Enantioselective Synthesis of 5-epi-Citreoviral Using Ruthenium-Catalyzed Asymmetric RingClosing Metathesis

Timothy W. Funk

Table of Contents

General Information S-1
Experimental Procedures S-1
Rationale for Structural Assignment of 19 S-6
References S-7
NMR Spectra S-8

General Information. IR spectra were collected on a Nicolet IR200 attenuated total reflectance FT-IR spectrometer. NMR spectra were recorded on a Bruker 400 MHz FT-NMR spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) with reference to internal solvent for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), septet (sept), multiplet (m), and broad (br). Optical rotations were taken on a Jasco P-1010 polarimeter with a wavelength of 589 nm . The concentration "c" has units of $\mathrm{g} / 100 \mathrm{~mL}$ (or $10 \mathrm{mg} / \mathrm{mL}$) unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. Visualization was performed with standard potassium permanganate stain $\left(10 \mathrm{~g} \mathrm{KMnO}_{4}, 20 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}, 1 \mathrm{~L}\right.$ water), standard p-anisaldehyde stain ($23 \mathrm{~mL} p$-anisaldehyde in $500 \mathrm{~mL} 95 \% \mathrm{EtOH}$, cooled to $0^{\circ} \mathrm{C}$, added 9.4 mL cold glacial AcOH and 31.3 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, diluted to 1 L with $95 \% \mathrm{EtOH}$) or UV light. Flash column chromatography of organic compounds was performed using silica gel 60 (230-400 mesh). All enantiomeric purities were determined by chiral GC (Chiraldex G-TA) or chiral SFC (supercritical CO_{2}, ADH column, 214 nm UV detection) and were compared to racemic samples.

All glassware was flame dried, and reactions were done under an atmosphere of argon unless otherwise noted. All organic solvents were dried by passage through solvent purification columns containing activated alumina and activated copper (the latter was used for solvents with no heteroatoms). All commercial chemicals were used as obtained. Compounds $\mathbf{2}, \mathbf{1 1}$, and $\mathbf{1 2}$ were synthesized and purified as reported. ${ }^{1}$

(S,2Z,5E)-3,5-Dimethylhepta-2,5-diene-1,4-diol (13). ${ }^{2} \mathrm{KF}(1.02 \mathrm{~g}, 17.6 \mathrm{mmol}), \mathrm{KHCO}_{3}(0.88 \mathrm{~g}, 8.8 \mathrm{mmol})$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(4.0 \mathrm{~mL}, 4.0 \mathrm{~g}, 35 \mathrm{mmol})$ were added to a solution of $11(0.69 \mathrm{~g}, 3.5 \mathrm{mmol})$ in THF $(35 \mathrm{~mL})$ and MeOH $(35 \mathrm{~mL})$, and were stirred at rt for 12 h . The solvents were evaporated until only a small volume remained (~ 10 $\mathrm{mL})$. Water (25 mL) was added, and the solution was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to an oil. Purification by flash chromatography ($1: 1$ ethyl acetate/hexanes) afforded $0.40 \mathrm{~g}(72 \%$ yield, 64% yield over two steps) of $\mathbf{1 3}$ as a viscous, colorless oil. $\mathrm{R}_{f}=0.37,60 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25.3}=-54.7(\mathrm{c}=0.93)$. IR (film): $v_{\max } 3336,2918,1665,1438,1378,1057,994,909,771,731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): δ $5.58-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=12.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, \mathrm{J}=12.4,6.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}$, 2 H), 1.64 (dquint with outer peaks not clearly defined, $\mathrm{J}=6.8,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 139.87,134.97,126.63,119.28,74.20,57.92,18.63,13.03,12.80$. HRMS (EI) m / z calc. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 156.1150$, found 156.1145.

(S,2Z,5E)-1-(Tert-butyldiphenylsilyloxy)-3,5-dimethylhepta-2,5-dien-4-ol (14). A solution of N,Ndimethylaminopyridine (DMAP) ($16 \mathrm{mg}, 0.13 \mathrm{mmol}$) and $13(0.40 \mathrm{~g}, 2.5 \mathrm{mmol})$ in $25 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Triethylamine $(0.53 \mathrm{~mL}, 0.38 \mathrm{~g}, 3.8 \mathrm{mmol})$ was added to the reaction solution followed by a slow addition of t butyldiphenylsilyl chloride ($0.73 \mathrm{~mL}, 0.77 \mathrm{~g}, 2.8 \mathrm{mmol}$) over 3 minutes. After 5 minutes at $0^{\circ} \mathrm{C}$, the solution was allowed to warm to rt and continued stirring for 5.5 h . The solution was quenched with 40 mL of water and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to a pale yellow oil. Purification by flash chromatography (10% ethyl acetate in hexanes) afforded 0.86 g of $\mathbf{1 4}$ as a colorless oil. $\mathrm{R}_{f}=0.35,10 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}^{26.2}=-38.9(\mathrm{c}=1.25)$. IR (film): $\mathrm{v}_{\text {max }} 3465$, 3068, 2931, 2857, 1471, 1426, 1376, 1245, 1106, 1054, 999, 825, 809, 739, $699,688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 7.68-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 5.54-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{q}$ of quint, $\mathrm{J}=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32(\mathrm{ddq}, \mathrm{J}=12.8,7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddq}, \mathrm{J}=12.8,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.59(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 138.13,135.70,135.61,135.04,134.84,133.73,133.67,129.72,129.70,127.72,127.67,127.30,118.96,74.31$, $60.09,26.83,19.15,18.33,13.02,12.89$. HRMS (FAB) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{H}\right) 393.2250$, found 393.2280 .

(S)-((2R,3S)-3-((Tert-butyldiphenylsilyloxy)methyl)-2-methyloxiran-2-yl)((2R,3R)-2,3-dimethyloxiran-2-
yl)methanol (15). To a solution/suspension of $14(0.86 \mathrm{~g}, 2.2 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.92 \mathrm{~g}, 11 \mathrm{mmol})$ in 22 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added MCPBA ($71.7 \mathrm{wt} \%, 2.10 \mathrm{~g}, 8.72 \mathrm{mmol}$). After stirring at $4{ }^{\circ} \mathrm{C}$ for 13 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and filtered through Celite. A solution of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the filtrate, and it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to a pale yellow oil. Purification by flash chromatography (22% ethyl acetate in hexanes) afforded $0.48 \mathrm{~g}\left(44 \%\right.$ yield over two steps) of $\mathbf{1 5}$ as a colorless oil. $\mathrm{R}_{f}=0.37,25 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}^{25.0}=-20.7(\mathrm{c}=0.90)$. IR (film): $v_{\text {max }} 3540,3071,2929,2855,1471,1427,1374$, $1207,1111,1067,1025,993,875,822,784,737,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.67$ (d, J = 1.2 $\mathrm{Hz}, 4 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 6 \mathrm{H}), 3.87(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 135.60,135.54,133.05,132.88,129.92,127.84,72.52,64.55,61.83,60.65,54.71$, 26.78, 19.19, 17.66, 14.32, 13.22. HRMS (FAB) m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 427.2305$, found 427.2299 .

(((2S,3S)-3-((S)-Benzyloxy((2S,3R)-2,3-dimethyloxiran-2-yl)methyl)-3-methyloxiran-2-yl)methoxy)(tertbutyl)diphenylsilane (16). To a suspension of $\mathrm{NaH}(95 \%, 41 \mathrm{mg}, 1.7 \mathrm{mmol})$ in THF (8.4 mL) was added $\mathbf{1 5}$ (dried by azeotroping from toluene, $0.36 \mathrm{~g}, 0.84 \mathrm{mmol}$) at rt . A small amount of bubbling occurred, and the reaction mixture stirred at $65-70{ }^{\circ} \mathrm{C}$. After 10 minutes, the mixture was allowed to cool to rt and tetrabutylammonium iodide ($16 \mathrm{mg}, 0.042 \mathrm{mmol}$) and benzyl bromide (filtered through neutral alumina, 0.30 mL , $0.43 \mathrm{~g}, 2.5 \mathrm{mmol}$) were added. After 3 h at $65-70^{\circ} \mathrm{C}$, the mixture was carefully quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to a yellow oil. Purification by flash chromatography (8% ethyl acetate in
hexanes) gave 309 mg (71% yield) of 16 as a colorless oil. $\mathrm{R}_{f}=0.26,6 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}^{24.6}=-5.9$ $(\mathrm{c}=0.83)$. IR (film): $v_{\max } 3071,2930,2857,1455,1427,1383,1110,1075,1028,909,882,822,733,699 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.67-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=11.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=11.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H})$, $3.16(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{J}=6.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 138.58,135.70,135.57,133.29,133.01,129.87,129.85,128.20$, $127.82,127.79,127.66,127.42,80.88,73.18,63.36,62.29,61.97,60.25,55.69,26.82,19.24,18.34,14.73,13.40$. HRMS (FAB) m / z calc. for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 517.2774$, found 517.2764.

((2S,3S)-3-((S)-Benzyloxy ((2S,3R)-2,3-dimethyloxiran-2-yl)methyl)-3-methyloxiran-2-yl)methanol (10). To a solution of $16(0.30 \mathrm{~g}, 0.58 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$ was added tetrabutylammonium fluoride (1 M in THF, 1.2 mL , 1.2 mmol). After 2.5 h at rt , the solvent was removed by rotary evaporation, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an oil. Purification by flash chromatography (40% ethyl acetate in hexanes) afforded 135 mg (83% yield) of 10 as a colorless oil. $\mathrm{R}_{f}=0.33,40 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}{ }^{24.4}=-28.0(\mathrm{c}=0.86)$. IR (film): $v_{\max } 3427,2991,2929,1454,1382,1260,1213,1088,1019,875$, $800,734,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.26-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{J}$ $=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 138.12,128.34,127.71,127.68,82.50,72.25,61.85,61.52,60.46,60.45,19.13,13.53$, 13.20. HRMS (FAB) m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right) 279.1596$, found 279.1586 .

8-(Benzyloxy)-1,5,7-trimethyl-2,6-dioxabicyclo[3.2.1]octan-4-ol (19). To a solution of racemic 10 (50 mg, 0.18 $\mathrm{mmol})$ in t - $\mathrm{BuOH}(0.9 \mathrm{~mL})$ was added $\mathrm{NaOH}\left(0.5 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.90 \mathrm{~mL}, 0.45 \mathrm{mmol}\right)$. After stirring at $75-80^{\circ} \mathrm{C}$ for 6 h, the solution was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layeres were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an oil. Purification by flash chromatography (45% ethyl acetate in hexanes) afforded 43.3 mg (87% yield) of $\mathbf{1 9}$ as a colorless oil. Copies of the COSY and NOESY spectra are included below as well as peak assignments to all hydrogen atoms on aliphatic carbon atoms. $\mathrm{R}_{f}=0.31,45 \%$ ethyl acetate in hexanes. IR (film): $v_{\max } 3426,2972,2926,2863,1454,1372,1277$, $1110,1070,1043,1026,903,860,827,731,696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.26-7.39(\mathrm{~m}, 5 \mathrm{H})$, $4.62(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=13.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}($ apparent br d), 1H), $3.49(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 138.12,128.40,127.63,127.22,88.94,86.10,79.99$, 76.02, 75.52, 73.27, 72.05, 19.30, 18.37, 17.05. HRMS (FAB) m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{H}\right) 277.1440$, found 277.1432 .

(1R,4R,5R,7R,8R)-8-(Benzyloxy)-4-hydroxy-1,5,7-trimethyl-2,6-dioxabicyclo[3.2.1]octan-3-one (23). To a solution of oxalyl chloride ($0.19 \mathrm{~mL}, 0.28 \mathrm{~g}, 2.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DMSO $(0.25 \mathrm{~mL}$, $0.28 \mathrm{~g}, 3.6 \mathrm{mmol}$). After 10 min at $-78{ }^{\circ} \mathrm{C}, 10(200 \mathrm{mg}, 0.72 \mathrm{mmol})$ was added. After 20 min at $-78{ }^{\circ} \mathrm{C}$, triethylamine ($0.70 \mathrm{~mL}, 0.51 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added, and the solution stirred at $-78^{\circ} \mathrm{C}$ for 30 min before warming
to rt . After 45 min at rt , the reaction was quenched with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to a yellow oil (30), which was used directly in the next reaction. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 9.38(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.39(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{q}, \mathrm{J}$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 3 \mathrm{H})$. To a solution of crude $30 \mathrm{in} t-\mathrm{BuOH}(5.8 \mathrm{~mL})$ was added 2.9 mL of a $\mathrm{pH}=3.8$ buffer $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.41 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, 2-methyl-2-butene ($0.34 \mathrm{~mL}, 0.23 \mathrm{~g}, 3.2 \mathrm{mmol}$), and $\mathrm{NaClO}_{2}(80 \%, 326 \mathrm{mg}, 2.88 \mathrm{mmol})$. After stirring at rt for 1.5 h , the solution was diluted with $\mathrm{pH}=3.8$ buffer $(10 \mathrm{~mL})$ and was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an oil (20) that was used directly in the next reaction. To a solution of crude 20 in 8 mL of benzene was added p-toluenesulfonic acid monohydrate $(55 \mathrm{mg}, 0.29 \mathrm{mmol})$. After 2 h at rt , the solution was diluted with water $(10 \mathrm{~mL})$ and was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an oil. Purification by flash chromatography (30% ethyl acetate in hexanes) afforded 157 mg (68% yield over three steps) of 23 as a colorless oil. $\mathrm{R}_{f}=0.36,30 \%$ ethyl acetate in hexanes. Chiral SFC (supercritical CO_{2} with $5 \% \mathrm{MeOH}, \mathrm{ADH}$ column, 214 nm UV detection, 4.78 (minor) and 5.27 (major) min retention times of the enantiomers) showed a $92 \% e e .[\alpha]_{D}{ }^{24.9}=-20.0(c=0.96)$. IR (film): $v_{\max } 3434,2997$, $2978,1720,1453,1373,1283,1265,1157,1127,1066,1056,1028,949,845,830,740,722,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): ~ \delta 172.63,137.21,128.53,128.09,127.72,91.02,83.07,82.95,82.63,75.55,74.93$, $18.45,16.33,15.83$. HRMS (EI) m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$292.1311, found 292.1305 .

(E)-Ethyl-3-((2R,3S,4R,5R)-3-(benzyloxy)-4-hydroxy-2,4,5-trimethyltetrahydrofuran-2-yl)-2-methylacrylate (27). To a solution of $\mathrm{NaBH}_{4}(91 \mathrm{mg}, 2.4 \mathrm{mmol})$ in ethanol $(7 \mathrm{~mL})$ was added $23(140 \mathrm{mg}, 0.48 \mathrm{mmol})$ as a solution in 4 mL of ethanol. After 4.5 h at rt , the solvent was removed by rotary evaporation, and the remaining residue was dissolved/suspended in ethyl acetate and quenched with 1 N aqueous HCl until the pH was <2. The organic layer was removed, and the aqueous layer was extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to a sticky oil (24) that was used directly in the next step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $(\mathrm{s}, 1 \mathrm{H}), 3.88(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.64(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H})$. To a solution of crude 24 in THF (3 mL) was slowly added $\mathrm{NaIO}_{4}(113 \mathrm{mg}, 0.53 \mathrm{mmol}$) as a solution in 3 mL of water. After 1 h at rt , the reaction solution was diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(5 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to a pale yellow oil (25) that was used directly in the next step. The ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum in CDCl_{3} was unclean and showed no peak corresponding to an aldehyde hydrogen; it is presumably in the lactol form in CDCl_{3}. In $\mathrm{DMSO}-d_{6}$ an aldehyde peak was present, and the spectrum showed multiple forms of 25 (both diastereomers of the lactol and the aldehyde). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{ppm}$) diagnostic signals: $\delta 4.70\left(\mathrm{~s}, \mathrm{CDCl}_{3}\right), 3.93\left(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right), 3.46(\mathrm{~s}$, CDCl_{3}); 9.53 ($\mathrm{s}, \mathrm{DMSO}-d_{6}$). The phosphorus ylide (carbethoxyethylidene)triphenylphosphorane (26) ($0.52 \mathrm{~g}, 1.4$ mmol) was added to a solution of crude 25 in toluene (5 mL). After 18 h at $110{ }^{\circ} \mathrm{C}$, the solvent was removed by rotary evaporation. The remaining residue was purified by flash chromatography (25% ethyl acetate in hexanes) to afford $136 \mathrm{mg}(80 \%$ over three steps $)$ of $27\left(10: 1 E / Z, Z\right.$ isomer has a peak in the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ at δ $5.33(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$) as a very pale yellow oil. Data for E isomer: $\mathrm{R}_{f}=0.30,25 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25.3}=+48.3(\mathrm{c}=0.99) . \quad$ IR (film) : $v_{\max } 3468,2982,2934,1708,1691,1453,1370,1256,1207,1131,1105$, $1070,1023,748,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.29-7.40(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ $(\mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.189(\mathrm{q}(\operatorname{expected} \mathrm{dq}), \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.187(\mathrm{q}($ expected dq), $\mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 168.53,148.49,138.08$, $128.43,127.74,127.52,127.41,92.02,81.87,80.32,77.16,72.72,60.81,21.79,16.41,14.26,13.54,12.50$. HRMS (FAB) m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5}\left(\mathrm{M}^{+}+\mathrm{H}\right) 349.2015$, found 349.2026.

(E)-Ethyl 3-((2R,3S,4R,5R)-3-(benzyloxy)-4-hydroxy-2,4,5-trimethyltetrahydrofuran-2-yl)-2-methylacrylate (28). ${ }^{3}$ To a solution of $27(66 \mathrm{mg}, 0.19 \mathrm{mmol})$ in 1,2 -dichloroethane (3.1 mL) and pH 7 buffer (0.31 mL) was added DDQ ($259 \mathrm{mg}, 1.14 \mathrm{mmol}$). After 13 h at $50^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and ethyl acetate (10 mL) were added, and the mixture was filtered through Celite. The filtrate was extracted with ethyl acetate (3×10 mL), and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an brown oil. Purification by flash chromatography (55% ethyl acetate in hexanes) afforded 47 mg (95% yield) of $\mathbf{2 8}$ ($13: 1 \mathrm{E} / \mathrm{Z}, \mathrm{Z}$ isomer has a peak in the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ at $\delta 6.21(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$) as a very pale purple solid $\left(\mathrm{mp}=94-96{ }^{\circ} \mathrm{C}\right)$. $\mathrm{R}_{f}=0.34,55 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}^{24.6}=+20.2(\mathrm{c}=0.86)$. IR (film): $v_{\max } 3436,2982,2936,1689,1644$, $1445,1370,1259,1101,1056,1020,965,949,913,748,732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 6.84(\mathrm{q}$ (apparent d), J = $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.13(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.63(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (br s, 1 H), $1.93(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 169.09,148.60,127.31,85.18,82.09,80.12,77.17,61.04,21.19,15.96,14.15,13.95,12.61$. HRMS (EI) m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 258.1467$, found 258.1463 .

(2R,3S,4S,5R)-2-((E)-3-Hydroxy-2-methylprop-1-enyl)-2,4,5-trimethyltetrahydrofuran-3,4-diol (29). ${ }^{3} \quad$ A solution of diisobutylaluminum hydride (1.5 M in toluene, $0.93 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added to a solution of $\mathbf{2 8}$ (45 $\mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution became yellow. After 1.5 h at $-78^{\circ} \mathrm{C}$, the solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After 1 h at $0^{\circ} \mathrm{C}$, the solution was carefully quenched with a saturated aqueous solution of potassium sodium tartrate (Rochelle's salt, 5 mL). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the solution, and it stirred vigorously at rt for 12 h . The organic layer was removed, and the aqueous layer was extracted with ethyl acetate (7 $\times 10 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to an oil. Purification by flash chromatography (ethyl acetate) afforded $31 \mathrm{mg}\left(83 \%\right.$ yield) of $\mathbf{2 9}$ as a sticky, colorless oil. $\mathrm{R}_{f}=0.25$, ethyl acetate. $[\alpha]_{\mathrm{D}}{ }^{24.9}=+28.4(\mathrm{c}=1.09)$. IR (film): $v_{\text {max }} 3349,2980,2928,2360,1441,1377,1183,1105,1053,1017,948 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}, ppm): $\delta 5.64(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.08$ $(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}, ppm): $\delta 135.62,133.92,87.11,82.69,80.53,77.70,68.66$, 23.16, 16.49, 14.48, 14.19. HRMS (CI) m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 217.1440, found 217.1443.

(()-3-((2R,3S,4S,5R)-3,4-Dihydroxy-2,4,5-trimethyltetrahydrofuran-2-yl)-2-methylacrylaldehyde ((+)-5-epicitreoviral, (+)-6). ${ }^{3}$ To a solution of $29(17 \mathrm{mg}, 0.080 \mathrm{mmol})$ in 2.7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added activated MnO_{2} $(85 \%, 81 \mathrm{mg}, 0.80 \mathrm{mmol})$, and the mixture stirred vigorously. After 2 h at rt , the mixture was filtered through Celite, and the Celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and ethyl acetate $(3 \times 10 \mathrm{~mL})$. The filtrate was evaporated to an oil, which was purified by flash chromatography (60% ethyl acetate in hexanes) to afford 8.7 mg (52% yield) of $(+)-6$ as a colorless oil. $\mathrm{R}_{f}=0.25,60 \%$ ethyl acetate in hexanes. $[\alpha]_{\mathrm{D}}^{25.0}=+13.2$ (c $=1.74$). IR (film): $v_{\max } 3415,2983,2935,2360,1677,1636,1446,1380,1181,1104,1061,1022 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 195.55,160.32,137.97,85.21,82.48,80.31,78.23,20.98,16.58,14.50,9.44$. HRMS (EI) m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$214.1205, found 214.1196.

Rationale for Structural Assignment of Compound 19.

Using the ${ }^{1} \mathrm{H}$ NMR, COSY, and NOESY spectra of $\mathbf{1 9}$, the aliphatic hydrogen atoms in the ${ }^{1} \mathrm{H}$ NMR spectrum were assigned as shown on page S18. The chemical shift values, the splitting patterns in the ${ }^{1} \mathrm{H}$ NMR spectrum and the coupling (both J values and COSY data) support the placement of the hydrogen atoms on the carbon skeleton. The NOESY spectrum was used to gain further insight. Diastereotopic H_{a} and H_{a} were not differentiated. The diastereotopic H_{d} and $\mathrm{H}_{\mathrm{d}^{\star}}$ were assigned based on a through-space interaction in the NOESY (which is not observed in the COSY) between the doublet of doublets at 4.21 ppm (the axial H_{d}) and the quartet at $3.49 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{h}}\right)$. That interaction also supports the proposed bicyclic structure. The equatorial methyl groups were tentatively assigned based on a NOESY crosspeak between the doublet at $1.01 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{i}}\right)$ and the singlet at $1.23 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{c}}\right)$, leaving H_{g} as the singlet at 1.43 ppm . As further support of the bicyclic structure and support for the stereochemistry of the carbon bearing the benzyloxy group, there is a crosspeak in the NOESY spectrum between the singlet at 4.33 ppm $\left(\mathrm{H}_{\mathrm{b}}\right)$ and the doublet at $1.01 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{i}}\right)$. This crosspeak is not present in the COSY spectrum.

As an alternative to the proposed Payne-rearrangement/epoxide opening sequence yielding 19, the reaction of $\mathbf{1 0}$ with aqueous sodium hydroxide could occur as shown in Scheme S1 to afford compound 31. This process is similar to the proposed mechanism for the formation of compound $\mathbf{2 3}$ but under basic conditions. The possibility of this reaction and therefore the formation of $\mathbf{3 1}$ instead of $\mathbf{1 9}$ was presented by a reviewer of the original manuscript. The author thanks the reviewer for their important discussion, observations, and contribution to this work and presents the following data in support of the product of the reaction of $\mathbf{1 0}$ with NaOH as $\mathbf{1 9}$.

Scheme S1. Alternative to proposed reaction of $\mathbf{1 0}$ with sodium hydroxide.
The two differences between $\mathbf{3 1}$ and $\mathbf{1 9}$ are the absolute stereochemistry of the 2,6-dioxabicyclo[3.2.1]octane ring and the stereochemistry at the carbon bearing the benzyloxy group. The absolute stereochemistry is not relevant in this case because 19 was made as a racemate, so the only difference between them is the stereochemistry at the carbon bearing the benzyloxy group. The NOESY crosspeak mentioned above between H_{c} and H_{i} support the structure of the reaction of $\mathbf{1 0}$ and NaOH as $\mathbf{1 9}$, but ideally compound $\mathbf{3 1}$ could be formed and structurally characterized to differentiate 19 and 31.

Because compound $\mathbf{3 1}$ is structurally identical to $\mathbf{2 3}$ but in a lower oxidation state, compound $\mathbf{1 0}$ was treated with p-toluenesulfonic acid in benzene at room temperature to form $\mathbf{3 1}$ (the same way $\mathbf{2 3}$ was synthesized). A ${ }^{1} \mathrm{H}$ NMR
spectrum (DMSO- d_{6}) of the purified material showed a $4: 1$ ratio of a new compound (proposed structure 31) to 19. This spectrum was compared to a spectrum of 19 in DMSO- d_{6}, and the remaining peaks were assigned to 31 using the ${ }^{1} \mathrm{H}$ NMR, COSY, and NOESY spectra (see page S32). In DMSO- d_{6} the alcohol hydrogen atom appears as a doublet at $5.09 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{d}}\right)$, and there is a crosspeak in the NOESY indicating a through-space interaction with the singlet at $3.60 \mathrm{ppm}\left(\mathrm{H}_{\mathrm{b}}\right)$. This is consistent with an axial hydrogen atom on the carbon bearing the benzyloxy group as shown in 31. The bicyclic structure of $\mathbf{3 1}$ is supported by a crosspeak between H_{h} and H_{f}. These data support the structure of the major product of the reaction of $\mathbf{1 0}$ with $p-\mathrm{TsOH}$ to be $\mathbf{3 1}$, which in turn supports the proposition that the product formed by the treatment of $\mathbf{1 0}$ with NaOH is not $\mathbf{3 1}$.

8-(Benzyloxy)-1,5,7-trimethyl-2,6-dioxabicyclo[3.2.1]octan-4-ol (31). To a solution of racemic 10 (20 mg, 0.072 mmol) in 1 mL of benzene was added p-toluenesulfonic acid ($5.5 \mathrm{mg}, 0.029 \mathrm{mmol}$). After 2 h at room temperature the reaction was diluted with 2 mL of water and was extracted with $3 \times 2 \mathrm{~mL}$ of ethyl acetate. The organic layers were combined, dried over sodium sulfate, and evaporated to an oil. The oil was purified by flash chromatography (45% ethyl acetate in hexanes) to afford $15 \mathrm{mg}\left(75 \%\right.$ total yield) of a $4: 1$ mixture of $\mathbf{3 1 : 1 9}$ as a colorless oil. $\mathrm{R}_{f}=$ $0.31,45 \%$ ethyl acetate in hexanes. NMR data reported for $\mathbf{3 1}$; copies of the ${ }^{1} \mathrm{H}$ NMR, COSY, and NOESY spectra are below. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{ppm}\right): \delta 7.25-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=12.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{J}=4.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ $(\mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Supporting Information References:

1. Funk, T. W.; Berlin, J. M; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840-1846.
2. Tamao, K.; Ishida, N.; Ito, Y.; Kumada, M. Org. Synth. 1990, 69, 96-102.
3. The last 3 steps are slight modifications of Peng and Woerpel's synthesis of (\pm)-5-epi-citreoviral: Peng, Z.H.; Woerpel, K. A. Org. Lett. 2002, 4, 2945-2948.

19
NOESY

coses)

NOESY

