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MIMO Transceiver Optimization With Linear Constraints
on Transmitted Signal Covariance Components

Ching-Chih Weng and P. P. Vaidyanathan

Abstract—This correspondence revisits the joint transceiver optimiza-
tion problem for multiple-input multiple-output (MIMO) channels. The
linear transceiver as well as the transceiver with linear precoding and deci-
sion feedback equalization are considered. For both types of transceivers, in
addition to the usual total power constraint, an individual power constraint
on each antenna element is also imposed. A number of objective functions
including the average bit error rate, are considered for both of the above
systems under the generalized power constraint. It is shown that for both
types of systems the optimization problem can be solved by first solving a
class of MMSE problems (AM-MMSE or GM-MMSE depending on the
type of transceiver), and then using majorization theory. The first step,
under the generalized power constraint, can be formulated as a semidef-
inite program (SDP) for both types of transceivers, and can be solved effi-
ciently by convex optimization tools. The second step is addressed by using
results from majorization theory. The framework developed here is general
enough to add any finite number of linear constraints to the covariance ma-
trix of the input.

Index Terms—BER optimization, MIMO transceivers, per-antenna con-
straints, Schur convexity, semidefinite programming.

I. INTRODUCTION

In this correspondence we revisit the optimization of multiple-input
multiple-output (MIMO) communication systems. In the MIMO
system, the transmitter has � antennas sending independent infor-
mation to the receiver equipped with � antennas. The signal vector
consisting of� substreams is assumed to be linearly transformed by
the channel matrix�, and corrupted by the additive Gaussian noise.

Based on the assumption of having perfect channel state information
at both ends of the communication link, in [10] the authors considered
the linear transceiver optimization problem under the total power con-
straint. By introducing majorization theory, several objective functions,
which can be categorized as Schur-convex or Schur-concave [8] func-
tions of the mean squared errors, were optimized. Recently, the optimal
solution for decision feedback equalizer along with precoder, under the
total power constraint, was also found [4], [12].

Instead of only the total power constraint, in this correspondence
we also consider the more realistic per-antenna power constraints on
the transmitter [6], [18]. This is because in practice each antenna is
limited individually by its equipped power amplifier. In [6], the MMSE
problem under individual power constraints is solved suboptimally
using a numerical approach. In [18], the multiuser down-link trans-
ceiver design problem is considered. The total power constraint might
still be needed since the antennas might rely on a common power
supply. Under these constraints, we consider the linear transceiver
case and also the simple nonlinear case, i.e., linear precoding with
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DFE at the equalizer.1 For each case, we will see that the optimization
process consists of two steps.

For the linear transceiver case, we first consider the minimum arith-
metic mean of mean-square errors (AM-MSE) design. We show that
it can be reformulated as a semidefinite program (SDP), which can
be solved numerically by convex optimization tools. Then, among the
family of minimum AM-MSE linear transceivers, we develop a method
to find the one that minimizes the average bit error rate as well as many
other objective functions. This second step is achieved by appealing
to majorization theory. Similarly, for the transceivers with linear pre-
coding and DFE, we first consider the minimum geometric mean of
mean-square errors (GM-MSE) design. We show that it can also be re-
formulated as an SDP, and solved efficiently. Then, among the family
of minimum GM-MSE designs, we develop a method to find the one
that minimizes the average bit error rate as well as many other objec-
tive functions.

Based on majorization theory [8], we will argue that the minimal
average BER transceiver design method developed in this correspon-
dence can also be applied to a wider class of objective functions. Also,
we will show that under the framework developed in the correspon-
dence, any additional linear constraints on the covariance matrix of the
transmitted signals can be further added, and the problem is solved both
in theory and practice with no difficulty.

A. Relation to Previous Work

The problem of optimizing linear transceivers subject to individual
power constraints was addressed in [6], [9], [10], and [18], in different
contexts, but transceivers with DFE were not considered. In [6], the au-
thors considered the MMSE problem, and solved it suboptimally using
numerical methods. In [10], the authors considered only Schur-con-
cave objective functions subject to the individual power constraints.
However, the problem of optimizing the transceiver for other impor-
tant objective functions (e.g., Schur-convex functions, including av-
erage BER) was not addressed. Direct use of the results of [10] to ad-
dress this case is nontrivial. In [9] the author considered shaping con-
straints on the transmitted signal covariance matrix. However, as ac-
knowledged by the author in [9], the paper introduced a stronger artifi-
cial constraint which leads to a suboptimal solution. This will be elabo-
rated in Section V-B. We will also argue that under our framework, the
problem of optimizing transceivers subject to other meaningful con-
straints on the transmitting covariance matrix can be solved. However,
there are some shortcomings and restrictions of our framework. These
will be elaborated in Section V-B as well.

Luo et al. [7] formulated the MMSE transceiver design for the mul-
tiuser case as an SDP problem. For linear transceivers, we adopt a sim-
ilar mathematical derivation to further consider the average BER min-
imization as well as other Schur-convex problems for MIMO commu-
nication systems. For the system with DFE and linear precoding, we
formulate the minimization of GM-MSE to be a log determinant max-
imization problem. The determinant maximization problem for a pos-
itive definite matrix is well studied in the literature [15]. It turns out
that this GM-MSE minimization problem has exactly the same form as
the maximization of the mutual information of communication systems
over Gaussian channels [2], [15], [17].

B. Outline of the Correspondence

This correspondence is structured as follows. In Section II, we will
discuss the communication models used in the correspondence, and

1Throughout the correspondence, the phrase “simple nonlinear transceiver”
refers to a transceiver with a linear precoder and a DFE equalizer.
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Fig. 1. System with linear precoding and DFE.

also give explicit problem formulations. The review of the optimal re-
ceiver structures will also be given. In Sections III and IV, we formu-
late the optimal transceiver design problems for the linear and DFE
cases, respectively. We also derive the optimal designs which achieve
minimum BER. In Section V, we will give further discussions on the
framework developed in this correspondence. The relationship between
this correspondence and [9] is also addressed. Section VI presents the
numerical simulation results related to the topics discussed in the cor-
respondence. The final conclusions are summarized in Section VII.2

II. SYSTEM MODELS AND PROBLEM FORMULATION

The transceiver model can be represented as in Fig. 1.�� is the co-
variance matrix of the additive Gaussian noise;� is the channel matrix;
� is the precoder;� is the receiving filter;� is � for linear transceiver
case, and strictly lower triangular [16] for the system with linear pre-
coding and DFE. The per-antenna power constraints can be formulated
as

���������
��
� ������� � ��� �� � �� �� � � � ��� (1)

The total power constraint can be written as

�	����� � ������� (2)

In this work we want to minimize the uncoded bit error rate subject
to the individual and total power constraints. This problem formulation
is slightly different from those considered by previous papers [4], [10],
[12], and [6], which considered only either the total power constraint or
the individual power constraints. It will be elaborated later that because
of the introduction of the constraints (1), the nice quasi-analytic form of
the optimal solutions obtained in [10] is gone. However, since the con-
vexity of the problem still holds true, the optimal solution can be ob-
tained by numerical search as we show in the following sections. In this
correspondence, we will establish the link between the optimal trans-
ceiver design problems and the SDPs. Also, the majorization theory is
used to further simplify the considered problems.

It can be observed that the optimal receiver structures do not
change due to the individual power constraints when � is given in
both cases. In the following we briefly review the optimal receiver
structures [10]–[12]. In the linear transceiver case, it turns out that
with no loss of optimality [11] we can use the Wiener filter to be the

2The following notations are used in the correspondence. Boldface upper-case
letters denote matrices, boldface lower-case letters denote the column vectors,
and italics denote scalars. The superscript ��� denotes transpose conjugation,
and ��� denotes the transpose operation. � denotes the ��� ��th element of
the matrix�. By� � �, we mean��� is positive semidefinite. For vector
�, the notation ������� denotes the diagonal matrix with diagonal terms equal
to the elements in the vector �. For matrix �, the notation ������� denotes
the column vector whose elements are the diagonal terms of the matrix�. The
notation � � � means that the vector � majorizes � additively [8], [10].
Similarly � � � means that the vector � majorizes � multiplicatively [4],
[8].

receiver, i.e., ���� � �
�
�
��������
���

��
. If the Wiener

filter ���� is used, the resulting error covariance matrix (MSE
matrix) can be written as � �� ��		�� � 
 � �

�
�
�
���,

where � � ������� 
���
��

. This can be rewritten
in the following form by using matrix inversion lemma [10]:
� � �

 ����

�
��
� ���

��
.

Note that���� is both optimal in the sense of maximizing SINR in
each substream as well as minimizing the mean square error. In this
case, the SINR can be related to the MSE as [10]

���� �
�

����
� �� (3)

The optimum decision feedback equalization with successive de-
coding for MIMO channels is considered in [16]. First, the feedforward
filter is ���� � ��

�
�
�
�
��
� , and the resulting MSE matrix can be

written as � �� ��		�� � ��

 ����
�
��
� ���

��
�
� � ���,

where  is defined as:  �� �

 ����
�
��
� ���

��
, and � ��


 
 �. It can also be shown that the optimal � can be chosen as [12]
� � ���������� � � � ���� �� ����, where � is the lower triangular
Cholesky factor of, i.e., � ���. The resulting MSE matrix will
be� � ��������

��� � � � ��
�
�� �

�
�. Under these choices, the SINR and

MSE in each substream also have a nice relation as in (3) as shown in
[4] and [16].

III. OPTIMAL LINEAR TRANSCEIVER SYSTEMS

In this section we will focus on solving the problem of minimizing
BER subject to individual and total power constraints for the linear
transceiver case. We use the two-step approach. In the first step we will
minimize the AM-MSE (Arithmetic mean of mean square error) of the
system. This is done by reformulating the problem as an SDP as we
shall see. In the second step, we will argue that there is a set of systems
in the minimum AM-MSE family which minimize the average error
probability among all linear transceivers �����. That is, the average
BER is the smallest possible. An approach to find one of such optimal
transceivers will also be given.

The minimum AM-MSE problem with per-antenna and total power
constraints can be cast as the minimization of �	���, where � is the
MSE matrix as discussed in Section II.

In the following we will adopt the trick in [7] to formulate the current
problem to be an SDP. By similar derivation as in [7] we have�	��� �
���
�	�����. Since� and� are constants and�� is known,
the AM-MSE depends only on �, which is a function of �. Further-
more, if we define� �� ���, we can write� � ����� 
���

��
.

This equation can be replaced with �� � ����� 
���
��

(as
discussed in [7]). Also it holds true if and only if the following linear

matrix inequality holds [3, p. 472]
��

�
�
� 
�� 



 ��

� �.

Therefore, the final form of problem formulation can be written as

���
���

�	������

���� ��� ����� � ��� �� � �� �� � � � ��

��� �	��� � ������

��� � � �

���
���

� 
�� 



 ��

� �� (4)

In (4), the objective function is linear, and the constraints are either
linear or positive semidefinite. Therefore, the problem (4) is an SDP
problem [14]. This ensures that the global minimum of (4) can be found
in polynomial time, when the precision of the solution is specified.

Now consider any given precoder �, where a unitary matrix ��� is
further inserted in front of �. We notice that this substitution does not
change the individual power in each antenna nor the AM-MSE [1]. In
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the high SNR region, the average BER is an increasing Schur-convex
function [10] in the vector �������. Therefore, we have

��� �
�

�

�

���

�	 � �
�

���
� �

��	 � �
�

�
�

����

� � (5)

where � and � are constants depending on the QAM constellation. It is
now clear that the lower bound is minimized by minimum AM-MSE.
The equality is achieved by choosing the matrix��� to equalize the MSE
in each substream.

Now we provide an approach to obtain one of the optimal minimum
BER solutions. Taking any solution of��� to the problem (4), the op-
timal minimum AM-MSE solution ��� can be taken as any Cholesky
factor of ���. Let � denote the unitary matrix which diagonalizes
�
�

���
����

� ����: �����
����

� ���� � ��� . The optimal
precoder can be taken as ���� � �������, where ��� denotes the uni-
tary matrix such that the MSE matrix has the identical diagonal ele-
ments. The existence of such unitary matrix ��� is given by [8]. ��� can
be taken as a matrix with constant magnitude in each of its entries. Ex-
amples of such ��� are the Hadamard matrix and the discrete Fourier
transform (DFT) matrix [10]. Note that such ��� are not unique, which
means the minimum BER system is not unique.

IV. OPTIMAL LINEAR PRECODING WITH DFE SYSTEMS

In this section we will focus on solving the problem of minimizing
the BER subject to individual and total power constraints for the system
with DFE and linear precoding. We will take the two-step approach. In
the first step we will minimize the GM-MSE (Geometric mean of mean
square error) of the system. This is done by formulating the problem as
an SDP as we shall see. In the second step, we will argue there is a set of
systems in the minimum GM-MSE family, which yield the minimum
average BER among all transceivers �������. A method to find one
such optimal transceiver is also discussed in this section.

Since � � 	
	�, and 	 is a lower triangular matrix with di-
agonal terms equal to the identity, we have the relation ������ �
����	
	�� � ����
� � �

��� �
�
��, which is the product of the

MSE in each substream. Therefore, the minimization of the geometric
mean of the MSEs is equivalent to the minimization of the determinant
of 
.

Since
 has the form as in Section II, we have ����
� � �������
�������

� ���. Note that for any � � � matrix , we have the
equality ������ � �� � ������ � ��. Therefore, we have
��������������

� ��� � ��������
�	���

� �������

�	���

� �,

where ��	���

� is the Cholesky factor of the noise covariance matrix

��. By setting� �� ���, we can rewrite the problem of minimizing
the GM-MSE in the following form:

���
�

��� ��� �� ��
�
� ���

�
�
�
�

���� ��� ����� � ��� �	 � �� �� � � � ��

��� 
���� � ������

��� � 	 �� (6)

This reformulation holds true because the ������ function is a mono-
tone function when the argument is positive. Problem (6) has been
considered by several authors [14], [15]. It is an SDP-representable
problem, and can be solved numerically by the interior point method
efficiently [15]. See [15] and the references therein for more detailed
discussions about the determinant maximization problem. To summa-
rize, the minimum GM-MSE problem can be solved numerically effi-
ciently, to a specified precision by the typical SDP solver.

First we observe that substituting any � with ��	
 �� ����

for some unitary matrix ��� does not change the GM-MSE
nor the individual power in each antenna. In high SNR re-
gion ��� is a Schur-convex increasing function in the vector
� � ��������� �������� � � � ��������� [12]. Based on those
observations, we have

��� �
�

�

�

���

�	 � �
�

���
� �

��	 � �
�

�
������

� �

��	 � �
�

������
� � � (7)

It is now clear that the lower bound is minimized by minimum
GM-MSE. The equality is achieved by choosing the matrix ��� to
equalize the MSE in each substream.

Now we provide a way to compute one solution for the optimal
precoders. Suppose we already found the solution �� to the
problem (6). The minimum GM-MSE precoder �� can be taken
as any Cholesky factor of ��. Suppose � is the unitary matrix
diagonalizing ����

����
� ���:

�
�

��
�
�
��
� ��� � ���

�

Recall that the MSE matrix will be as in Section II. In [5], the au-
thors showed that there exist unitary matrices� and ��� such that ���
��	���
 � ������, where � is an upper triangular matrix with di-
agonal terms all equal to the geometric mean of the diagonal terms of
�� � ��	���
. The algorithm for computing these unitary matrices
is given in [5] and [19]. The optimal ���� can be taken as ���� �
�������, where ��� is the unitary matrix obtained by the triangular
decomposition discussed above. Note that such ��� are not unique [4],
which means the minimum BER system is not unique.

V. FURTHER DISCUSSION

A. Schur-Convex Objective Functions and Additional Linear
Constraints

It can be observed that the discussion given above relies only on the
fact that the average BER is a Schur-convex and increasing function of
MSE’s. Therefore, the same concept can also be applied to other objec-
tive functions that have these two properties. Many examples of such
optimization problems are provided in [10] for the linear transceiver
case, and in [4] and [12] for the DFE case. For all such objective func-
tions, the systems discussed in Sections III and IV are optimal.

It can also be seen that in the framework developed in this correspon-
dence, any finite number of linear constraints on the covariance matrix
of the transmitted signals can be further added with no difficulty. This
is because when the problem (4) or the problem (6) has one more con-
straint added: 
����� � �, where 
����� is a linear function in the
elements of covariance matrix��� of the transmitted signal, it still re-
mains an SDP.

Several examples of such linear constraints were addressed in [9],
such as spectral masks in cable systems to control the crosstalk among
DSL users, and limiting the power transmitted along some directions in
wireless systems. Here we elaborate further about spatial masks con-
straints in the wireless systems. Suppose � is some spatial steering
vector of interest, then the power along the direction is proportional
to ������. Suppose we want to limit the power transmitted along this
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direction of interest, the constraint on the transmitted signal covari-
ance becomes �����

� � �, for some constant �. This equation can
be rewritten as �����

� � ������
��

�� � �, which is a linear con-
straint in the transmitted covariance matrix���. Therefore, the frame-
work proposed in this correspondence can be easily modified to include
this kind of constraints, both for the linear transceiver and the DFE with
linear precoding.

B. Further Remarks

An idea similar to this correspondence is proposed in [9] where the
author considered shaping constraints on the linear transceivers. In [9],
the constraint on the covariance matrix of the transmitted signals is
��

� � �, which means the matrix � � ��� is positive semidefinite.
However, there is a difference between our work and [9], i.e., our con-
straint is componentwise while the constraint in [9] is the positive defi-
niteness constraint. This is why our approach needs to be more involved
(reformulating the problem to be an SDP for solving the minimum-AM
MSE). Our approach has some advantages over that in [9].

1) Our work as well as some work in the literature, for example
[18] and [6], precisely capture the individual power constraints.
As acknowledged by the author in [9], the individual power con-
straints (1) are replaced with the tighter constraint (as in [9, eq.
(7)]): ��� � ���	�
��� ��� � � � � �� ��. This artificial replace-
ment yields a solution in which the non-diagonal elements of���

are zero. We will see that the optimized solutions to the individual
power constraint problem need not have zero non-diagonal ele-
ments for ���. Therefore, the solution obtained in [9] is a sub-
optimal solution to the individual power constraint problem. This
fact will be amply shown in the numerical simulations.

2) As we argued in Section V-A, the power constraint along a direc-
tion should be like what is discussed in V-A. It is shown in this cor-
respondence that this problem can be optimally solved under our
framework. In [9] the author needs to find a shaping upper bound
for the covariance matrix. However, the procedure of finding the
tight upper bound was not trivial [9].

3) Actually, our framework can incorporate the problem discussed in
[9]. This can be seen from the fact that the constraint in [9]:� � �
can be added in our framework, and the problem remains SDP.
In our work, we also consider the optimization of the transceivers
with DFE and linear precoder, while in [9] only linear transceivers
are considered.

However, there are some disadvantages of our formulations com-
pared to [9] when dealing with the shaping constraint problems.

1) Our framework can only deal with square precoding matrix.
2) Given the SDP formulation, the optimal signaling direction cannot

be characterized, whereas [9] gives a nice interpretation.
3) The computational complexity of our approach is much higher

than [9] because of the need to solve the SDP. Solving an SDP
requires ����� flop counts for each iteration.

C. Rectangular Precoder

If the precoder matrix� is not square, for example, when the channel
matrix� is��� and� � � , the rank of� should be no greater than
� . This rank constraint should be further added into the problem for-
mulation (4) and (6), which will destroy the convexity of the problem.
Generally speaking, the rank constrained problem is difficult to solve
optimally. Therefore, we propose a heuristic way to take care of this
issue.

When � � � , suppose we first relax the rank constraint, then the
rank-relaxed covariance matrix � is solved by the SDP solver as in
Sections III and IV. Now we denote � � �

���
�����

�
�
, where ��

are the eigenvalues of � with non-increasing order and �� are the
corresponding eigenvectors with dimension � � �. Then we can take

Fig. 2. Comparing four transceivers for 100 channel realizations, with each
antenna power �9. The x axis represents the total power constraint.

� � 

�
���� � � �

�
���� �, where  is a � �� unitary matrix.

This will result in ��� � �

���
�����

�
�
, which is a rank-� approxi-

mation of�. Matrix  can be obtained later as in Sections III and IV,
to distribute the MSE equally in each substream. It can be easily shown
that with this approximation, the individual and total power constraint
are still satisfied provided the original � is also in the feasible set of
the problem formulation (4) and (6). The remaining eigenvalues may
be scaled at this point to improve the system performance while main-
taining the power constraints.

VI. NUMERICAL RESULTS

In this section we present our simulation results relevant to the dis-
cussions carried out in previous sections. For linear transceiver, after
formulating the problem as in (4), we use the convex optimization tool
“SeDuMi” [13] to obtain the optimal solution.

We choose � � �, � � �, and per-antenna power constraints to
be 
��� ��� ��� ��� � 
�� �� �� ��. The total power is varied in the sim-
ulation. The constellations are all QPSK. The noise is additive white
Gaussian, with covariance matrix �� � �. “OPT-MMSE-nodist”
denotes the optimal MMSE design but without distributing the MSE
in each substream. “OPT-MMSE-dist” denotes the optimal MMSE
design with the MSE in each substream identical, which is the method
proposed in this correspondence. “Naive-nodist” denotes the case
where the power constraints are satisfied by using the simple choice
���	
� � ���	�
��� ��� � � � � �� ��. if the total power constraint is not
violated. If the choice violates the total power constraint, then we take
���	
� � ������	

�

���
���� ���	�
��� ��� � � � � �� �� “Naive-dist”

corresponds to the case where the precoder matrix is � � ���	
�	,
where  is to force the MSE matrix to have identical diagonal ele-
ments. Note that this method is exactly the one that was proposed
in [9]. In Fig. 2 we provide the simulation of the linear transceivers
for BER averaged over 100 channel realizations. The channel entries
are drawn from an i.i.d. Gaussian distribution. It can be seen that the
typical performance of the proposed method is significant. When the
total power constraint is more than �

���
�� � �� (or 15.56 dB), the

total power constraint is actually inactivated. Therefore, we can see
the performance saturate after this point.

VII. CONCLUDING REMARKS

We have presented a convex formulation for optimal transceiver
design with per-antenna and total power constraints for both linear
and DFE cases. The problems are reformulated as SDPs, which can
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be solved efficiently by convex optimization tools. The optimization
for average BER as well as other Schur-convex functions were also
discussed. The general framework provided in this correspondence
is capable of dealing with any finite number of linear constraints
added on the covariance matrix of the transmitted signals. Several
examples of such problems are discussed. The simulations presented
here demonstrate remarkable improvement in performance for jointly
optimal transceivers.
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Asymptotic Spectral Efficiency of MIMO Ad hoc Networks

Zohreh Motamedi and M. Reza Soleymani

Abstract—In this correspondence, we present an asymptotic analysis of
spectral efficiency of MIMO ad hoc networks. We consider a MIMO ad
hoc network where links, each consisting of a transmitter/receiver pair,
communicate independent information over the network, simultaneously.
Each transmitter node has antennas and each receiver node is equipped
with antennas. It is assumed that for each user, perfect channel state
information (CSI) is available at its transmitter and receiver. The exact
asymptotic spectral efficiency of large MIMO ad hoc networks has been
considered to be an unsolved problem until now. A lower bound has been
found by Chen and Gans based on using beamforming as a sub-optimal
transmission scheme. In this work, we show that the previously presented
lower bound is also an upper bound when L goes to infinity, all links use
full power and single-user decoding is used; hence, it represents the exact
asymptotic spectral efficiency (ASE) of the network. Therefore, the network
ASE is equal to the mean value of the largest eigenvalue of the channel
covariance matrix which is upper bounded by � � � for large
values of and .

Index Terms—Interfering MIMO links, MIMO ad hoc networks.

I. INTRODUCTION

It is well known that in a rich-scattering environment the use of mul-
tiple antennas at both transmit and the receive sides significantly im-
proves the capacity of wireless links. The channel capacity and op-
timum signaling for a single-user MIMO channel, where the only im-
pairment is thermal noise, have been studied in pioneering works of
Foschini and Telatar [1], [2].

In multiuser MIMO systems, given the fact that often the co-channel
interference is the dominant impairment, the problem of finding the op-
timal signaling for each user becomes more difficult. Recently, some
researchers have studied the use of multiple antennas in ad hoc net-
works, where MIMO users mutually interfere. In general, the capacity
of the interference channel, even for two-user channel, is still an open
problem. Therefore, most of the works done so far, have investigated
the problem, considering the constraint of employing single-user de-
tection at the receivers [3]–[6].

To find the optimum transmission strategy for a set of interfering
MIMO links, an iterative water-filling algorithm is proposed in [3]. At
each iteration, assuming that perfect knowledge of CSI and interference
is available at each transmitter, each link attempts to selfishly optimize
its own channel capacity.

The scenario of a group of MIMO interfering links is also studied in
[4] and [5]. Blum [4] investigates the capacity of a system consisting
of L interfering transmit/receive pairs when the receivers use single
user detection and the transmitters have no knowledge of the CSI. As-
suming that all users employ the usual form of the optimum signal in
MIMO problems [2], [7], i.e., Gaussian codebooks, Blum shows that in
this case, depending on the strength of the interference, the transmitter
should either put equal power into each antenna (weak interference)
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