let be a bounded linear operator.
The adjoint operator is defined by the
following equation:

for all and .
The space is a Hilbert space with inner product

for all . An operator is self-adjoint if
.

Definition 2: An operator is positive definite,
shown as , if there exists a number such that

for all nonzero .
Definition 3: A subset of a linear vector space is called a

cone if for every and it satisfies .
A subset of a real vector space is a convex cone if it is
convex and a cone, which means that for any and

, it satisfies

Definition 4: Let be a convex cone in a vector space
. For , we write (with respect to ) if

. The cone defining this relation is called the
positive cone in .

In most situations, the choice of will arise naturally. For
example, the set of all continuous functions from into

is a vector space over . The positive cone in is the
set of all continuous functions in the space that are nonnegative
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Fig. 1. A spatially distributed system is represented as a connected graph. Cou-
pling between two agents is shown by an undirected edge between them.

everywhere on . Therefore, for , the notation
means the pointwise inequality for all .

For a positive cone in Banach space , the corresponding

positive convex cone in the dual space is defined by

In this paper we are interested in linear operators which have
matrix representations

. . .

. . .

where .
Given linear operators , , , , the row

and column block composition of these operators are defined
entry-wise as follows:

More complex block compositions can be defined in terms of
these elementary operations. Similarly, we can define the row
and column block compositions of elements in .

III. MULTI-PARAMETRIC QUADRATIC PROGRAMMING (MPQP)

In this paper, we consider large-scale MPQP problems de-
fined by

(2)

where , is self-adjoint and positive definite,
, and is a convex subset of . We can associated an

undirected weighted graph to problem (2) as follows (see Fig. 1).
Let denote as the index set of nodes of the graph. For each

in , element represents the variable corre-
sponding to node . For a given pair of nodes , the block
elements and can be thought of as coupling between
nodes and in the cost function and the constraints. In dis-
tributed control applications, very often the underlying system

is spatially distributed over an arbitrary graph. Each node corre-
sponds to an individual dynamical subsystem which is coupled
to the other subsystems in the network through their dynamics
and collective performance objective function. There are nu-
merous problems concerning this class of systems that can be
posed as problem (2). For example, finite-horizon control (also
known as model predictive control) of spatially distributed sys-
tems with discrete-time linear models (see Section IV for de-
tails) and least square problems corresponding to parameter es-
timations in sensor networks can be cast as problem (2). We
refer to [31] and [32] for more discussion on many applications
that can be cast as problem (2).

Problem (2) is a large-scale convex MPQP problem. In gen-
eral, it is a tedious task to find numerical (or explicit) solutions
for this class of problems. Therefore, we focus our study on
the structural properties of this class of problems. Specifically,
we show that the optimal solution of (2) has, to some extend,
spatial locality features. This result can be useful in developing
efficient approximation methods to solve problem (2) in a dis-
tributed fashion.

One of the fundamental tools in deriving methods to compute
exact or approximate solutions to the infinite-dimensional prob-
lems is duality theory [2], [31]. In spite of the finite-dimensional
case, the relationship between primal and dual problems in the
infinite-dimensional problems may not be simple. Problem (2)
is a convex optimization problem and, therefore under some as-
sumptions (see Theorem 3), strong duality holds. The strong du-
ality (no duality gap) involves cases where the optimal solutions
of both primal and dual problems exist and both have the same
optimal cost. The strong duality relationship in the primal-dual
pair provides a clear insight into the structure of the problem
and its optimal solution.

In Section IV, we will show that receding horizon control
problem of spatially distributed systems can be formulated
as (2).

IV. FORMULATION OF RECEDING HORIZON CONTROL

PROBLEM AS QUADRATIC PROGRAMMING PROBLEM

We consider the class of spatially distributed systems which
can be described by a discrete-time linear time-invariant model

(3)

subject to constraints

(4)

for all and with the initial condition . All sig-
nals are assumed to be in space:

, similarly summation of and over are
bounded. The state-space matrices , , , , , assumed
to be time-independent, , and the pair stabiliz-
able. Note that the ordering in inequality (4) is defined with
respect to the positive cone in . The following assumption
guarantees existence and uniqueness of classical solutions of
the system given by (3) (cf. [33, Chapter 3]). We assume that
the semigroup generated by is strongly continuous on .

The control objective is to regulate the state of system (3)
to zero while satisfying constraints (4). In the sequel, we will

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 30, 2009 at 18:09 from IEEE Xplore.  Restrictions apply. 



2282 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

explain how to achieve this objective by employing receding
horizon control techniques [11].

An equivalent representation of system (3) can be obtained
by using block-composition operation as follows:

(5)

Furthermore, we assume that operator is the infinitesimal gen-
erator of an exponentially stable -semigroup on . We refer
to [27] and references in there for further discussions on this as-
sumption.

The receding horizon control problem for system (3) subject
to constraint (4) can be formulated as follows:

subject to

(6)

The nonnegative integer number is the state prediction
horizon, the control prediction horizon, and the con-
straint horizon. Furthermore, we assume that
and (cf. [27]). For simplicity, we will assume
that . For and ,
optimization is performed only over control variables, and
for the rest of the horizon we may use zero control inputs,
which in turn will reduce the complexity of the problem.

The functional can be interpreted as the collective
performance objective of the entire system. Assume that ma-
trices , are self-adjoint, and detectable.

In the sequel, we show that similar to the finite-dimensional
case [27], the receding horizon control problem (6) can be
represented in the compact form of (2). Moreover, the terminal
weighting cost can be determined by solving the corre-
sponding Lyapunov equation (cf. [34])

(7)

for all (domain of the operator). A similar proof as
shown in for the continuous-time case can be outlined to show
that if , are SD, then the unique solution of the Lyapunov
(7) is also SD.

The prediction model for system (5) is given by

(8)

where

...
...

and matrices , , , are completely determined from ,
, , and by using block-composition operations as follows:

...
...

. . .

...

...
. . .

Therefore, the state prediction model for system (2) is given by

(9)

The quadratic cost in (6) can be rewritten in the following form:

(10)

in which

. . . . . .

and the off-diagonal blocks are equal to zero. Substituting (9)
into (10) gives us

The input and output constraints in (6) can be rewritten as

(11)

where

. . .
. . .

...
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and the off-diagonal blocks are equal to zero. In (11), the in-
equality is interpreted elementwise. From (8), we have

(12)

Substituting (12) into (11), it follows that:

Therefore, problem (6) is equivalent to the following infinite-
dimensional QP problem:

(13)

where

(14)

(15)

In finite-dimensional case, for a given horizon length there
is a polyhedral set of initial conditions for which feasible tra-
jectories exists, over which the receding horizon controller is
stabilizing (cf. [11], [27], [35]–[37] and the references therein).
For our formulation, we assume that the set of all initial condi-
tions for which an optimal solution of (6) exist is a set which
can be characterized as follows (with respect to the positive cone
in ):

where . Formulation in (13) gives a clear picture of
the relationship between the control input variables and initial
condition . Problem (13) is a multi-parametric optimization
problem on (the spatial domain) in which is treated as
vector of parameters.

V. SPATIALLY DECAYING MATRICES

Spatially-decaying (SD) matrices have been recently devel-
oped to study the structural properties of infinite-horizon op-
timal control of spatially distributed systems [28]. In general,
the algebra of SD matrices furnishes a suitable framework to
study infinite-dimensional systems. In the following, we will in-
troduce the class of SD matrices. We will also show that the set
of such matrices is closed under inversion (when the inverses
exist). Specifically, it is shown that similar to translation in-
variant operators, if a spatially decaying matrix has an algebraic
inverse in and some additional conditions, then the in-
verse matrix is spatially decaying as well.

A. Definitions

In the sequel, by a distance function on we mean a single-
valued function which has the following
properties:

1) iff ;
2) ;
3) ;

for all . As discussed in Section III, a graph can be
associated to problem (2). In analysis of problem (2), notation

represents the spatial distance between nodes and
and it is invariant under node relabeling.

Definition 5: Let be a continuous con-
cave function such that . A coupling characteristic
function is of the following form:

and it satisfies and . A coupling
characteristic function is said to satisfy the GRS-condition
(Gelfand–Raikov–Shilov condition) if

or equivalently, we have

We refer to [28] for a discussion on coupling characteristic
functions. Typical examples of such coupling characteristic
functions are polynomial functions ,
sub-exponential functions of the form , and

logarithmic functions of the form
for all and (see [29] for more details). The
definition of a coupling characteristic function enables us to
measure the decay rate of the coupling strength between nodes
in a coupled network of subsystems as distance increases.

For a given spatial domain and a parameterized coupling
characteristic function, we define the class of infinite-dimen-
sional matrices defined by the off-diagonal decay of their en-
tries. The decay can be quantified by a coupling characteristic
function.

Definition 6: We define the set of spatially-decaying (SD)
matrices with decay margin to be the subspace of all
matrices such that where

Intuitively, a matrix is SD, if the size of each block decays
faster than inverse of a coupling characteristic function. It can be
shown that is a Banach algebra of bounded operators acting
on [29].

In Section VI, the closure properties of algebra is utilized
to show the structural properties of problem (2). In the sequel,
it is shown that under a reasonable assumption, namely invert-
ibility on and a weak growth condition, the Banach al-
gebra is closed under inversion as well. As we will see in
Section VI, the closure under inversion property of plays a
central role in proving the spatial locality features of the optimal
solution of problem (2).

Remark 1: In this paper, we present our results for a countable
index set and an arbitrary distance function on . The
proof of Theorem 2 is mainly based on [29, Theor. 6]. The re-
sult of this theorem is expressed for index set and distance
function . In the following discussion which
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is adopted from [29, Remark 2], we briefly show that the proof of
[6, Theor. 6] carries over to arbitrary countable index sets en-
dowed with a non-trivial metric . The key modification in
the proof of Theorem 6 is when we apply Barnes’s Lemma [29,
Lemma 5]. In the proof of Theorem 6, we have to assume that the
volume of balls grows polyno-
mially in the radius and independently of . Therefore, in
the rest of the paper we assume that the distance function
satisfies the above condition. For more details, we refer to [29,
Remark 2].

B. Closure Under Inversion

The study of optimal solutions of problem (2) involves
solving linear equations of the following form:

(16)

where is an invertible SD matrix, is the unknown
variable, and is given.

In the following, it is shown that under some mild assump-
tions if , then . Before stating the
main results of this section, we recall a motivating result about
translation invariant operators [38], [39]. As shown in [28],
every translation invariant operator on , which its Fourier
transform has analytic continuation to an annulus with nonzero
radius around the unit circle, belongs to for some that
relates to the radius of the annulus. We begin by introducing the
unit translation operator to the right with respect to the group
operation “ ” as follows:

Note that for this case . For a translation invariant oper-
ator which is defined as

the discrete Fourier transform is defined by

Theorem 1: Let be a traslation invariant operator with dis-
crete Fourier transform . If condition holds
for all , then is invertible and the inverse operator can
be represented as

(17)

Furthermore, if has analytic continuation to some
annulus

then the norm of matrix coefficients of operator decay ex-
ponentially in the spatial domain, that is, for all

(18)

for some and .

Proof: The proof follows from [28, Theorem 3].
The following theorem extends the above result to SD ma-

trices and gives a similar decay result for the inverse matrix.
The following result is a consequence of [29, Theorem 6].

Theorem 2: Suppose that where the coupling char-
acteristic function satisfies the weak growth condition

for some . If has an algebraic inverse on then
. Moreover, If is a positive definite matrix on ,

then also the matrices corresponding to for are in .
Proof: It suffices to prove the theorem for symmetric ma-

trix . The reason is that for an invertible matrix the following
relation holds:

Therefore, without loss of generality we may assume that
is symmetric. According to [28, Theorem 6], the weak growth
condition implies that

where and denote the spectrum of an operator acting on
and , respectively. From this, it follows that .

Thus, . The result of the second part of the theorem
follows from Wiener-Levy theorem (see [29] and [40] for more
details).

Remark 2: It is important to emphasize that Theorem 2 is
false when the coupling characteristic function does not satisfy
the GRS-condition. For example, if the coupling characteristic
function is an exponential function, i.e.

for some , then Theorem 2 is not valid anymore. In the fol-
lowing, we provide an explicit example. Consider a translation
invariant operator whose discrete Fourier transform is given
by:

The matrix of has entries if , if
, and otherwise. Therefore, is a banded

matrix and

for all . It is easy to see that for all . Thus,
is invertible on . The Fourier transform of the inverse

operator can be explicitly computed as follows:

where . Now, if the coupling characteristic
function is , by choosing we have that
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This example shows that for all , but
for all . Therefore, the GRS-condition is critical for

Theorem 2 to be valid.
In the venue of the above results, from (16) it follows that:

and for any given , we have

According to Theorem 2, we get

We will apply this result in Section VI to analyze the structural
properties of the optimal solution of the infinite-dimensional
quadratic programming (2).

Remark 3: Note that if , then

Similarly, one can show that

Using this property, one can conclude that if , , ,
in (6), then , , , , , . One can also show that
if , then the unique positive definite solution of
(7) is in (cf. , [41]). Therefore, it follows that ,
and if , also . Therefore, it follows that ,

, , . From positive definiteness of matrix , it
also follows that . Therefore, problem (13) is a convex
quadratic programming problem, and that it can be written in
the standard form (2).

VI. ANALYSIS OF INFINITE-DIMENSIONAL MPQP

In this section, we study the structural properties of the op-
timal solution of a large-scale MPQP problem

subject to: (19)

where parameters are the components of vectors .
We assume that is a self-adjoint and positive definite matrix,

, and a convex subset of . Assume that there
exists a set of parameters for which for every an
optimal solution of (19) exists. When problem (19) is consid-
ered on a finite-dimensional vector space, it can be shown that

can be partitioned into countably many partitions (cf. [27] and
references in there) over each of which the optimal solution of
(19) is an affine function of the parameters. In the following, we
will show that a similar explicit representation exists for the op-
timal solution when problem (19) is treated in an infinite-dimen-
sional vector space. In this scenario, however, the affine repre-
sentation is in the form of a convolution sum with some matrix
gains appearing as the kernel. We will prove that convolution

kernel corresponding to the optimal solution on each parameter
set, have decay in the spatial domain at a rate proportional to
the inverse of the corresponding coupling characteristic func-
tion. We recall the following theorem which is Theorem 1 in
chapter 8 of [2].

Theorem 3: Let be a vector space, a normed space,
a convex subset of , and the positive cone in . Assume
that contains an interior point. Let be a real-valued convex
functional on and a convex mapping from into . As-
sume the existence of a point for which (i.e.,

is an interior point of ). Let

(20)

and assume is finite. Then

(21)

and the maximum is achieved by an element in ,
where the inequality is defined with respect to the positive cone

. Furthermore, if the infimum is achieved in (20) by an
, then

(22)

and minimizes , with .
The above result provides a precise method to explain

primal-dual relationship, and that formulate the necessary op-
timality conditions for a convex infinite-dimensional (clearly,
finite-dimensional as well) optimization problem. The out-
come of this theorem can be thought of as the generalized
Karush–Kuhn–Tucker conditions in infinite-dimensions. In the
following, as we will see the necessary optimality conditions
for problem (19) are very similar to its finite-dimensional coun-
terpart. In the following theorem, we assume that the existence
assumptions of Theorem 3 hold for (19).

Theorem 4: In problem (19), we assume that is a
self-adjoint and positive definite, , and . We
assume that the assumptions of Theorem 2 hold and a strictly
feasible point exists for problem (19). We suppose that at the
optimal solution some combination of constraints in (19) are ac-
tive and the corresponding rows to these active constraints from
matrix form an onto matrix . Let be the set of all

so that such combinations are active at the optimal so-
lution. Then the optimal solution of (19), as well as the corre-
sponding Lagrange multipliers to index , are

(a) affine maps of over , especially

(23)

for some linear bounded matrices and .
(b) spatially distributed , in the sense that the coupling decays

in the spatial domain at a rate proportional to the inverse
of the corresponding coupling characteristic function, i.e.

for some .
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Proof: We may assume that is nonempty. Let fix
. Since the optimal value is less than with

, it follows that where:

The minimum is achieved since one can reduce the problem
to minimizing a continuous function over a compact set. Let de-
note the minimum by . The quadratic cost functional in (19) is
Fréchet differentiable [2]. This allows us to define the gradient
of the quadratic cost functional. Theorem 3 implies that the gra-
dient of the Lagrangian calculated at the optimal must vanish.
Condition (22) in Theorem 3 can be written as

(24)

Every term inside the summations in (24) is nonpositive. This
follows from the fact that at optimum we have:

(25)

Therefore, each term has to be zero. Note that the positive cone
in is defined by

and by definition . Therefore, by applying Theorem
3 to (19) we have the following conditions:

(26)

(27)

(28)

(29)

where is the corresponding Lagrange multi-
pliers. Condition (27) is so called complementary slackness. We
refer the reader to [31] (for example, see Chapter 7 and 8) for
more details on more general cases of this problem.

Since is bounded and positive definite, it has an algebraic
inverse on . Equation (26) results in

(30)

According to (27) and (28), all Lagrange multipliers cor-
responding to inactive constraints must be zero, and the La-
grange multipliers corresponding to active constraints are non-
negative numbers. We denote the index set corresponding to the
active constraints by and the corresponding Lagrange multi-
pliers by . Therefore, we can form linear matrix

whose entries are obtained by deleting
rows corresponding to the inactive constraints from . We may
equivalently represent this operation as where is a
bounded matrix that is obtained by deleting rows from (iden-
tity matrix) which correspond to the inactive constraints. One

can see that is SD. This is because distance function
corresponds to the actual spatial distance between nodes and

on the underlying graph of the system and is invariant under
relabeling the nodes. From (27) and our assumptions, for every

we have the following equation:

(31)

in which or, equivalently, . This equation
allows us to solve it along with (30) for . Using (30), it follows
that:

(32)

Substituting (32) into (31), results in

Matrix is onto and is (1 1). Thus, matrix is in-
vertible and positive definite, and that it has an algebraic inverse
on . Therefore, we have

(33)

and

(34)

where

Equation (34) can be written in the form of convolution sums as
follows:

for all . This proves part (a) of the theorem that the optimal
solution is an affine function of parameters for all .

Since , is also SD. According to Theorem 2,
. It follows that is also SD with respect

to coupling characteristic function as an operator acting on
. For simplicity of notation, we also use to refer to

the Banach algebra of SD operators acting on . Applying
Theorem 2 one more time, it results in

Therefore, using the closedness under multiplication property
of Banach algebra , it concludes that the gain matrix is
SD. Thus, it follows that:

for some . It is straightforward to show that a similar result
holds for matrix , i.e.
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Fig. 2. � � �� nodes are randomly and uniformly distributed in a region of
area 10� 10 �����	
 . A scalar variable � is associated to each node. The
node variables are coupled through a central quadratic cost function and some
linear constraints by using a given coupling characteristic function.

for some .
The result of theorem 4 can be used to characterize the param-

eter set . Assume that is nonempty. The optimal solution has
to satisfy constraint (29) and by (28) the Lagrange multipliers
(33) must be nonnegative. Therefore, the parameter set can be
represented as

where

Note that matrices and are bounded.
The results of Theorem 4 are valid for infinite-dimensional

MPQP problems. In Section VII, simulation results suggest that
a finite-dimensional version of Theorem 4 may also hold. The fi-
nite-dimensional version of Theorem 4 is still an open problem.

VII. SIMULATION

In this section, we consider a large-scale quadratic program-
ming problem as follows:

(35)

where and . We assume that
nodes are randomly and uniformly distributed in a region of area
10 10 (see Fig. 2). A scalar variable is associated to
eachnode forall .Thenodevariables arecoupled to
each other through a common quadratic cost function and linear
constraints by using a given coupling characteristic function .

The weight matrices , are defined as follows:

(36)

and

(37)

for all and . The distance
function is Euclidean. According to Theorem 4, the optimal so-
lution corresponding to node can be written as an affine func-
tion of parameters and

Simulations are performed in MATLAB using the optimization
toolbox. First, the optimal solution of problem (35) is computed
numerically, and then using the active/inactive constraints tech-
nique (illustrated in the proof of Theorem 4) the gain matrices

and are derived.
In the sequel, two different scenarios are considered for the

coupling characteristic function. In the first simulation, we as-
sume that the coupling characteristic function is exponential
function where and . In the next
simulation, we assume that the coupling characteristic function
is algebraic where and . In
both cases, computations show that .

In Figs. 3 and 4, the norm of coupling matrix corre-
sponding to agents ,23,28,34 (their locations are marked
by bold stars in Fig. 2) is depicted versus the distance of node

from the other nodes. As seen from these simulations, for
node the norm of the coupling matrix is approximately
enveloped with function . Therefore, the
spatial decay rate of the optimal solution can be determined
priory using the information of the coupling characteristic func-
tion . As seen in Figs. 3 and 4, for each subsystem

, the corresponding optimal solution is effectively coupled only
to those subsystems with distance closer than 3 (units). This sug-
gests the possibility of formulating the optimal control problem
in a distributed fashion, rather than solving a centralized high-
dimension optimization problem such as (35).

VIII. CONCLUSION

We introduced the class of spatially decaying (SD) matrices
and showed that the space of spatially decaying matrices forms
a Banach algebra. It was shown that under the GRS-condition
and a weak growth condition on the coupling characteristic func-
tion, the Banach algebra of SD matrices is also closed under in-
version operation. Also, we formulated model predictive con-
trol problem for spatially distributed linear systems as quadratic
programming. We employed the developed framework to ana-
lyze spatial structure of large-scale quadratic programming prob-
lems. By applying duality theory and complementary slackness
conditions, we proved that the optimal solution of a multi-para-
metric quadratic programming is piecewise affine which can be
represented as convolution sums. Furthermore, we proved that
the kernel of each convolution sum decays in the spatial domain.
It is important to stress that this locality feature is inherent, there-
fore, verifies the feasibility of spatial truncation in the optimal so-
lution without too much loss of performance. The future research
relies on developing computational tools and algorithms that ex-
ploit the spatial structure of SD matrices.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 30, 2009 at 18:09 from IEEE Xplore.  Restrictions apply. 



2288 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

Fig. 3. Exponentially decaying coupling characteristic function: norm of ma-
trix main �� � (bar) and �� ��� ������� ��� when � � � and � � �		
(dashed) for nodes � � 
,23,28,34, respectively, from top to bottom.

Fig. 4. Algebraically decaying coupling characteristic function: norm of matrix
main �� � (bar) and �� ��� ������� ��� when � � �(dashed) for nodes
� � 
,23,28,34, respectively, from top to bottom.
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