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Parameter-Dependent Lyapunov Functions for Linear
Systems With Constant Uncertainties

Peter Seiler, Ufuk Topcu, Andy Packard, and Gary Balas

Abstract—Robust stability of linear time-invariant systems with respect
to structured uncertainties is considered. The small gain condition is suf-
ficient to prove robust stability and scalings are typically used to reduce
the conservatism of this condition. It is known that if the small gain condi-
tion is satisfied with constant scalings then there is a single quadratic Lya-
punov function which proves robust stability with respect to all allowable
time-varying perturbations. In this technical note we show that if the small
gain condition is satisfied with frequency-varying scalings then an explicit
parameter dependent Lyapunov function can be constructed to prove ro-
bust stability with respect to constant uncertainties. This Lyapunov func-
tion has a rational quadratic dependence on the uncertainties.

Index Terms—Parameter-dependent Lyapunov function (PDLF).

I. INTRODUCTION

Modeling uncertainties can be represented as parametric and/or dy-
namic perturbations to a nominal model. The entire collection of mod-
eling uncertainties in a system can be collected into a single structured
uncertainty (see, for example, [1], [2]). The structured singular value
��� [2]–[4] provides a necessary and sufficient condition for robust
stability with respect to structured linear-time invariant perturbations.
However it is known that computing � is NP Hard [5], [6]. Thus there
has been extensive research into computational algorithms which are
fast and provide good lower/upper bounds for most problems of engi-
neering interest.

The small gain condition [7], [8] provides an easily computable suffi-
cient condition for robust stability but is, in general, not necessary. Thus
scalings are typically introduced to reduce the conservatism. For ex-
ample, if there exists constant or frequency-dependent D-scales from an
allowable set such that the small gain condition holds, then the system is
robustly stable. These tests have their roots in the multiplier approaches
used for passivity analysis [7]. In [2], these two conditions are referred
to as the frequency domain constant D test and the frequency domain
upper bound. In this technical note we will refer to these as the constant
D and varying D tests.

The constant D test is necessary and sufficient for robust stability
with respect to arbitrarily fast linear time-varying perturbations [9].
This condition is connected to the notion of quadratic stability, i.e., the
existence of a single quadratic Lyapunov function which proves sta-
bility of all possible trajectories of the uncertain system for both fixed
and time-varying perturbations [10]–[15]. In particular, if the small
gain condition holds with constant D-scales then the uncertain system
is quadratically stable.
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The varying D test has a different interpretation. The use of fre-
quency-varying D-scales renders the small gain condition necessary
and sufficient for robust stability with respect to arbitrarily slowly-
varying linear perturbations [16]. This is the condition that is typically
used when computing � versus frequency. Clearly this test is also suffi-
cient for robust stability with respect to all constant perturbations from
the allowable set. Thus for each fixed perturbation there exists a Lya-
punov function proving stability of the system. In contrast to the con-
stant D test, this Lyapunov function may be a function of the perturba-
tion. This technical note provides an explicit expression for a param-
eter-dependent Lyapunov function (PDLF) which can be derived from
the varying D test. This Lyapunov function has a rational quadratic de-
pendence on the uncertainties.

There is a significant amount of related research on PDLFs. The clas-
sical Popov criterion, when applied to a linear uncertainty, can be inter-
preted as using a PDLF to prove robust stability [14], [17]. This Lya-
punov function is quadratic in the state and has an affine dependence on
the uncertainty. There are many approaches to develop robust stability
conditions using more general PDLFs. Lyapunov functions having an
affine [14], [17]–[25], multi-affine [26], bi-quadratic [27], generic poly-
nomial [28]–[31], and linear fractional dependence [32], [33] on the
uncertainty have been considered. Hermite matrices [34] and power
forms [35] have also been considered. The Kalman-Yakubovich-Popov
(KYP) lemma [36] connects the PDLF in the Popov Criterion to a fre-
quency domain condition but there are few additional connections for
these more general PDLF conditions. One connection is made in [20],
[21]. In particular, [20], [21] consider linear systems with affine depen-
dence on real parameter uncertainties. They derive a sufficient condi-
tion for robust stability using a PDLF having affine dependence on the
uncertainties. They demonstrate that this sufficient condition is equiv-
alent to the standard real � upper bound [37] but restricted to have
constant � scales and � scales having a specific affine dependence on
frequency. Thus the condition in [20], [21] is more conservative than
the real � upper bound with generic frequency-varying � � � scales
which is known to be equal to � for certain block structures [38].

The work on quadratic separators provides another relevant connec-
tion to PDLFs [39]–[42]. The authors derive necessary and sufficient
robust stability conditions based on finding a Hermitian matrix-valued
function, termed a quadratic separator, which topologically separates
the graph of the nominal system from the inverse graph of each uncer-
tainty in the allowable set. One version of this condition can be inter-
preted as simultaneously searching for a PDLF and a parameter-depen-
dent quadratic separator which satisfy a linear matrix inequality (see
Theorem 3 of [40]). These necessary and sufficient conditions are com-
putationally difficult to solve (they are equivalent to computing �) and
hence various sufficient conditions are derived. One of these sufficient
conditions, termed the vertex-separator condition, can be used to con-
struct a PDLF with polytopic dependence on the uncertainties. Another
sufficient condition is obtained for linear parameter varying systems
by applying a constant quadratic separator. This sufficient condition is
shown to be equivalent to the existence of a PDLF which has a linear
fractional dependence on the uncertainty (see Theorem 4 of [42]). This
particular PDLF will be discussed further in Section IV.

NOTATION

��� and ��� are complex and real���matrices, respectively.
For � � ���, �� is the complex conjugate transpose of � . The
maximum singular value of � is denoted by �� ���. For � � ���,
the spectral radius of � is denoted by � ���. If � � �� then all
the eigenvalues of � are real and 	��� ��� denotes the largest eigen-
value. If � � �� then � 
 � and � � � denote the matrix is
positive and negative definite, respectively. Given � � ��� and

 � ���, �������
� � ����������� denotes the block diagonal

concatenation of the two matrices. ��
 � ����� denotes the Kro-
necker product. Let � and � be positive integers and partition � �

����������� as � �
� 


� �
where � � ���, 
 � ���,

� � ���, and � � ���. Let � � ��� be a matrix such that
���� is invertible. In this case we define the linear fractional transfor-
mation ������� �� ��
��� ������ � . The subscript � refers
to the closure of the lower block of� with the matrix� and we can use
this transformation to define an uncertain, autonomous discrete-time
system: ���� � ��������� . Similarly, for 	 � ��� such that
���	 is invertible, we define�����	� �� ���	�� � �	���
.
The subscript � refers to the upper block of � being closed with the
matrix 	. This transformation can be used to define a transfer function
matrix, e.g., ���� �� � � � ���� � ����
 � ����� �

�
���. We

define ���� �� 
����	�	
 �� ����	� .

II. PRELIMINARY RESULTS

This section presents lemmas which are used in Section IV to
construct a PDLF from the varying D test. The first lemma is the Schur
complement lemma. The next lemma relates a block 2� 2 Lyapunov
inequality to Lyapunov inequalities for the diagonal blocks. The last
lemma relates an algebraic Riccati inequality to a robust stability
condition.

Lemma 1 (Schur Complements [14], [43]): Let

� ��
��� ��	

� ��	 �		
� ����������� and � � � �. The

following conditions are equivalent:
A) � 
 �;
B) ��� 
 � and �		 � � ��	�

��
�� ��	 
 �;

C) �		 
 � and ��� � ��	�
��
		 �

�
�	 
 ��

Lemma 2 (Block Lyapunov Inequality): Let � ��
��� ��	

� �		
�

����������� and � ��
��� ��	

� ��	 �		
� ����������� be parti-

tioned conformably. If � � � � 
 � and ���� � � � � then:
A) 
� �� ��� satisfies 
� 
 � and ���� 
���� � 
� � �;
B) 
� �� �		��

�
�	�

��
�� ��	 satisfies 
� 
 � and��		 
��		� 
� � �.

Proof:
A) Any diagonal block of a positive (negative) definite matrix must

itself be positive (negative) definite. Thus � 
 � implies 
� 
 �.
Also, the (1,1) block of ������ is ���� 
����� 
� and hence
this quantity is negative definite.

B) By the Schur complement lemma, � 
 � implies 
� 
 �. Also
by the Schur complement lemma, ���� � � � � implies
���������� � �. The (2,2) block of��� is 
��� (see Equa-
tion A.1.7 of [43]). Thus the (2,2) block of���������� � �
implies �		


�����		 � 
��� � �. One more application of the
Schur complement lemma brings the desired result, ��		 
��		�

� � �.

Lemma 3 (Robust Stability Condition): Let � ��
� 


� �
�

�����������. If there exists � � � � � ��� such that � 
 � and

�
�
��� � � �

�
�
��
� � �

�
� � � (1)

where � �� � � ��� � 
��
 and � �� 
��� � ��� then �
satisfies


��

� ��
�
���

	��� ������������������� � � �� (2)

Proof: The S-procedure can be used to prove this lemma. For ex-
ample, Chapter 5 of [14] applies the S-procedure to derive a robust sta-
bility condition for continuous-time LTI systems with norm-bounded
time-varying uncertainties. For completeness, we provide a proof for
discrete-time systems which is based on completion of a square.
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The algebraic Riccati inequality (1) can be used to show �� ��� � �.
Thus ���� is invertible and ������� is well-defined for all � with
�� ��� � �. To simplify notation, define� �� � �� ������ so that
������� � 	 � 
�� . Completing a square and using �� ��� � �
yields

����������������� �

�	��	 � � � 
�� ��
 � ���� � 
��� ������ � 
�

��� 	� �
� �� �

�
�
�� �� �

�
� ��� 
�

�	��	 � � � 
�� ��
 � ���� � 
��� ������ � 
�

� �
�
� � ���� ����������� ���� �������

�	��	 � � � 
�� ��
 � ����

The desired result follows by applying (1).

III. MAIN RESULT

In this section we consider the robust stability of a discrete time
system with respect to structured uncertainties. We consider block
structures ��� � ��� consisting of � repeated complex scalar blocks
and � square full complex blocks. The restriction to square full blocks
is for notational simplicity. Given positive integers������ � � � �����

satisfying ���
��� �� � �, we can define the following sets of block

structured � �� matrices:

��� �� � � ��������� � � � � � ���� ���� � � � ��� � � (3)

�� � � �� �
� ��


��� �� �� ���� � �� ��� � �� � (4)

Associated with these block structures we can define sets of constant
and varying D-scales

� �� �� �
��� � ������� �� ����� �
����� 	� �

� �� ����� �� ����� ����	��
��

� � �
����� 	� ��

	� 
�

�� ��

� �	�����	���
� ������� �� ���� �

By definition, any scaling �� from either � or � satisfies � �
���� ��� �� � ���. Thus we can insert �� at the input to � and
���� at the output of �. If 
���
���

�
�
������ 
� � � then �	�� �

������
��
� �����	 is robustly stable with respect to 
���. By the

equivalence of the scaled and unscaled systems, we can then conclude
that �	�� � ��������	 is robustly stable with respect to 
���. This
is an indirect proof of robust stability. The two theorems in this section
directly prove robust stability by constructing Lyapunov functions for
�	�� � ��������	 . The theorems are stated in a form which high-
lights this construction.

Theorem 1 (Constant � Test): Let ���� �� �
���
�
�
��� where

� ��
	 


� �
� ����������� and ��	� � �. If there exists

�� � � such that 
����
��
� 
� � � then:

A) There exists � � � � � ���� such that � � � and

�	�� �	 � � � ��� �� � �
�� �	� ��� ��
�

� � � ��� �� � �
�� �

��

�
�� �	� ��� �� � � (5)

where �	 �� 	, �
 �� 
���� , �� �� ��� , and �� �� ����
��
� .

B) The solution � � � to (5) satisfies

���
��


��	
 ������������������ � � � �� (6)

C) Let ��	�
�
	�� � 
��� be given. Then � � � is a globally expo-

nentially stable equilibrium point of �	�� � ������	��	 .
Proof:

A) The �	, �
, �� , and �� given in the theorem are the state matrices
for the system����

��
� . The existence of � � � satisfying (5)

follows from 
����
��
� 
� � � and the discrete-time Bounded

Real Lemma [2].

B) Define �� �
�	 �

�� ��

. Since � � � satisfies (5), we can apply

Lemma 3 to conclude

���
�� � �������

��	
 ��� ���������� ������ � � ��

Restricting to � � 
���, we can use ��� � ��� to show
��� ����� � �������.

C) Define the Lyapunov function � ��� � ����. B) implies there
exists a � � � such that for any �	 � 
���, � ��	��� � �� ��	�
which guarantees the robust stability with respect to time-varying
perturbations. Formally, C) follows from B) and discrete-time
Lyapunov theory (Section 5.9 of [44]).

As noted in the introduction, an uncertain system is quadratically
stable if there exists a single quadratic Lyapunov function which proves
stability of all possible trajectories of the uncertain system. Theorem
1 demonstrates that satisfying the small-gain theorem with constant
D-scales implies quadratic stability. The next theorem demonstrates
that using frequency varying D-scales implies the existence of a PDLF.
One difficulty is that the state matrices of����� � � do not commute
with the � ����. However, we can derive how � is altered as it ”moves
through” the state matrices of �����.

Let ����� �� �� � �� ��� �	��
��

�. Since ����� commutes

with all � � ���, it must be block-diagonal

����� � ������������� � � � � ��������

����������� � � � � � ������ ����� ��

A natural state space realization for ����� is given by

	� �� ���� 	���� � � � � 	���� �� � 	����� �

� � � � �� �	����� (7)


� �� ���� 
���� � � � � 
���� �� �
����� �

� � � � �� �
����� (8)

�� �� ���� ����� � � � � ����� �� � ������ �

� � � � �� � ������ (9)

�� �� ���� ����� � � � � ����� �� ������� �

� � � � �� ������� (10)

where
	��� 
���

���� ����

� �	 �� ���	 �� � are the state space

matrices of ������� �� � �� � � � � �� and
	��� 
���

���� ����

�

�	 �����	 ��� are the state space matrices of ������� �� �
�� �� � � � � �� ��. Next, define  ��� � ����� 	�	 by

 ��� � ���� ���	 � � � � � ���	 ����� � �	 �

� � � ����� � �	 �

The dimension of the ��� block of  ��� depends on the state dimen-
sion, !�, of the transfer function in ��� block of the �����. For any
� � ���, the state space realization of����� given in (7)–(10) satisfies
the commutation relations:	� ��� �  ���	�,
�� �  ���
�,
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������ � ���, and ��� � ���. Thus � commutes with ��

but is altered when passing through�� and��. These relations will be
used in the proof of the following theorem.

Theorem 2 (Varying � Test): Let � ��
� �

� �
�

����������� with ���� � � and define 	�
� �� ����� �
�

��. If

there exists ���
� � � such that ���	�
��
� �� � � then:

A) There exists � � � � � �������������� such that � � � and

���� �� � �	 ���� ��	 ��� ��
�


 � ��� �� � ���� ��
��

���� ��	 ��� �� 	 ��� �� � � (11)

where
�� ��

�� ��

� ����������� are the state matrices of

���
� and

�� ��

�� ��� �����
��
� ��

� � ������ ��

� � �� ����
��
� ��

�

�� ��

����
��
�

�����

���
��
�

�� �� 
�� ��� �����
��
� �� � �

�� ������
��
� �

B) Given the solution � � � to (11), define

�� ��� ����� 	 ���� 	 �������� ��� 	 �������

	������ ��� 	������������
��

� ���� 	 ��������� (12)

where the ��	 are a block 3� 3 partition of � conformable with
the 3� 3 blocks of ��. Then �� ��� � ��� � ���� and


��
��


��	
 �������� �� ����������� �� ��� � �� (13)

C) Let � � ���� be given. Then � � � is a globally exponentially
stable equilibrium point of ���� � ��������� .

Proof:
A) The ��, ��, �� , and �� given in the theorem statement are the state

matrices for the system ��	�
��
� . The existence of � � �

satisfying (11) follows from ���	�
��
� �� � � and the dis-

crete-time Bounded Real Lemma [2].

B) Define �� �
�� ��
�� ��

. Since � � � satisfies (11), we can

apply Lemma 3 to conclude


��
�� � �
�����

��	
 � ��� ���������� ������ � � ��

Define the coordinate transformation

� ��


 � �

� 
 �

���� � 


�

Define � �� ������ ������ and � �� � ��� . Multiplying
��� ���������� ����� � � on the left/right by � ��� and in-
serting ���� yields ����� �. This is a congruence transfor-
mation and hence ���� � � remains strictly negative definite

for all � � ����. Performing block multiplications and applying
the commutations relations satisfied by ���� yields

� �

��� ��� ���

� ������� ���

� � ���

� �

��� ���� 	 ��������� ���

��� 	 ������� ��� ���

��� ��� ���

where��� �� ���	�������	���������	������������
and blocks denoted by ��� do not affect the remaining argument
in the proof. � � � since it is related to � � � by a nonsingular
congruence transformation and hence �� ��� � � by the Schur
complement lemma. The proof is concluded by first applying
Lemma 2-A to ������ � � to obtain inequalities in terms of
the upper left 2�2 blocks of � and � and then applying Lemma
2-B.

C) For each � � ���� define the Lyapunov function � ����� �
�� �� ����. C) follows from B) and discrete-time Lyapunov
theory (Section 5.9 of [44]).

Comments:
• This technical note uses a discrete-time formulation but the re-

sults carry over to the continuous-time case. The lemmas in Sec-
tion III must be restated in terms of the continuous-time Lya-
punov inequality, Bounded-Real Lemma, and algebraic Riccati
inequality (refer to Chapter 5 of [14]). The proofs and results in
Section IV then require only minor modifications. The contin-
uous-time PDLF in the varying D test has the same structure and
dependence on the solution of the continuous-time algebraic Ric-
cati inequality.

• The algebraic Riccati inequalities ((5) and (11)) can be converted
to linear matrix inequalities by the Schur complement lemma.
Thus we can use available software (e.g., LMILab [1] and Sedumi
[45]) to solve for � � �. Both theorems then give an explicit con-
struction for a Lyapunov function which proves robust stability.
However, this can be computationally demanding in the case of
the varying D test since the variable � has dimension � 	 ��
where � is the state dimension of ���
�. Fitting the magnitude
data, �����

���, from a frequency gridded mussv [1] calculation
with a state-space model can lead to high state dimensions for
���
�. This is especially true for the full blocks of ���
� asso-
ciated with repeated scalar uncertainties.

• If the ��� block of ���
� is constant then its state dimension is
�� � �. In this case ����, and hence � ���, do not depend
on the corresponding block of �. Thus we can obtain Lyapunov
functions which are partially parameter-dependent by fixing some
blocks of the D-scale to be constant and others to be frequency
varying. The example in the following section will further demon-
strate this point.

• PDLFs with polynomial dependence on the uncertainty are used
in [28]–[31] for linear robust stability analysis and in [46]–[49]
for nonlinear region of attraction analysis. While polynomial de-
pendence is without loss of generality for linear robust stability
[25], [50], it might require a high degree. It would be useful to see
if algorithms can be developed based on the particular form of the
PDLF given in (12).

Theorem 2 demonstrates that satisfying the small gain condition with
frequency varying D-scales implies the existence of a PDLF with a ra-
tional-quadratic dependence on the uncertainties. The class of PDLFs
of this form includes those which have an affine dependence on the un-
certainties. This provides another explanation for why the affine PDLF
condition given in [20], [21] is more conservative than using frequency-
varying � � 	 scales.
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We can also compare the PDLF from the varying D test to that ob-
tained from a special case of the quadratic separator condition for con-
tinuous-time, linear parameter varying systems [42]. These systems
have the form �� � ��� �� �������������� with ���� having a
block diagonal structure of repeated real scalars. A sufficient condition
for robust stability with respect to the time-varying real parameters is
derived using a constant quadratic separator. This sufficient condition
is no more conservative than using constant � � � scales but it is, in
general, more conservative than using a frequency varying quadratic
separator. The sufficient condition with the constant quadratic sepa-
rator is shown to be equivalent to the existence of a PDLF of the form

�	 ��� ��
�

�� ��������

�

	
�

�� ��������

 (14)

This PDLF proves robust stability with respect to time-varying param-
eter variations and hence it also proves robust stability with respect to
constant parameter uncertainties. The class of PDLFs of this form is
not directly comparable to PDLFs of the form given in (12); in general
neither form is more general than the other. It is notable that if the nom-
inal system has no direct feedthrough �� � 	� then the PDLF from
the constant quadratic separator condition reduces to a quadratic de-
pendence on the uncertainty. The form of the PDLF from the varying
D test can, in principle, have a rational quadratic dependence on the
uncertainty for any nominal system.

We can briefly summarize four related conditions for robustness with
respect to constant uncertainties:

1) Constant �-Scales: The small-gain condition with constant
�-scales is only a sufficient condition for robust stability. If this
sufficient condition is satisfied then the system is quadratically stable
and there exists a parameter independent Lyapunov function which
proves robust stability.

2) Frequency Varying�-Scales: The small-gain condition with fre-
quency varying �-scales is only a sufficient condition for robust sta-
bility. In this technical note we showed that if this sufficient condition
is satisfied then one can explicitly construct a PDLF (12) which proves
robust stability.

3) Constant Quadratic Separator: The constant quadratic separator
condition is only a sufficient condition for robust stability. If this suf-
ficient condition is satisfied then there is a PDLF (14) which proves
robust stability [42]. In general, the form of this PDLF is neither more
nor less general than the form derived from the varying � test.

4) Frequency Varying Quadratic Separator: The frequency varying
quadratic separator condition is necessary and sufficient for robust sta-
bility (see Theorem 1 in either [40] or [41]). It is not known how to ex-
plicitly construct a PDLF when this condition is satisfied. This would
be interesting since it would provide a form for the PDLF which could
be assumed without loss of generality when analyzing the robustness
of linear systems with respect to constant uncertainties. In particular, it
is well known that quadratic Lyapunov functions are sufficient to prove
stability of linear systems. Thus if a linear system is stable then there
is a Lyapunov function which is a quadratic function of the state which
proves stability. One does not need to consider more complicated Lya-
punov functions for linear systems. For stability analysis of uncertain
linear systems this implies that we only need to consider Lyapunov
functions which are quadratic in the state but with an arbitrary func-
tional dependence on the uncertainty. It would be useful for algorithm
development to know if there is a functional dependence on the un-
certainties which can be assumed without loss of generality. Since the
frequency-varying quadratic separator condition is necessary and suffi-
cient for robust stability, it potentially provides a path to understanding
this functional dependence. Specifically, if we can construct an explicit
PDLF when this condition is satisfied then the form of this PDLF can
be assumed without loss of generality when analyzing linear uncertain

systems. One might then develop algorithms based on this functional
form similar to the current development of algorithms centered around
affine Lyapunov functions.

IV. EXAMPLE

Consider the two-state system ���� � ����
���� from [12]
where ��� �� �� � �������
 ��� � �� � � and

� ��

� 	 
�� 	

	 �� 	 �
��

	 � 	 �

� 	 � 	




Choose � � 	
� and � � 	

. This system is not quadratically stable
but is robustly stable with respect to constant � � ���.

Consider the time-varying perturbations�� � ������
 	� for � even
and �� � �����	
��� for � odd. For � odd, the two step evolu-

tion of the system is ���� �
�
�
 �	
��

�	
�� 	
��
�� . This has eigen-

values at 0.3094 and 2.1206 which demonstrates that the system is
not stable for all time varying perturbations in ����. Hence, the system
is not quadratically stable. Define ���� �� ����
 �

�
���. We used

LMILab [1] to minimize �����
��
� �� over �� � �. The optimal

constant scaling is �� � �� and, as expected, the minimal value of
�����

��
� �� � �

	 which exceeds 1.

Next, consider the scaling ����� � ������
 �	�������	����
���	�

�. For
this scaling �����

��
� �� � 	


� � � and by the varying D test

we conclude the system is robustly stable with respect to constant � �
����. We again used LMILab to compute 	 � 	 which satisfies (11).
The result is

	 �

�
	�

 ����

 	 	

����

 ���
� 	 	

	 	 ���
� ��

�

	 	 ��

� ���
�




The lines denote the 3� 3 block partition used in the Lyapunov func-
tion construction of Theorem 2. Using this construction, define the Lya-
punov function � ��
�� �� �� �	 ���� where �	 ��� is given by

�	 ��� �
���
� 	

	 ���
�

�
�	�

���
���� � �
	�



�
�� ��
����
��
���� 

	����




This PDLF proves stability of ���� � ����
���� for each con-
stant � � ����: We verified this statement on a finite grid of values
of ���
 ���, ���� � �. This Lyapunov function does not depend on ��
since the corresponding block of ����� is a constant. Fig. 1 shows the
unit level sets of this Lyapunov function as �� varies from �� to ��.
The level sets are skewed and rotate with ��.

V. CONCLUSION

This technical note considered robust stability with respect to struc-
tured uncertainties. If the small gain condition is satisfied with con-
stant scalings then the uncertain system is robustly stable with respect to
norm-bounded time-varying perturbations. In this case, there is a single
Lyapunov function which proves stability over all possible trajectories,
i.e., the system is quadratically stable. If the small gain condition is sat-
isfied with frequency-varying scalings then the uncertain system is ro-
bustly stable with respect to norm-bounded constant perturbations. In
this technical note we constructed a PDLF which proves robust stability
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Fig. 1. Level Sets �� � � ����� � �� for � � ���� ��.

with respect to constant uncertainties. This Lyapunov function has a ra-
tional quadratic dependence on the uncertainties. It might prove fruitful
to use this particular form to develop algorithms for stability and region
of attraction analysis for nonlinear, uncertain systems. It would also be
interesting to see if a similar explicit construction can be given for the
frequency-varying quadratic separator condition. This would be inter-
esting since it would provide a form for the PDLF which could be
assumed without loss of generality when analyzing the robustness of
linear systems with respect to constant uncertainties.
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Conditions for Synchronizability in
Arrays of Coupled Linear Systems

S. Emre Tuna

Abstract—Synchronization in arrays of coupled continuous-time linear
systems is studied. Sufficiency of certain conditions for the existence of a
synchronizing feedback law are analyzed. It is shown that, for neutrally
stable systems that are detectable from their outputs, a linear feedback law
exists under which any number of coupled systems synchronize provided
that the (directed, weighted) graph describing the interconnection is fixed
and connected. An algorithm generating one such feedback law as well as
the trajectory that the solutions converge to are presented. It is also shown
that, for critically unstable systems, detectability is not sufficient, whereas
full-state coupling is, for the existence of a linear feedback law that is syn-
chronizing for all coupling configurations described by a connected graph.

Index Terms—Linear systems, multi-agent system, synchronization sta-
bility, synchronizing feedback law.

I. INTRODUCTION

An intensively-studied problem in control theory is to find general
conditions for synchronization of coupled systems, where by synchro-
nization we mean the convergence of the solutions of systems to a
common trajectory [1]–[4]. When this trajectory is a stationary point,
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terms consensus or agreement can replace synchronization. See, for in-
stance, [5]–[10]. In this note we consider linear systems with identical
dynamics, interconnected over a fixed graph. We establish some new
sufficient conditions for synchronization aiming to make the general
picture on coupled linear systems closer to complete.

A. Preliminaries

Let denote the set of nonnegative integers and �� set of nonneg-
ative real numbers. Let � � � denote (induced) 2-norm. For � � let
����� denote the real part of �. Identity matrix in ��� is denoted by
��. Matrix � � ��� is neutrally stable if it has no eigenvalue with
positive real part and the Jordan block corresponding to any eigenvalue
on the imaginary axis is of size one. Let � � � denote the vector with
all entries equal to one. Kronecker product of two matrices � and � is
denoted by � � �.

A (directed) graph is a pair �� � �� where � is a nonempty fi-
nite set (of nodes) and � is a finite collection of ordered pairs (edges)
���� ��� with ��� �� � � . A path from �� to �� is a sequence of nodes
���� ��� � � � � ��� such that ���� ����� is an edge for � � ��� �� � � � � ��
�	. A graph is connected if it has a node to which there exists a path
from every other node.1

A matrix � 	
 �	�� � �
��� describes (is) an interconnection if

	�� 
 
 for � �
 
 and 	�� 
 �
� ���

	�� . It immediately follows that
� 
 
 is an eigenvalue with eigenvector � (i.e., �� 
 
.) The graph of
� is the pair �� � �� where � 
 ���� ��� � � � � ��	 and ���� ��� � �
iff 	�� � 
. Interconnection � is said to be connected if its graph is
connected.

Consider a connected interconnection �. The eigenvalue � 
 
 is
then distinct and all the other eigenvalues of � have real parts strictly
negative. When we write ��������� we mean the real part of the
nonzero eigenvalue of � closest to the imaginary axis. Let � � � be
the left eigenvector of the eigenvalue � 
 
 (i.e., ��� 
 
). Vector
� is unique up to scaling since eigenvalue � 
 
 is distinct. Let � be
scaled so that ��� 
 �. Then � satisfies ������ 
�� 
 ��� .

Given maps �� 	 �� �
� for � 
 �� �� � � � � � and a map �� 	

�� �
�, the elements of the set ������ 	 � 
 �� �� � � � � �	 are said

to synchronize to ����� if ������ � ������ � 
 as � � 
 for all �. The
elements of the set ������ 	 � 
 �� �� � � � � �	 are said to synchronize if
they synchronize to some �����.

Let � denote the set of all pairs ����� where matrix � and square
matrix �, both real, have the same number of columns. We define the
following subsets of � .

• ��: set of all pairs ����� with � Hurwitz.
• ��: set of all pairs ����� with � neutrally stable.
• �	: set of all pairs ����� with � having no eigenvalue with pos-

itive real part.
• �
: set of all pairs ����� with � full column rank.
• ��: set of all detectable pairs.

Few remarks are in order regarding the above definitions. Note that
�� � �� � �	 and �
 � ��. Set �	 allows � matrices with
Jordan blocks of arbitrary size with eigenvalues on the imaginary
axis, e.g., a double integrator. (Hence the subscript ��) Therefore there
are pairs ����� in �	 with critically unstable � matrices. For a pair
����� � �
, if � is an output matrix of some system of order � then
there exists matrix � such that �� 
 ��, i.e., full state information is
instantly available at the output. (Hence the subscript��) For an arbitrary
����� � ��, however, the state information is only partially available
at the output. (Hence the subscript ��) We also need the following
notation.

• ��� : set of all connected interconnections with ����������� 

� � 
.

1This is another way of saying that the graph contains a spanning tree.
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