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Abstract: Much recent effort has focused on coupling individual quantum
emitters to optical microcavities in order to produce single photons on
demand, enable single-photon optical switching, and implement functional
nodes of a quantum network. Techniques to control the bandwidth and
frequency of the outgoing single photons are of practical importance, al-
lowing direct emission into telecommunications wavelengths and “hybrid”
quantum networks incorporating different emitters. Here, we describe an
integrated approach involving a quantum emitter coupled to a nonlinear
optical resonator, in which the emission wavelength and pulse shape are
controlled using the intra-cavity nonlinearity. Our scheme is general in
nature, and demonstrates how the photonic environment of a quantum
emitter can be tailored to determine the emission properties. As specific
examples, we discuss a high Q-factor, TE-TM double-mode photonic
crystal cavity design that allows for direct generation of single photons
at telecom wavelengths (1425 nm) starting from an InAs/GaAs quantum
dot with a 950 nm transition wavelength, and a scheme for direct optical
coupling between such a quantum dot and a diamond nitrogen-vacancy
center at 637 nm.
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crystal nanocavities,” Opt. Lett. 34, 2694–2696 (2009).

18. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Ex-
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33. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultrahigh Q: microwatt
nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008).

34. R. Herrmann, T. S unner, T. Hein, A. L offler, M. Kamp, and A. Forchel, ”Ultrahigh-quality photonic crystal
cavity in GaAs,” Opt. Lett. 31, 1229–1231 (2006).

35. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, “Modal-reflectivity enhancement by geometry tuning in

#118886 - $15.00 USD Received 21 Oct 2009; revised 20 Nov 2009; accepted 23 Nov 2009; published 25 Nov 2009

(C) 2009 OSA 7 December 2009 / Vol. 17,  No. 25 / OPTICS EXPRESS  22690



photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
36. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De la Rue, “Ultra high Quality factor one dimensional photonic

crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
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1. Introduction

In recent years, there has been a concerted research effort towards achieving strong cou-
pling between single quantum emitters and high-finesse, resonant optical microcavities (cavity
QED) [1, 2, 3]. The strong coupling results in preferential emission into the cavity mode of a
single photon with frequency near the emitter resonance. This is beneficial to generate single
photons on demand, realize large optical nonlinearities at a single-photon level [4, 5] for low-
power switching or quantum logic gates, and facilitate communication between distant nodes of
a quantum network [6, 7]. In state-of-the-art systems, however, the operating (emission) wave-
length is determined by the material properties of the quantum emitter – namely, the atomic
or excitonic resonance frequency. With the exception of quantum dots, this wavelength is fixed
and cannot be engineered. For example, the operating wavelength of systems based on Cs or
Rb atoms is limited to 852 nm and 780 nm, respectively. In practice, however, the ability to
substantially shift the emission frequency would open up a number of important possibilities,
including direct emission into low-loss telecom frequency bands for long-distance transmission
of photons over existing communication channels. It would also allow direct coupling between
different types of emitters, enabling hybrid quantum networks in which the best attributes of
various emitters can be combined – e.g., allowing single photons generated by solid-state sys-
tems [8, 9, 10, 11, 12, 13, 14] to be coherently stored for long times in atomic gases [15, 16].
This would be an important step towards realizing fully functional quantum networks (with
sources, processors, memory, etc.). Similarly, tailoring the bandwidth of the emitted photons
would allow for fast communication and operation times.

Here, we demonstrate a novel approach to achieve these goals based on a quantum emit-
ter strongly coupled to a nonlinear optical resonator, where the optical emission is directly
frequency-shifted into the desired domain using efficient intracavity nonlinear optical pro-
cesses. By tailoring the optical degrees of freedom (resonances) of such a system, we demon-
strate that the wavelength of the emitted photons can be shifted over a large spectral range
(more than 500 nm) with high efficiency. Our approach allows direct control of the single pho-
ton shape and bandwidth, which is important for efficient and rapid optical coupling between
quantum nodes [6]. As a practical implementation, we propose a system based on a doubly
resonant nonlinear photonic crystal cavity [17] which allows for up to ∼ 99% photon conver-
sion efficiencies. This system facilitates nonlinear optical processes at a wavelength scale, and
is therefore of interest for the realization of integrated platforms that can operate at low power
levels [18, 19, 20, 21, 22, 23]. Moreover, our system allows for the integration of large arrays of
single-photon sources, each tailored to emit at different wavelengths (within the ∼500 nm wide
wavelength range) using the same type of quantum emitter. This could facilitate the realization
of multi-color single-photon sources which could be used for secure optical interconnects.

Our technique is quite robust in that the maximum efficiency does not depend on an explicit
phase-matching condition [24], as would occur in an extended nonlinear crystal, but rather
only on the ratio of the cavity Quality factor to mode volume (Q/V ). This figure of merit can
be extremely high in realistic photonic crystal structures. As an example, we demonstrate a
novel double mode TE-TM cavity design in a GaAs photonic crystal that is well-suited for
the conversion of photons from the near infrared to the telecom band. We also present a similar
GaP-based design suitable for direct coupling between a nitrogen-vacancy center in diamond [8,
9, 10, 11] and an InAs/GaAs quantum dot [12, 13, 14], which could enable practical realization
of a hybrid quantum network.

Finally, we emphasize that our proposal has a number of advantages compared to previous
schemes for spectral control of single photons [25, 26, 27, 28, 29], in that here one can si-
multaneously shift the emission wavelength over hundreds of nm and enhance the emission
bandwidth on an integrated platform. In contrast, techniques based on electromagnetically in-

#118886 - $15.00 USD Received 21 Oct 2009; revised 20 Nov 2009; accepted 23 Nov 2009; published 25 Nov 2009

(C) 2009 OSA 7 December 2009 / Vol. 17,  No. 25 / OPTICS EXPRESS  22692



duced transparency in atomic vapors [25] cannot enhance the photon bandwidth over the atomic
linewidth, and wavelength tailoring is practical only very near the atomic resonant wavelength
where the atoms have a significant optical response (� 1 nm tuning range). On the other hand,
macroscopic nonlinear crystals have been used to achieve wavelength conversion over hundreds
of nm [26, 27, 28, 29], but these approaches offer no bandwidth control and require separate
single-photon sources as inputs. Moreover, they require stringent phase-matching conditions
and high peak-power laser pulses for efficient conversion. Our nanophotonics platform over-
comes these shortcomings, thereby enabling highly efficient conversion and bandwidth control
of single photons in mode volumes smaller than a cubic wavelength.

2. The concept of single-photon spectral control

We first discuss the general protocol for generating single photons on demand at arbitrary fre-
quencies using a nonlinear double-mode cavity, and introduce a simple theoretical model to de-
rive the efficiency of the process. The system of interest is illustrated schematically in Fig. 1. As
in standard cavity-based single-photon generation protocols [6, 3], a single three-level atom (or
any other quantum dipole emitter) is resonantly coupled to one mode (here denoted a) of an
optical cavity. The emitter is initialized through optical pumping in state |s〉, the specific nature
of which depends on the type of emitter used. This is a standard technique for preparing the ini-
tial state of an emitter, and has been experimentally demonstrated for both quantum dots [30]
and diamond NV centers [9]. An external laser field with controllable Rabi frequency Ω(t)
couples |s〉 to excited state |e〉. The transition between |e〉 and ground state |g〉 is resonantly
coupled to cavity mode a (frequency ωa), with a single-photon Rabi frequency g1. The rele-
vant decay mechanisms (illustrated with gray arrows in the figure) are a leakage rate κa for
photons to leave cavity mode a, and a rate γ that |e〉 spontaneously emits into free space rather
than into the cavity. Conventionally, in absence of an optical nonlinearity, the control field Ω(t)
creates a single atomic excitation at some desired time in the system, which via the coupling
g1 is converted into a single, resonant cavity photon. This photon eventually leaks out of the
cavity and constitutes an outgoing, resonant single photon generated on demand whose spatial
wave-packet can be shaped by properly choosing Ω(t) [6].

In our system, the cavity is also assumed to possess a second mode c with frequency ωc,
and our goal is to induce the single photon to exit at this frequency rather than ωa. This can
be achieved, provided that the cavity medium itself possesses a second-order (χ(2)) nonlinear
susceptibility, by applying a classical pump field to the system at the difference frequency
ωb = ωa −ωc. The induced coherent coupling rate between modes a and c is denoted g2. The
field b need not correspond to a cavity mode. Mode c has a photon leakage rate, which we
separate into an “inherent” rate, κc,in, and a “desirable” (extrinsic) rate, κc,ex. κc,in characterizes
the natural leakage into radiation modes and also absorption losses, and can be expressed in
terms of the (unloaded) cavity quality factor as κc,in = ωc/2Qc. κc,ex characterizes the out-
coupling rate into any external waveguide used for photon extraction. The total leakage of
mode c is then κc = κc,in +κc,ex.

More quantitatively, the effective Hamiltonian for the system (in a rotating frame) is given
by

HI = Hc +Hloss,

Hc = h̄g1(σegaa +σgea
†
a)+ h̄Ω(t)(σes +σse)+ h̄g2(a†

aac +aaa†
c),

Hloss = − iγ
2

σee − iκa

2
a†

aaa − i(κc,ex +κc,in)
2

a†
cac, (1)

where Hc describes the coherent part of the system evolution (for simplicity we take g1,2,Ω
to be real), and Hloss is a non-Hermitian term characterizing the losses. σi j = |i〉〈 j| are atomic
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operators, while ai is the photon annihilation operator for mode i. The vacuum Rabi splitting g1

can be written in the form g1 = d ·Ea(r)/h̄, where d is the dipole matrix element of the |g〉-|e〉
transition, and Ea(r) is the electric field amplitude per photon at the emitter position r. The
electric field per photon in mode i = a,c is determined by the normalization

h̄ωi

2
=

∫
drε0ε(r)|Ei(r)|2, (2)

where ε(r) is the dimensionless electric permittivity of the material. The nonlinearity parameter
is given by [19]

g2 = −ε0

h̄

∫
dr χ(2)

i jk E∗
a,i

(
Eb, jEc,k +Ec, jEb,k

)
. (3)

The amplitudes Ea,c appearing above are normalized by Eq. (2), while Eb is the classical pump
amplitude. Importantly, one can compensate for a small nonlinear susceptibility χ(2) or field
overlap (phase matching) simply by using larger pump amplitudes Eb to achieve a desired g2

strength.
For a system initialized in |s〉, there can never be more than one excitation, and the system

generally exists as a superposition of having the system in state |s〉 or |e〉 (with no photons) or
having a photon in one of the modes a,c (and the emitter in |g〉),

|ψ(t)〉 = cs(t)|s〉+ ce(t)|e〉+ ca(t)|1a〉+ cc(t)|1c〉. (4)

The system is initialized to cs(0) = 1 with all other ci(0) = 0 and the time evolution is given by
ċ j = −(i/h̄)〈 j|HI |ψ(t)〉. In this effective wave-function approach, provided that |s〉 is always

Fig. 1. Schematic of single-photon frequency conversion. a) A single three-level emitter
is coupled to a double-mode cavity that possesses a χ(2) nonlinearity. After excitation,
the emitter emits a photon into the cavity at frequency ωa. When the cavity is irradiated
by the pump beam at ωb, the photon is converted to a second cavity mode at frequency
ωc. b) Level diagram: coherent coupling strengths are indicated with blue arrows, while
gray arrows denote undesirable loss mechanisms. The emitter is controllably pumped from
initial state |s〉 via an external laser field Ω(t) to excited state |e〉. The excited state |e〉 can
reversibly emit a single photon into cavity mode a (while bringing the atom into state |g〉)
at a rate g1, and can also decay into free space at rate γ . Mode a has an inherent decay rate
given by κa. The nonlinearity allows the photon in mode a to be converted to one in mode
c at a rate g2 when the cavity is pumped by a laser of frequency ωb = ωa−ωc. The leakage
rate of the frequency-converted photon at ωc is split up into undesirable channels (κc,in)
and desirable out-coupling to a nearby waveguide (κc,ex).
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driven, ∑ j |c j|2→0 as t→∞ due to losses, which can be connected with population leakage out
of one of the aforementioned decay channels. In the limit that Ω(t) is small and varies slowly,
all other ci(t) adiabatically follow cs(t) (see Appendix), and one finds

ċe(t)≈− iΩ(t)cs(t)− 1
2

(
γ +

4g2
1

κa +4g2
2/κc

)
ce. (5)

Physically, we can identify γtotal = γ + 4g2
1

κa+4g2
2/κc

as the cavity-enhanced total decay rate of |e〉,
where the first (second) term corresponds to direct radiative emission (emission into mode a).
Similarly, the denominator κa +4g2

2/κc corresponds to the new total decay rate of mode a in the
presence of an optical nonlinearity, as it yields a new channel for photons to effectively “decay”
out of mode a into c at rate 4g2

2/κc. It is clear that some optimal value of g2 exists for frequency
conversion to occur. In particular, for no nonlinearity (g2 = 0) this probability is non-existent.
On the other hand, for g2 → ∞, one finds γtotal = γ , which indicates that the leakage from mode
a into c is so strong that no cavity-enhanced emission occurs. Note that the use of a time-
varying control field allows for arbitrary shaping of the outgoing single-photon wavepacket
at frequency ωc, provided only that the photon bandwidth is smaller than κc (physically, the
photon cannot leave faster than the rate determined by the cavity decay; see Appendix). This
feature is particularly useful in two respects. First, in practice κc can be much larger than γ ,
which enables extremely fast operation times. Second, pulse shaping is useful for constructing
quantum networks, as it allows one to impedance-match the outgoing photon to other nodes of
the network.

Based on the above arguments, the probability that a single photon of frequency ωc is pro-
duced and extracted into the desired out-coupling waveguide is given by

F =
Cin

1+φ +Cin

φ
1+φ

κc,ex

κc
, (6)

where φ = 4g2
2/(κaκc) characterizes the branching ratio in mode a of nonlinearity-induced

leakage to inherent losses, and Cin = 4g2
1/γκa is the inherent cavity cooperativity parameter for

mode a in absence of nonlinearity. The first term on the right denotes the probability for |e〉
to decay into mode a, the second term the probability that a photon in mode a couples into
mode c, and the third term the probability that a photon in mode c out-couples into the desired
channel (see Appendix for an exact calculation). φ depends on the pump amplitude Eb, with
the optimal value φ =

√
1+Cin yielding the maximum in F . For large Cin	1, the maximum

probability is

F≈
(

1− 2√
Cin

)
κc,ex

κc
. (7)

Considering an emitter placed near the field maximum of mode a, Cin∼ 3Qa
2π2

λ 3
a

n3
aVa

γ0
γ , where Qa,Va

are the mode quality factor and volume, respectively, and n is the index of refraction at fre-
quency ωa. The ratio γ/γ0 is the spontaneous emission rate into non-cavity modes normal-
ized by the spontaneous emission rate γ0≡nω3

a |d|2/(3πε0h̄c3) of an emitter embedded in an
isotropic medium of index n. This ratio is expected to be of order 0.1− 1 for our devices of
interest, and thus the efficiency essentially depends only on Qa/Va.

We have analyzed here the case of a purely radiative emitter. For certain solid-state emitters,
dephasing of its electronic transitions may not be negligible. In the presence of dephasing, it
is necessary to solve for the full density matrix ρ of the system (see Appendix). This yields a
modified expression for the probability of frequency conversion (eq. (21)). However, we note
that the effects of dephasing are likely to be small. For example, in the charged InAs quantum
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dot in ref. [30], the dephasing rate is γd = 0.54 GHz, and in ref. [12], γd = 1.17 GHz. In the
specific example we consider in Section 4, the effect of these decoherence channels on the
frequency conversion probability (Fig. 3) is negligible. By the same token, in diamond NV
centers, the dephasing rate of the electron spin can be extremely small, on the order of ∼ 1
MHz [8].

Finally, while we have focused on the case of single-photon generation here, the reverse
process can also be considered, where a single incoming photon at frequency ωc is incident
upon the system, converted into a photon in mode a, and coherently absorbed by an atom with
the aid of an impedance-matched pulse Ω(t), causing its internal state to flip from |g〉 to |s〉.
Generally, by time-reversal arguments [31], it can be shown that the probability F for single-
photon storage is the same as that for generation.

3. Realization in a nonlinear photonic crystal cavity

In order to implement this frequency conversion scheme in a practical fashion, there are several
constraints on the design of the cavity modes. For the nonlinear process to be efficient, mode a
must have a high cooperativity (Q/V ) to ensure strong coupling of the emitter (see Fig. 1). For
mode c, a high Q factor (small κc) is important to maximize the nonlinear coupling parameter,
φ , and hence reduce the pump power needed in order to reach the optimum nonlinear coupling
strength, g2. The cavity should also be composed of a χ(2) nonlinear material that is transparent
in the desired frequency range. Finally, in order for the modes to couple efficiently via the
nonlinear susceptibility of the cavity, they must have a large spatial overlap and the appropriate
vector orientation, as determined by the elements of the χ(2) tensor of the cavity material (see
Eq. (3)).

As a host platform for the nonlinear cavity, the III-V semiconductors are promising candi-
dates because of their significant second-order nonlinear susceptibilities and mature nanofabri-

cation technologies. However, the symmetry of the III-V group χ(2) tensor (χ(2)
i jk �=0, i �= j �= k)

requires that the dominant field components of the modes be orthogonal in order to maximize
the nonlinear coupling. It further implies that if the classical field which drives the nonlinear
polarization is incident from the normal direction (e.g., from an off-chip laser), one of the cavity
modes must have a TM polarization.

We adopt a photonic crystal platform to realize a wavelength-scale nonlinear cavity that
meets these requirements. Recently, 2D photonic crystal nanocavities have shown great promise
for strongly coupling an optical mode to a quantum dot emitter [13, 14]. In addition, they
have been used as platforms for classical nonlinear optical generation and switching [18, 32].
Photonic crystal cavities with Q factors of up to 700,000 have been realized in GaAs [33,
34], which shows the feasibility of using a III-V platform for our proposal. The challenge,
however, is to design a nonlinear photonic crystal nanocavity which supports two orthogonal,
high cooperativity modes with a large mode field overlap.

To enable a monolithic cavity design which supports both TE and TM modes, we design
a photonic crystal “nanobeam” cavity – a free-standing ridge waveguide patterned with a
one-dimensional (1D) lattice of holes – for which we can control both TE and TM photonic
bandstructures. Recently, there has been much interest in photonic crystal nanobeam cavi-
ties [35, 36, 37, 38, 39, 40] due to their exceptional cavity figures of merit (Q and V ), relative
ease of design and fabrication, and potential as a platform to realize novel optomechanical ef-
fects [41, 42]. Our frequency conversion scheme can be realized in a similar structure, as shown
in Fig. 2. We optimize two high cooperativity cavity modes by exploiting the different quasi-
1D TE and TM photonic stopbands of the patterned nanobeam (shaded regions in the inset of
Fig. 2). A key design point is that the TE and TM bandstructures can be tuned somewhat inde-
pendently by varying the cross-sectional aspect ratio of the ridge. For example, in a nanobeam
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Fig. 2. Cavity mode characteristics. Frequency conversion platform based on a photonic
crystal nanobeam cavity, integrated extraction waveguide, and off-chip coupling laser (ωb)
tuned to the difference frequency of the modes. The cavity is formed by introducing a
local perturbation into a periodic 1D line of air holes in the free-standing nanobeam. The
desirable (κc,ex) and inherent (κc,in) loss channels from mode c are shown. The insets show
the schematic cavity spectrum with photonic stopbands shown in grey, and the dominant
field components of the TE0 (ωc) and TM2 (ωa) modes. The yz-plane cross-sections of
the modes (upper left) show the Ey (Ez) component of mode c (a) at the center of the
cavity, highlighting the mode overlap and polarizations. In the optimized structure, the TE
mode at 1425 nm has Q = 1.4× 107 and Vn = 0.77, and the TM mode at 950 nm has
Q = 1.3×105 and Vn = 1.44 (Vn is the mode volume normalized by (λ/n)3). The inherent
peak cooperativities for the modes are CTE

in = 2.4× 107 and CTM
in = 3.7× 104, which are

well into the strong coupling regime, as given by C > 1.

with a square cross-section, the two stopbands overlap completely. As the width-to-depth ratio
of the waveguide is increased, the effective index of the TE modes increases relative to the TM
modes, shifting the TE stopband to longer wavelengths [17].

4. Example implementations

Although our scheme is general in nature, and does not depend on the particular flavor of
emitter or wavelength of operation, it is interesting and instructive to consider some concrete
examples. As a first example, we design a GaAs photonic crystal nanobeam cavity with modes
at 950 nm and 1425 nm, which would be suitable for directly generating single photons at tele-
com wavelengths from InAs/GaAs quantum dots designed to emit near 950 nm. We note that
quantum dots emitting near 1.5 μm do exist [43, 44], as do protocols for generating single pho-
tons at this wavelength [45, 46]. However, this example shows how “top-down” engineering of
the photonic environment of a given emitter can completely determine its emission properties.
In a solid-state system, this gives a great deal of flexibility in tailoring the emission frequency,
avoiding the complexities of changing material systems, and paving the way for multiple de-
vices with different operating frequencies on a single platform. Moreover, this approach is
particularly powerful for atomic emitters, which are fixed in their emission frequency.

To achieve such a large spectral separation (950 – 1425 nm), we couple the fundamental
TE0 cavity mode to a higher-order TM2 cavity mode (see inset Fig. 2). Crucially, the photonic
crystal lattice tapering [37, 38, 39] is effective in enhancing the Q-factors of both TE and TM
modes. The choice of 1425 nm was dictated by the constraint of maintaining a high Q-factor
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(> 105) for each mode. At wavelengths longer than 1425 nm, the TM2 mode Q factor declines
rapidly. We emphasize that this example is purely illustrative, and the quantum dot photon
could be converted to any wavelength between 950 and 1425 nm with a suitable adjustment of
the cavity geometry, provided a coupling laser with wavelength to match the modes’ difference
frequency was readily available.

The nanobeam cavities are formed by a 4-period taper in the size and spacing of the holes in
the uniform photonic “mirror” on both sides of the cavity center in order to introduce a localized
potential for the TE and TM modes. We assume the nanobeam is oriented such that the x and
y directions as defined in Fig. 2 are commensurate with the [100] and [010] crystal axes of the
GaAs. The 950-1425 nm cavity nanobeam has width w = 389 nm and depth d = 285 nm, and
the hole spacing tapers from a0 = 334 nm in the mirror to ac = 312 nm in the center. The holes
were made elliptical to give an additional design parameter to separately optimize the TE and
TM mode Q factors. The elliptical hole semi-axes are 78 nm and 100 nm in the mirror section,
and the hole size-to-spacing ratio is held constant through the taper section. This design yields
cavity parameters of Q = 1.4× 107 and Vn = 0.77 for the TE mode, and Q = 1.3× 105 and
Vn = 1.44 for the TM mode (Vn is the mode volume normalized by (λ/n)3). The factor γ/γ0

= 0.10 (0.20) for the TE (TM) mode is determined by simulating the total power emitted by a
non-resonant dipole source in the cavity center. We have accounted for the index dispersion of
our candidate material, GaAs, for which n(1425 nm) = 3.38 and n(950 nm) = 3.54 [47].

The nonlinear parameter g2 is determined by calculating the volume integral of Eq. (3) using
the exact mode fields, Ea and Ec, extracted from our 3D-FDTD calculation. Because the mode
fields are oriented along the y and z-axes, respectively, as defined in Fig. 2(c), the classical field
which drives the differency frequency generation, Eb, must be polarized along x. This field has
a frequency ωb = ωa −ωc, which corresponds to a wavelength λb = 2.85 μm. The relevant

nonlinear susceptibility tensor elements are χ(2)
xyz (GaAs) = 2d14 = 550 pm/V and χ(2)

xyz (GaP) =
320 pm/V [48, 49]. Based on previous investigations of the second-order nonlinear properties
of a photonic crystal cavity [18], we expect the bulk χ(2) tensor to be the relevant quantity of
interest, and surface effects to play a minor role.

We assume the classical field is constant over the spatial extent of the cavity modes, which
allows Eb,x to be taken in front of the integral for g2, giving

g2 = −ε0Eb,x

h̄

∫
drχ(2)

xyz E∗
a,yEc,z. (8)

To justify this assumption, we simulated a Gaussian beam with λb = 2.85 μm that is focused
by a lens with a modest numerical aperture (NA) of 0.5 onto a ridge waveguide, and found that
the average field amplitude is approximately uniform over the linear extent of our cavity modes
(approx. x = -1 μm to +1 μm). In the g2 calculation, the magnitude of Eb,x for a given beam
power, Pb, is then determined from the relation Pb = ε0cπr2E2

b,x/4, where r is the focal spot
radius.

In order to efficiently drive the difference-frequency process, the coupling field (Eb) must
have a wavelength λb = 2.85 μm, which could be achieved using a type of Er3+-doped
laser [50], which can output tens of mW of cw power in the range 2.7-2.9 μm. GaAs is an
attractive nonlinear cavity material because it has a reasonably large χ(2) strength [48], a high
refractive index, and mature microfabrication techniques.

As evident in Fig. 2, the overlap of the two modes changes sign near the edges of the ridge
compared to the middle due to the different symmetries of the TE0 and TM2 modes. However,
the induced nonlinear polarization is dominated by the negatively signed anti-nodes near the
middle of the ridge, and the imperfect overlap in the integral can be completely compensated
for by a stronger pump beam. Thus, by selecting a higher order TM2 mode, we have gained
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Fig. 3. Probability of single-photon frequency conversion from 950 nm to 1425 nm. The
photon is coupled into a well-defined output channel at rate κc,ex. Note that the inter-
nal probability of conversion in the absence of an over-coupled extraction channel is
0.99. (a) Probability as a function of the pump laser power, Pb, and the extraction ratio,
δ = κc,ex/κc,in. For a given δ , there is an optimal operating power, Pb, as visible by the
sharp contour ridge at small Pb. (b) Probability as a function of Pb for different values of
δ . Because of the rapid rise in probability at low Pb, the system does not need to be oper-
ated at the optimum to achieve high conversion probabilities. For example, for δ = 10, a
probability of F = 0.7 can be achieved with a pump power Pb = 1.5 mW (indicated by the
arrow).

a larger frequency conversion bandwidth at the expense of the somewhat higher pump power
required to overcome the ensuing phase mismatch. For applications requiring relatively small
frequency shifts, the two fundamental modes, TE0-TM0, would be a more appropriate choice,
as their overlap is almost perfect [17].

We now calculate the probability to convert a single photon from 950 to 1425 nm in our
system. The optimized cavity design simultaneously yields high quality factors and small mode
volumes, which allows for extremely high cooperativities for each mode (Cin > 104). From
Eq. (7) we find that this enables an internal conversion probability of up to F = 0.99 when
waveguide extraction efficiency is not taken into account. In practice, to efficiently out-couple
the frequency-converted single photon into a waveguide, we require the ratio δ = κc,ex/κc,in

to be large (i.e. overcoupled). The branching parameter φ scales as Pb/(κc,in(1 + δ )), and so
to increase the extraction ratio δ , the pump power (Pb) must also be increased to maintain
the optimal φ . Essentially, achieving good extraction efficiency requires one to intentionally
increase the losses in mode c (via the out-coupling waveguide), which in turn requires more
pump power to maintain the critical coupling. This relationship is made clear in Fig. 3, which
plots the probability F as a function of pump power Pb and extraction ratio δ . For a given
δ , the power Pb can be chosen to maximize the probability, reflecting the optimal value of
g2 for frequency conversion. The probability rises rapidly with Pb, reaching a maximum at
relatively low powers (visible as the sharp ridge in the contours). Three fixed δ contours are
plotted in Fig. 3(b), demonstrating that efficient extraction of frequency-converted photons can
be realized at modest pumping powers. For example, for δ = 5, an extraction probability of 0.7
can be realized with a coupling laser power of 1.5 mW focused in a diffraction-limited focal
spot. For this particular cavity design, the outgoing converted photon can be shaped to have a
bandwidth of up to κc∼100 MHz.

The seemingly high power of the coupling laser (1.5 mW) is required to achieve a sufficiently
high electric field amplitude (Eb) in the cavity (4.2 ×105 V/m). However, only a small fraction
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of the coupling photons participate in the frequency conversion process, due to the discrepancy
in size between the cavity mode and the coupling laser spot size. We have sketched a free-space,
diffraction-limited coupling beam in Fig. 2 for simplicity, but if the coupling laser were coupled
via the cavity waveguide, the power level required would be more than an order of magnitude
smaller. Alternatively, if the difference frequency coincided with a third cavity mode, the local
field enhancement in that mode would also greatly reduce the operating power. We also note that
the operating power reflects in part the phase mismatch between the TE0 and TM2 cavity modes.
Frequency conversion over smaller wavelength bands could be achieved at microwatt coupling
power levels with the TE0-TM0 mode pair, which, as mentioned above, have an extremely high
overlap function [17].

By exploiting the scaling properties of Maxwell’s equations, it is straightforward to design
a similar cavity in GaP, a large bandgap semiconductor which could support cavity modes at
637 nm and 950 nm. Accounting for the exact refractive index dispersion and χ(2) strength of
GaP, we calculate an internal frequency conversion probability on this platform of 0.99, and an
extraction probability 0.7 for < 4 mW coupling power. The 637-950 nm span would be suffi-
cient to couple any pair of the most relevant quantum emitters, namely NV centers in diamond;
atoms such as Cs or Rb; and InAs/GaAs quantum dots. Such a cavity could also be integral to
creating a stable, room temperature single-photon source emitting in the telecom band based
on frequency-converted NV center emission in diamond [51]. Given the challenge of fabri-
cating high-Q cavities directly in diamond [52], hybrid approaches involving GaP-diamond
heterostructures [53, 54, 55, 56] or diamond nanocrystals [57, 58] are promising alternatives
to realize cavity-coupled NV center emission. We have shown previously that, despite a small
perturbation of the cavity, the strong coupling regime can still be accessed with a diamond
nanocrystal positioned on top of a photonic crystal nanobeam cavity [37]. Given that it may be
difficult to span the large spectrum from 637 nm to telecom wavelengths in a single monolithic
design, a 637-950 nm cavity could be the first stage of a two-step frequency conversion process
involving our first example as the second stage. More generally, cascading allows our design to
be extended to cover virtually any frequency span.

5. Summary and outlook

We have shown that high-efficiency, intra-cavity frequency conversion of single photons from
a dipole-like emitter can be achieved using a two-mode nonlinear cavity pumped by a classical
field. Our general framework is valid for conversion between arbitrary frequencies, and the
efficiency depends only on the cavity parameter Q/V . Further design improvements should
lead to larger frequency spans and also lower pump power requirements (e.g., by allowing ωb

to correspond to a third cavity mode). Although we have emphasized large frequency shifts
in this paper, a smaller shift could be readily achieved by coupling the TE0 mode with the
fundamental TM0 mode, which has a larger Q factor than the TM2 mode studied here. The
TE0-TM0 modes have a larger spatial overlap, reducing the coupling power required for high
probability frequency conversion. In our scheme, wavelength trimming to achieve the strong
coupling condition between the cavity and emitter could be readily achieved by temperature or
electrostatic tuning [59, 60], and additional dynamical tuning functionality could potentially be
realized by optomechanical effects [42].

Beyond the aforementioned applications, the techniques described here can potentially be
extended to open up many intriguing opportunities. For example, the photon emission of a par-
ticular emitter could be shifted into wavelengths where high-efficiency detectors are available.
It also allows coupling of atomic emitters such as Cs or Rb with solid-state emitters to create
hybrid atom-photonic chips [61]. In addition, a number of quantum entanglement schemes for
atoms rely on joint photon emission and subsequent detection to probabilistically project the
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atomic system into an entangled state [62, 63, 64]. Such schemes rely on the indistinguishabil-
ity of photons emitted from each atom, and implementing such techniques in nonlinear cavities
could allow entanglement between different types of emitters. In addition, the protocol de-
scribed here could be extended for generating narrow-bandwidth, entangled photon pairs with
high efficiency and repetition rates, which are a valuable resource for applications such as quan-
tum cryptography [65]. Our scheme could also be applicable in active materials, where laser
wavelengths could be converted from easily accessible regions like 1500 nm to the mid-infrared
range.

Appendix

Derivation of nonlinear conversion efficiency

The state amplitudes of the wave-function given in Eq. (4) evolve under the interaction Hamil-
tonian HI of Eq. (1) through the following equations,

ċs = −iΩ(t)ce,

ċe = −iΩ(t)cs − ig1ca − (γ/2)ce,

ċa = −ig1ce − ig2cc − (κa/2)ca,

ċc = −ig2ca − (κc/2)cc. (9)

These equations describe both coherent evolution (terms proportional to Ω(t),g1,2) and popula-
tion loss in the system (terms proportional to γ,κa,c). The population loss in the system can be
connected to direct radiative emission of the excited state |e〉 (at a rate γ|ce|2), radiation leakage
and absorption losses of mode a (κa|ca|2), and absorption and leakage out of mode c (κc|cc|2,
of which κc,ex|cc|2 is successfully out-coupled to a waveguide). In general the efficiency of
extracting a single photon of frequency ωc out into the waveguide is thus

F =
∫ ∞

0 dt κc,ex|cc(t)|2∫ ∞
0 dt κc|cc(t)|2 +κa|ca(t)|2 + γ|ce(t)|2 . (10)

For arbitrary Ω(t), Eqs. (9) and (10) can be evaluated numerically. However, in certain limits
one can find approximate solutions. In particular, when Ω(t) and its rate of change are small
compared to the natural oscillation and decay rates of the system, the state amplitudes ca,c,e will
follow the instantaneous value of cs(t). Formally, we can adiabatically eliminate these states,
setting ċi = 0 for i = a,c,e. Then, one finds

ċs(t) = −2Ω(t)2

γtotal
cs(t), (11)

while the other ci∝cs(t), with the proportionality coefficients being functions of
g1,g2,κa,κc,Ω(t). The resulting substitution of the solutions of ci(t) into Eq. (10) allows great
simplification because the integrands now become time-independent, and after some simplifi-
cation yields Eq. (6). Self-consistency of the adiabatic elimination solution requires that the the
effective rate of population loss ∼4Ω(t)2/γtotal predicted from state |s〉 does not exceed the rate
κc that a photon can leak out through the cavity mode c.

In the effective wave-function approach used here, the population leakage out of mode c can
also be explicitly related to the shape of the outgoing single-photon wavepacket. For instance,
we can model the linear coupling of cavity mode c to photons propagating in a single direction
in a waveguide with the following Hamiltonian (in a rotating frame),

Hw =
∫

dk h̄v(k−ωc/v)â†
k âk − h̄gw

∫
dk

(
â†

c âke
ikzc +h.c.

)
. (12)

#118886 - $15.00 USD Received 21 Oct 2009; revised 20 Nov 2009; accepted 23 Nov 2009; published 25 Nov 2009

(C) 2009 OSA 7 December 2009 / Vol. 17,  No. 25 / OPTICS EXPRESS  22701



Here k denotes the set of wavevectors of the continuum of waveguide modes, v is the velocity
of waveguide fields, gw is the coupling strength between cavity and waveguide modes, and zc

denotes the position along the waveguide where the cavity is coupled to it (for simplicity we set
zc = 0 from this point on). Since we are now explicitly accounting for the waveguide degrees
of freedom, we add a term

∫
dkck(t)|1k〉 to the effective wave-function of the system. The

equations of motion of the total system are identical to Eq. (9), except that

ċc = −ig2ca − (κc,in/2)cc + igw

∫
dkck, (13)

ċk = −iv(δk)ck + igwcc, (14)

where δk = k−ωc/v. Compared to Eq. (9), we have now included the coupling of mode c to
the waveguide, and accordingly have replaced κc→κc,in in the equation for ċc since the leakage
into the waveguide should be accounted for by the new coupling terms. The equation for ċk can
be formally integrated; assuming that the waveguide initially is unoccupied, ck(0) = 0, one has

ck(t) = igw

∫ t

0
dt ′ cc(t ′)e−icδk(t−t ′). (15)

Substituting this into the equation for ċc and performing the Wigner-Weisskopf approxima-
tion [66], one recovers the expression for ċc in Eq. (9) by identifying κc,ex = 2πg2

w/v. The one-
photon wave-function [66] is given by ψw(z, t) = 〈vac|Êw(z, t)|ψ(0)〉= (

√
2πigw/v)Θ(z)cc(t−

z/v), where Θ(z) is the step function. The wave-function shape is thus directly proportional to
cc(t). Under adiabatic elimination,

ψw(z, t) =
√

2πigw

v
Θ(z)

8ig1g2

γtotal(κaκc +4g2
2)

Ω(t − z/v)cs(t − z/v), (16)

and thus for a desired (and properly normalized) pulse shape ψw one needs only to solve
Eqs. (16) and (11) to obtain the corresponding external field Ω(t). It is straightforward to show
that the normalization is given by

∫
dz |ψw(z, t→∞)|2 = F provided that cs(∞)→0. This nor-

malization reflects the probability that a single photon ends up in the waveguide.

Dephasing

We now consider the effects of dephasing on our previous analysis. In the presence of dephas-
ing, it is necessary to solve for the full density matrix ρ of the system, whose evolution is given
by ρ̇ =−(i/h̄)[Hc,ρ]+L[ρ]. Here Hc is the Hamiltonian describing the coherent evolution, and
L[ρ] is the Liouvillian describing the decoherence and dissipative processes,

L[ρ] = − ∑
j=a,c

κ j

2

(
a†

ja jρ +ρa†
ja j −2a jρa†

j

)
− γ

2
(σeeρ +ρσee −2σgeρσeg)

−γd

2
(σeeρ +ρσee −2σeeρσee) , (17)

where γd describes the pure dephasing of the excited state.
The full density matrix equations in principle can be adiabatically eliminated as before, but

the general solutions are quite cumbersome and offer little insight. To simplify the situation,
we assume that cavity mode c can be effectively eliminated to yield a new effective linewidth
κa → κa(1 + φ) for cavity mode a, and from this point forward consider the reduced system
consisting of states e,g, and a. We then adiabatically eliminate the density matrix elements
for this system in terms of ρss. Of particular interest here are the equation of motion for the
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population ρss in the meta-stable state, the population of the cavity mode ρaa, and the coherence
ρas in the limit of weak driving (Ω small),

ρ̇ss ≈ − 4Ω2(1+φ)
(γ + γd)(1+φ)+Cinγ

ρss, (18)

ρas ≈ − 4g1Ω
4g2

1 +(γ + γd)(1+φ)κa
ρss, (19)

ρaa ≈ 4CinΩ2(γ +κa(1+φ))
κa((γ + γd)(1+φ)+Cinγ)(γ(1+φ)+(Cin +1+φ)(γ +κa(1+φ)))

ρss. (20)

We now derive the probability that the excitation initially stored in state s decays through
cavity mode a. This probability is given by

κa(1+φ)ρaa

ρ̇ss
=

Cin(γ +κa(1+φ))
γd(1+φ)+(Cin +φ +1)(γ +κa(1+φ))

. (21)

In the presence of dephasing, the expression above should replace the first term on the right-
hand side of Eq. 6, leading to a reduction in the single-photon conversion efficiency. In par-
ticular, note that this quantity simplifies to Cin

Cin+φ+1 in the limit that γd→0. A second relevant
quantity to consider is the coherence of the generated single photon. Specifically, in the ideal
process (with γd = 0) a definite phase relationship is established between the outgoing pho-
ton and the state s. Maintaining coherence is important in the ability to create indistinguish-
able photons over successive operations of the device, or being able to implement the time-
reversal of the generation process (i.e., coherent photon storage). We define the coherence by
C ≡ |ρas|2/ρaaρss, which for our system is given by

C =
γ(γd(1+φ)+(Cin +1+φ)(γ +κa(1+φ)))

((γ + γd)(1+φ)+ γCin)(γ +κa(1+φ))
. (22)

Note that for γd→0, the coherence reaches its maximum allowed value of C = 1.
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