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Understanding XCP: Equilibrium and Fairness
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Abstract—We prove that the XCP equilibrium solves a con-
strained max-min fairness problem by identifying it with the
unique solution of a hierarchy of optimization problems, namely
those solved by max-min fair allocation, but solved by XCP under
an additional constraint. This constraint is due to the “bandwidth
shuffling” necessary to obtain fairness. We describe an algorithm
to compute this equilibrium and derive a lower and upper bound
on link utilization. While XCP reduces to max-min allocation at
a single link, its behavior in a network can be very different. We
illustrate that the additional constraint can cause flows to receive
an arbitrarily small fraction of their max-min fair allocations. We
confirm these results using ns2 simulations.

Index Terms—Congestion control, max-min, optimization.

I. INTRODUCTION

T CP congestion control [1] has prevented severe conges-
tion while the Internet has undergone explosive growth.

However, as the network continues to scale in size and capacity,
the algorithm is struggling with sensitivity to routine packet
loss, slow convergence and low throughput [2], [3]. This has mo-
tivated several recent enhancements [4]–[10]. (See [6] for fur-
ther references.) Of these, XCP [9], [10] has received much at-
tention [11]–[15] and is especially suitable for private networks
where its need for explicit communication between the traffic
sources and the network is less of a deployment barrier than in
the current Internet. Unlike proposals that set the flow rates ac-
cording to the sum of congestion measures at the links of their
paths, XCP sets them according to the minimum “available ca-
pacity” in their paths. This has the same flavor as MaxNet [16],
[17], which sets flow rates according to the maximum of con-
gestion measures in their paths.

The stability of XCP has been studied when all round-trip
times (RTTs) are equal [9], [11] and when they differ [13].
Specific networks can also be shown to be stable [18]. How-
ever, that work focuses on very simple topologies. This paper
takes the complementary approach [19], [20] of reverse engi-
neering XCP to understand its multi-link equilibrium properties.
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Although packet networks seldom achieve equilibrium, equilib-
rium analysis indicates the best-case fairness and capacity prop-
erties of a protocol. Moreover, dynamic analysis typically starts
with a linearization around the equilibrium, which requires a
clear characterization such as is presented here. We do not con-
sider misbehaving nodes, as studied in [14], or errors in capacity
estimates, as studied in [11].

A deterministic fluid model of a general XCP network with
multiple links and multiple flows is presented in Section II.
Section III analyzes the equilibrium rates of XCP and shows
that all queues are empty in equilibrium We prove the existence
and uniqueness of XCP equilibrium rates by identifying them
with the unique solution to a hierarchy of optimization prob-
lems. This is the same set of problems solved by the standard
max-min fair allocation [21], but XCP solves them under an ad-
ditional constraint. While XCP reduces to max-min allocation
at a single link, its behavior in a network can be very different.
We describe an algorithm to compute this equilibrium and de-
rive upper and lower bounds on link utilization.

In Section IV, we use these bounds to investigate the impact
of the choice of protocol parameters on link utilization under
the additional constraint. We show that flows can receive an ar-
bitrarily small fraction of their max-min fair allocations. Specif-
ically, with a max-min fair allocation, as long as a link is a bot-
tleneck for some (not necessarily all) flows that pass through it,
it will be fully utilized. Under XCP, this is no longer true: When
the majority of flows using a link are bottlenecked at other links,
the remaining flows at that link may not fully use the residual
bandwidth. With the parameters specified in [9], however, link
utilization is at least 80% at any link. XCP has a “shuffling pa-
rameter” to prevent the network from settling into an
unfair state [9]. We show that, given any network topology, we
can choose sufficiently small so that the resulting allocation is
close to max-min fairness. For any fixed , however, there
are topologies in which some flow rates can be far away from
their max-min allocations.

These properties and the accuracy of our algorithm are veri-
fied by ns2 simulations in Section V. We conclude in Section VI
with limitations of this work.

II. MODEL

Consider a network with links shared by flows. Sources
are indexed by , links by and packets
by . Let be the routing matrix: if flow uses
link , and 0 otherwise. Let be the set of links in the path
of flow , and be the set of flows that use link

Note that .
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We will present a continuous-time fluid model of XCP. For
flows , define the following variables:

• : window size at time , in packets;
• : round-trip propagation (and fixed processing) delay;
• : round-trip time (RTT) at time ;
• : flow rate at time .

For links , define the following variables:
• : capacity, in packets/s.
• : backlog at time , in packets.
• : aggregate input rate at link at time

. In equilibrium, we sometimes write to emphasize
the dependence on equilibrium rates .

An XCP link divides time into control intervals of duration
, which is also used as a time scaling parameter. Nominally,
is the mean RTT of all the flows at link [9]. We assume

to be constant in time, which is reasonable as we will show that
there is no queueing delay in equilibrium.

To simplify notation, we assume all packets have size 1 unit.
We use “flow” and “source” interchangeably.

A. XCP Description

We now summarize the XCP algorithm. See [9] for a detailed
description. The equilibrium is independent of feedback delay,
and hence such delay is not modeled.

For each packet, XCP generates a feedback signal prescribing
a change in window size. Let be the feedback generated
by link for packet at time . The acknowledgment for packet

received by its source contains in its header the smallest feed-
back generated by links along its path. The source
adds this quantity to its current window size.1 We now describe
how to compute the feedback.

Let

where are constants, is the link capacity, is
the aggregate input rate, and is the backlog at time . Let

and . The
feedback on the th packet at link is

where and are the increase and decrease compo-
nents, respectively

(1)

(2)

where and are the round-trip time and window size,
respectively, of the flow that transmitted packet , and is
the total number of packets seen by link over the time interval

. Here

1In practice, the window size has a lower bound of 1 packet, but for notational
simplicity, we ignore this.

is a “traffic shuffling” term with a constant. (Note that we
are using the definition of from the Appendix of [9], which
differs by a factor of from that used in the corresponding
equation in [9].)

B. Dynamic Model

We now translate the per-packet feedback into
per-flow feedback. Let be the feedback generated by
link for flow at time . In general, a quantity with a tilde
pertains to a packet while the corresponding variable without
a tilde pertains to a flow.

Substituting in (1) gives

(3)

Recall is the total number of packets arriving at link in
period . For simplicity, we assume that

Of these packets, we assume that packets are from
flow . Hence

Thus, the feedback (3) yields feedback to flow

per packet. Using again, the per-packet feed-
back (2) becomes

The feedback per packet to flow from link is then

If flow does not use link , then set .
Let be the minimum feedback

along ’s path. Since source receives feedback packets
per unit time (assuming every packet carries control informa-
tion and is acknowledged), its window evolves according to

Substituting , we have

Remark: The pseudo code in [9] contains additional
“residual” terms. These terms, modeled in [20], have no effect
on the equilibrium if the average rate of flows bottlenecked
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at upstream links is significant. Otherwise, the resulting link
utilization is slightly increased (by around 4% in Scenario 1 of
Section V). Since these terms hardly affect the equilibrium, we
ignore them in the analysis in this paper.

In summary, an XCP network is described by the following
set of equations:

(4a)

if
if

(4b)

where

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)

Here, are constants, and
. Standard XCP uses

and . We will study the behavior
of the general model, which includes this as a special case. As
we will see below, the qualitative properties, such as existence
and uniqueness of equilibrium rates, do not depend on specific
values of these parameters (as long as ).

III. EQUILIBRIUM RATES

This section characterizes the equilibrium of XCP and de-
scribes an algorithm to compute it; the next considers the impli-
cations of these results on utilization and fairness.

Equations (4)–(5) describe the evolution of the window
vector , for all and the backlog vector

for all . A pair of rate and backlog vectors , with
window vector given by , is said
to be in equilibrium if both and . To avoid
technicalities, we only consider cases with ; under a
minor reformulation, it can be shown that in equilibrium
only if , and all theorems and lemmas still hold.

We start by defining a bottleneck link and other notation for
XCP equilibrium. In general, quantities without dependence
denote equilibrium quantities, e.g., .

Definition 1: A link is said to be a bottleneck for source
with respect to (w.r.t.) if is minimum among all the links
that uses, i.e., . In this case, source is
said to be bottlenecked at link w.r.t. .

By definition, every source has a bottleneck. Lemma 1
below implies that in equilibrium at bottleneck .

We distinguish between links that are bottlenecks and those
that are not. Let be the set of links that are bottlenecks for
source w.r.t. a given equilibrium rate

and be the set of links in ’s path that
are not bottlenecks for source w.r.t. . We also distinguish
between sources that are bottleneck locally and those that are
not. Let be the set of sources bottlenecked at link w.r.t. a
given equilibrium rate

and be the set of sources bottlenecked
elsewhere. Let be the number of sources at link

, and . Let be the
fraction of flows through link which are not bottlenecked at
link , and be the fraction of the link’s capacity
consumed by such flows. Note that while , and
depend only on the routing matrix,

and depend also on the equilibrium rate
through .

From (4) and the definition of , we have the following.
Lemma 1: The rate and backlog vector is in equilibrium

if and only if
1) for all with equality if , and
2) for all .

Moreover,
3) if and then and ;
4) if then implies .
Proof: Parts 1 to 3 are immediate. To see part 4, note that

implies

By part 2, for all . Since at most one of and
is nonzero, , whence .

A. The Need for Bandwidth Shuffling

Without bandwidth shuffling, XCP would have , giving
for all and , and in equilibrium.

Theorem 1: Suppose . Then, with is
an equilibrium if and only if

1) for all and , and
2) for all , there exists with .

Proof: The first condition in the theorem implies that for all
. Combined with , this implies for all .

The second condition then implies that for all
. Hence, the conditions in the theorem are sufficient, by (5b)

and the first half of Lemma 1.
For necessity, there are two cases. If then

by Lemma 1 part 4, and (4b) implies and , since
, and . Otherwise, and

by definition of . This implies , whence
in equilibrium.
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Remark: Without bandwidth shuffling, any (possibly unfair)
boundary point of the set would be an equilibrium.
This is why XCP uses [9].

The rest of the paper considers the more complicated case of
.

B. Case: Definitions and Preliminaries

This subsection provides a conceptually simple characteriza-
tion which is used in the next subsection to prove the existence
and uniqueness of XCP equilibrium. Following that, we provide
an iterative algorithm to compute this equilibrium.

From (4)–(5) and Lemma 1, is an XCP equilibrium if
and only if it satisfies conditions 1 and 2 of Lemma 1.

By (5a), condition 2 becomes: for all , for all

(6)

with equality for some . Hence for links with
, all flows that are bottlenecked at link must have

the common rate . This has important implications as we will
see below.

Several of the results will use the following technical lemma,
which is proved in Appendix A.

Lemma 2: For all
1) if and ;
2) if ;
3) with equality if and only if ;
4) if ;2

5) with equality if and only if .
Unlike in the case, we characterize the equilibrium

backlogs and rates separately. The following result says that the
equilibrium queue under XCP is zero. This originates from the
definition of in (5b), which is nonnegative in equilibrium. The
same property is used in REM [22] to drive the queue to zero,
or more generally, to a target value.

Theorem 2: In equilibrium, and for all .
Proof: Links can be of three types: a) ;

b) ; and c) . Each of
these will be considered in turn.

Type a) links are bottlenecks for all flows passing through
them, i.e., (6) holds with equality for all . Since all
flows have common rate , whence equality in (6)
implies . Thus, , and (5b) implies and

, i.e., they share the link capacity fully and equally, with
no queueing delay.

Type b) links are not bottlenecks for any of the flows they
carry. Hence, for all ,

Multiplying both sides by and summing over , we have

2� � � implies � �� � ���� � ��. Theorem 6 provides a tighter lower
bound.

Hence

Since both numerator and denominator are positive, .
This implies whence and .

Type c) links are bottleneck links for some but not all of the
flows using them. From (6), we have

where the inequality follows from Lemma 2. As for type b)
links, this implies and .

We next characterize XCP’s equilibrium rates. Let

where . Since depends on only through
, we will abuse notation and also write or .

Define the feasible set of source rates to be

(7)

where denotes the set of nonnegative real numbers. We will
later show that the XCP equilibrium must be in . Note that

implies

To see this, multiply both sides of the inequalities in (7) by
and sum over to get

whence . The converse may not be true, i.e., may be
a strict subset of .

Intuitively, exceeds the equal-share rate by a factor
that increases as the link underutilization increases and as the
bandwidth shuffling decreases. It arises since the link tries to
shuffle bandwidth from flows it controls to ones it does not.
Thus, restricts the utilization of links which are not bottle-
necks for all flows passing through them.

Our main result is to prove the existence and uniqueness of
XCP equilibrium in a general network, and that this equilibrium
solves a constrained max-min fairness problem.

Definition 2: A rate vector is constrained max-min
fair if for any other feasible implies that there
is a with and .

Intuitively, a constrained max-min fair vector is such that it
is not possible to increase a component without reducing an-
other smaller or equal component . This differs from standard
max-min fairness only in that the feasible set is a subset of

[23]. This restriction has important ramifications,
as we will see in the next section.

We will prove constructively that the unique XCP equilibrium
is constrained max-min fair by identifying it with the solution of
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a hierarchy of optimization problems over the feasible set :
it maximizes the smallest source rates in , and then maxi-
mizes the second smallest rates over all rates that solve the first
problem, and so on. These problems are defined inductively, fol-
lowing the idea of [24].

Let and . The sets define the
first problem , whose solution is described by the sets

. These sets in turn define the second problem ,
and so on. To simplify notation, let

Given sets , if con-
tains all flows, then we stop. Otherwise, we define problem
and its solution , as follows:

(8)

Let
(9)

(10)

(11)

(12)

A few important properties are immediate from these defini-
tions. First, the rates are monotonic

(13)

Second, and are nonempty; moreover, they are disjoint
from and , respectively. Hence, will eventually
contain all the flows and there are only a finite number of prob-
lems . Finally, are strictly nested

Indeed it will become clear that is exactly the set of solutions
to problem , i.e., is the set of feasible rates
whose smallest rates are maximized, is a subset of whose
second smallest rates are also maximized, and so on. We prove
below that if is the last problem, then is a singleton
that solves all problems .

To contrast XCP equilibrium with the standard max-min fair
allocation, we derive a “bottleneck” characterization that is
analogous to that for max-min fairness; see the beginning of
Section IV.

Lemma 3: Let be an XCP equilibrium rate vector. Link is
a bottleneck for source w.r.t. if and only if

1) , and
2) for all .

Proof: Suppose link is a bottleneck link for source w.r.t.
equilibrium . Then, Lemma 1-2 implies that , i.e.,
equality holds in (6). Since by Theorem 2 and
by Lemma 2, (5c) becomes . Thus from (6)

(14)

proving the first condition. Condition (6) then implies the
second condition.

Conversely, suppose the two conditions are satisfied. If
, then from (5a) and Lemma 1-4. Lemma 1-2 then

implies is the minimum among links in source ’s path, i.e.,
link is a bottleneck. On the other hand, if , then, as
above, and . Then, is
equivalent to , proving that is a bottleneck.

Motivated by this lemma, we call link a nonbottleneck w.r.t.
if either or for all .

C. Case: Main Result

We are now ready to state the main result.
Theorem 3: The problems are well-defined and have a

unique solution. Moreover, the following are equivalent:
1) is an XCP equilibrium.
2) is the unique rate vector that solves all the problems .
3) is constrained max-min fair.
4) and every flow has a bottleneck w.r.t. , i.e.,

for all , there is an such that and
for all .

The remainder of this subsection is a proof of this theorem.
It will use lemmas, whose proofs are relegated to Appendix B.
We start with a simple observation that greatly simplifies the
solution of .

Lemma 4: Suppose is nonempty. The maximization in
(9) can be taken over that have equal for .

In view of Lemma 4, we can replace in (12), for ,
by their subsets

(15)
and use them instead of in computing :

This greatly reduces the complexity of (9) from maximizing
over -vectors to over a scalar .

Denote an by , with

(16)

and let . Note that , is
not in according to definition (12), though it is in . We
will see in Lemma 6 below that plays an important role
in the proof of Theorem 3. The vector induces link flows

(17)

This motivates the following main technical lemma.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 8, 2010 at 14:38 from IEEE Xplore.  Restrictions apply. 



1702 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

Lemma 5: Given any scalars , and , define

(18)

for some and .
1) If either or , then there exists a unique

such that , where if and only
if .

2) Moreover, over if and only
if .

For later reference, we will denote the mapping from
to the unique in Lemma 5 by

(19)

This function is used in the rest of the proof.
Lemma 5 implies that if link is a bottleneck for some source

with respect to an , then the rate of source cannot be
increased without violating the feasibility constraint in (7). For
instance, let be such that . Setting

and gives and
is a bottleneck for all w.r.t. . Lemma 5-2

then implies that rates greater than are infeasible at link .
The next lemma implies that all links are bottlenecks

w.r.t. all , and all links are nonbottlenecks w.r.t.
. In particular, this implies that are nonempty.

Lemma 6: For each ,
1) if , then for all w.r.t. all .
2) if , then either or

for all .
Lemmas 5 and 6 suggest the following abstract algorithm

to compute the solution of problems . An analogous con-
crete algorithm to find the XCP equilibrium will be given in
the Subsection III-D. At the start of iteration , all links

, are bottlenecks for some sources w.r.t.
all . A source passes through at least one bottle-
neck , and hence its rate cannot be raised further without
violating the constraint in (7). All links are nonbottle-
neck links w.r.t. defined in (16). Sources pass
through only these nonbottlenecks, and hence their rates can be
increased further, starting from . At each nonbottleneck link ,
nonbottlenecked sources can raise their rates to (19),
(16), and (17)

to make a bottleneck. The smallest of these rates, smallest
over , is . It is assigned to all previously nonbot-
tlenecked sources going through the new bottleneck links and
is the optimal objective value for problem . These new bot-
tleneck links are collected into , the newly bottlenecked
sources into and their rates into (or ). The

other nonminimizing links remain nonbottleneck w.r.t. the new
rates , and the cycle repeats, until all sources are as-
signed their bottleneck rates.

The solution of each problem fixes the components
, to be rate , until all components have been

assigned. Hence, if is the last problem, then
is a singleton.

The above discussion is summarized in the following lemma,
which justifies Theorem 3.

Lemma 7: The problems are well defined. is exactly
the set of solutions to problem . There is a unique solution
to the hierarchy of problems.

We now prove Theorem 3.
Proof (Theorem 3): Lemma 7 implies that are well de-

fined and have a unique solution. It is clear that characterizations
2 and 3 are equivalent, i.e., is the unique solution to the hier-
archy of problems if and only if it is constrained max-min
fair. We will first prove the equivalence of characterizations 3
and 4, and then that of 1 and 4. We will use the equivalent defi-
nition of bottleneck links in Lemma 3.

Equivalence of characterizations 3 and 4: We will prove
that is constrained max-min fair if and only if both
and every flow has a bottleneck link w.r.t. , i.e., for all , there
is an such that and for all .
The proof follows the same approach as the corresponding result
for standard max-min fairness; see [23]. The difference is in the
use of Lemma 5 because of the more complicated feasible set

.
Suppose and every flow has a bottleneck link

w.r.t. . If is not constrained max-min fair, then there exists
another such that for some , and if
then . We will derive a contradiction. Let be a
bottleneck for w.r.t. . Then, for all , and
hence for all , with . Write
the link flow due to rates in terms of and the link flow

due to

Let the scalar be the average

Then, the rate vector defined by if and
otherwise induces the same flow rate at link as does

(20)

Since , and is feasible, we must have, for all

(21)
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where the last equality follows from (20). Hence, is also fea-
sible. Since link is a bottleneck for source w.r.t.

(22)

and so applying Lemma 5-1 with and
gives . Since for all ,

with , Lemma 5-2 and (20) imply that

contradicting (21). Hence, is constrained max-min fair.
Conversely, let be constrained max-min fair. If there

is a source that has no bottleneck link w.r.t. , then for all
, either or for all

. Lemma 5 then implies that there exists a unique scalar
, given by

such that , given by and for
, strictly increases component without having to reduce

other components , contradicting the fact that is constrained
max-min fair.

Equivalence of characterizations 1 and 4: We will prove
that a vector is an XCP equilibrium if and only if

and every flow has a bottleneck link w.r.t. .
The discussion at the beginning of Section III-B shows that
is an XCP equilibrium if and only if, for all , (6) holds for

all , with equality for some . This, with (14),
establishes . As observed after Definition 1, every flow
has a bottleneck by definition.

To show characterization 4 implies characterization 1, it suf-
fices to show that the characterization in Lemma 3 implies state-
ments 1 and 2 of Lemma 1. The discussion after (7), and setting

, establishes statement 1. This shows for all . If
then (5c) and (5a) give , with equality when
. Otherwise, giving and, by (5a),

.

D. Algorithm for Computing Equilibrium

The equilibrium rates of XCP can be found using an algo-
rithm analogous to that of [23] for max-min fairness. However,
because the constraint on the link throughput in (6) depends on
the aggregate flow rate through and , some extra book-
keeping is required.

In [20], an approximation for was given in terms of and
. Here, we use the exact expression from [19].
Theorem 4: The utilization of a bottleneck satisfies

(23)
The rates of all sources bottlenecked at satisfy

(24)

where

(25)

Proof: Substituting into (14)
and solving the resulting quadratic equation gives

(26)

where . By Lemma 8 in
Appendix A, only the larger solution of (26) satisfies part
5 of Lemma 2 and is a valid equilibrium. Rearranging the term
in the square root gives (23).

To obtain (24), instead substitute
into (14), giving

(27)

where

Since is increasing in , it is again only the larger root that
represents the XCP equilibrium. Thus

where is given in (25). Rearranging the expression in the
square root gives (24).

Note that the right-hand side of (24) depends on the rate
vector through and . Hence, it is not an explicit formula
for the throughput of a general flow. However, it says that the
common “bottleneck” rate at each link depends on the rate
vector only through and that are bottlenecked else-
where. These are source rates smaller than the “bottleneck” rate
at link by Lemma 1. This motivates an algorithm similar to the
max-min algorithm of [23] that calculates the throughput of
each flow in increasing order, without the need for recourse to
simulation.

1 Set for all

2 repeat
2.1 For each link, find from (24)
using and from rates already
allocated
2.2 Set
2.3 Set
2.4 foreach

2.4.1 Set
2.4.2 For each flow , set

endfor
2.5 Set
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2.6 Set
2.7 Set
2.8 foreach

2.8.1 Set
2.8.2 Set

endfor
2.9 Set
until

This solves each of the optimization problems, , in turn.
The key is that, by keeping track of the used capacity of each
link, and , it can compute the maximization in (9) in
closed form. For each , the values and vary during
the algorithm. For the algorithm to be correct, they must have the
right values when link is the minimum in step 2.2. This occurs
as long as the link rates are allocated in increasing order, as is
guaranteed by the following theorem, proved in Appendix C.

Theorem 5: The above algorithm calculates the correct equi-
librium rates of XCP.

If , then (24) reduces to ,
and hence the algorithm reduces to the algorithm in [23] to com-
pute the max-min fair allocation. This suggests that, given any
topology specified by the routing matrix and link capacity
vector , one can choose to be sufficiently small so that
the equilibrium of (4) is close to max-min fair. On the other
hand, with small , the convergence of individual rates to fair-
ness can be very slow. We will return to this point in the fol-
lowing section.

IV. UTILIZATION AND FAIRNESS

In this section, we discuss some implications of the results in
Section III on link utilization and fairness of the equilibrium
rates. Theorem 3 shows that XCP equilibrium is constrained
max-min fair. It is instructive to compare the XCP equilibrium
with the (standard) max-min fair allocation and a class of algo-
rithms proposed in [24].

It is proved in [24] that a (standard) max-min fair rate vector
is the unique solution of the same hierarchy of problems

(8)–(12) defined in Section III, except that the feasible set
in (7) is replaced with the superset

(28)

The key feature that results from this much simpler feasible set
is that the bottleneck links under a max-min fair allocation

are all fully utilized. Indeed, a rate vector is max-min
fair if and only if, for every source , there is a link in
its path such that [23]

1)
2) for all .

From Theorem 3, condition 1 is replaced with the fixed point
equation for XCP equilibrium. This more com-
plex condition has several implications.

First, it precludes the much simpler proof techniques used in
[24] to show the max-min fair vector is the unique solution of
the problems .

Second, the algorithm in Section III-D to compute the con-
strained max-min fair rate vector is more complex than the (cen-
tralized) one for the max-min fair vector [24], [23].

Third, and most importantly, the XCP equilibrium can under-
utilize link capacities and deviate by an arbitrarily large factor
from the max-min fair allocation, as we illustrate below.

Max-min fairness is generalized in [24] by restricting the fea-
sible set to a (strict) subset of in (28). Like XCP, the re-
striction is specified as additional constraints on source rates
and link flows . Like XCP, explicit feedback is required: Each
link feeds back the spare capacity to sources that
go through this link. Sources adjust their individual rates based
on feedback on its path in a way that is distributed, yet avoids
overshoot. MaxNet [16] also allows explicit control of link uti-
lization and fairness by separate link and source parameters.

We now illustrate the effect of the additional constraint (7) in
XCP on link utilization and fairness.

As we explained in the proof of Theorem 2, there are three
types of links. The first type are bottlenecks for all the flows that
go through that link. All links of this type, such as all in
problem , are fully utilized, . The second type are bot-
tlenecks for none of the flows that go through that link. They are
underutilized, , because the flow rates going through the
link are constrained elsewhere. The third type are bottlenecks
for some, but not all, of the flows that go through the link. In
contrast to the standard max-min fair allocation, these links are
also underutilized, . We can bound the utilization of these
partial bottlenecks.

Theorem 6: If for some , then

Proof: Noting that (and that ),
removing the last term from the square root in (23) gives the
lower bound

(29)

where the second inequality is an equality if .
To derive the upper bound, first note that from

Lemma 2-2. Since and ,
removing the last term from the square root of (24) yields

(30)

Multiplying both sides by and adding lead to the
upper bound on utilization.

Substituting either or into either the exact
expressions (23) and (24) or the upper and lower bounds (29)
and (30) gives full utilization as in the max-min case:
and . This shows that XCP could be
made to approach max-min fairness if the bandwidth shuffling
were reduced.

On the other hand, link utilization could be arbitrarily low if
and had been chosen poorly. With the values suggested in [9]
however the utilization is at least 80%. Consider a network of
two links. Link 1 has and carries flows, while link 2
has and carries flows, consisting
of all the traffic on link 1 plus one other flow. As we
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get . This gives in the limit. Thus, both
terms in the square root of (23) go to zero, whence (29) becomes
tight, and as . However, with and

[9], for which positive stability results exist, (23) gives
.

Similarly, a given flow may obtain an arbitrarily small propor-
tion of its max-min fair bandwidth for any and . The
ratio of the upper bound on XCP bandwidth (30) to the max-min
fair bandwidth, , is minimized
with respect to when . Substituting this value
into (24) and dividing by gives

(31)

where

Thus

Applying the identity , for , gives

(32)

In the limit as , the right-hand side tends to 0 for any
. This demonstrates that, for any nonzero amount of bandwidth

shuffling, XCP can be arbitrarily unfair for some topology.
Hence, although the equilibrium of (4) converges to max-min

as , this convergence is not uniform with respect to
topology. In other words, given any topology specified by

, we can choose sufficiently small so that the resulting
allocation is close to max-min fairness. However, for any
fixed , such as 0.1 used by XCP, there are topologies in
which some source rates can be far away from their max-min
allocations.

This behavior can be exhibited by a simple two-link network:
One link has capacity 1 and carries flows, while the other
carries of those same flows and has capacity .
This network has and

. Hence, as and .
These asymptotic results will be illustrated and confirmed by

simulation in the following section.

V. SIMULATION RESULTS

This section presents simulation results using the implemen-
tation available from [9] for NS-2 [25]. These results verify the
accuracy of our algorithm in Section III-D and confirm our qual-
itative discussion in Section IV on the utilization and fairness
properties of XCP.

Fig. 1. Topology for Scenarios 1 and 2.

Fig. 2. Scenario 1: Utilization.

All sources always have packets to send. Links are randomly
assigned delays between 5 and 500 ms, uniformly on a log
scale. Results for different realisations were indistinguish-
able. The XCP default parameters and

are used. Although the analysis neglects the “residual”
terms, the simulations include them. However, as remarked
in Section II-B, they have minimal impact on equilibrium
properties, yielding a good match between theory and simula-
tion. Although XCP has been found to be unstable in specific
circumstances [26], all of the simulations here exhibited stable
dynamics.

The topology used for Scenarios 1 and 2 is shown in Fig. 1
and consists of two links, with sources traversing link L1
and sources traversing L2.

Using protocols that have nonempty queues in eqiulibrium,
flows in each direction are coupled through changes in the RTT
and a process known as ACK compression. Since XCP main-
tains empty queues at eqiulibrium, it is sufficient to consider
unidirectional flows, which we do here for clarity.

Scenario 1 investigates the utilization of L1 as the number
of sources traversing L1 and L2 is changed. In the experiment

, with Mbps and Mbps. The utilization
of L1 for a range of and is shown in Fig. 2. A max-min fair
allocation would result in a full utilization of L1 for all and
combinations. However, as the number of sources bottlenecked
at L2 increases, XCP’s utilization of L1 decreases.

Since XCP’s “residual” terms depend on feedback from up-
stream nodes, the equilibrium rates depend on the order in which
links are traversed. If the direction of flow in this network were
reversed, then the utilization would be 0%–4% higher than for
the case considered and than the theoretical predictions.

Scenario 2 demonstrates that XCP can be arbitrarily unfair
for some topology. Let Mbps,
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Fig. 3. Scenario 2: Unfairness, � �� � � as � ��.

Fig. 4. Scenario 3: Utilization of L1 as function of ���.

Fig. 5. Scenario 3 topology.

and . The ratio of the rate of the source traversing
only L1 to the max-min fair rate is plotted in Fig. 3. Indeed the
unfairness increases with the number of sources in the network,
confirming the theory.

Scenario 3 studies XCP with nonstandard parameters. It ver-
ifies that as . We set Mbps,

and . The parameter is
varied from 0.512 to 0.016 and the utilisation of L1 as a func-
tion of , as well as the lower bound from (29), are plotted
in Fig. 4.

Scenario 4 tests the rate allocation algorithm for a more com-
plicated topology as shown in 5. The link capacities in Mbps
are and is varied
in this experiment. Delay is set to ms. The source
rates are plotted in Fig. 6. There is a good agreement between
the predicted and measured rates even though the lower band-
width delay product makes the fluid flow approximation more
questionable.

Fig. 6. Scenario 4: Throughputs.

VI. CONCLUSION

We have presented a dynamic model of XCP and used it to
completely characterize its equilibrium properties. We have
shown that XCP clears the queues in equilibrium and has
unique equilibrium rates that solve a constrained max-min
fairness problem. The additional constraint under XCP can
lead to unfairness for some network topologies. XCP gives a
utilization of at least 80%, but a poor choice of or could lead
to arbitrarily low utilization. We have provided an algorithm
to compute the equilibrium for general networks, and have
presented simulation results to illustrate these findings.

An important question that we have not pursued is the dy-
namic properties of XCP, such as its stability. Even though the
“residual” terms in the XCP code do not seem to affect equi-
librium properties drastically, they may be important in deter-
mining its dynamic properties and, hence, should be taken into
account in such an analysis. It is important to understand the sta-
bility of individual source rates , in addition to the aggre-
gate rate , as studied in [9], in general networks in the pres-
ence of nonuniform delay. Since equilibrium queues are zero,
the usual practice of linearizing around the equilibrium needs
caution at the tightest bottlenecks that have zero queue yet full
utilization.

APPENDIX A
VALID EQUILIBRIUM RATE

Proof (Lemma 2):
1) By Lemma 1, and . This implies

2) If this were not the case, then the average rate of flows in
(and hence the rate of at least one such flow) would

be greater than . Part 1 would then require the total
rate to exceed the capacity.
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3) From part 1

with equality if and only if .
4) Otherwise, and since (by

Lemma 1, part 4). Then, and , whence
.

5) with equality if and only if .

Lemma 8: The smaller solution to (26) does not give a valid
equilibrium rate for link .

Proof: For a rate, , to be valid requires , by
Lemma 2(5).

Let and . Then,
dividing the numerator and denominator of (26) by gives

If the lower root were valid, then

whence

However, , which yields a contradiction. Thus, the
lower root is not valid.

APPENDIX B
PROPERTIES OF OPTIMIZATION PROBLEMS

Proof (Lemma 4): Note that depends on
only through . Now, are all of the form

where . Write as . Hence, we can
write also as a function of

(33)

Given any , define the average by

and consider the vector with equal components.
From (33), this vector produces the same link flow . Moreover,

defined by this vector also satisfies
for all , and hence is in . This is

because for since the
original is in . For

where the first inequality follows because is the average of ,
and the last inequality follows because the original

is in . Hence, if achieves the maximum in
(9), the vector with a common value also
achieves the maximum.

Proof (Lemma 5): Define

We will show that there exists , with equality if and only
if , such that under the conditions given in
the lemma. Consider the two cases separately.
Case 1: . If then and .

Otherwise, and it remains to show that
there exists a suitable . Consider

since . This implies that there exists suffi-
ciently large such that . Since is contin-
uous on , there exists an such that

. This is illustrated in Fig. 7.
Case 2: . Then

and hence

Moreover, as from above, .
Since is continuous for , there exists

such that , i.e., . The
same argument as in Case 1 shows that there exists
an with . Since is continuous on

, there exists where .
We now prove that is unique. The argument also shows that

over if and only if . First
note that may be negative. They key observation, illustrated in
Fig. 7, is that

1) for is negative, concave, and approaches
as from below;
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Fig. 7. �� ��� in (18) and ���� � �� ���� �� � ���.

2) for is positive, convex, attains its minimum at

and approaches as from above.
A moment of thought then convinces one that it suffices to

show that grows less rapidly than , i.e.,

(34)

Letting , we have

Since , if (34) is violated, the above implies that

which implies

which is a contradiction since and . Hence,
(34) must hold and if and only if whenever

.
Proof (Lemma 6): The first assertion follows directly from

the definitions of and in (10), (11) and (15), respec-
tively. We will prove the second assertion by induction on .

Base case : Fix any .
Consider an . By (13), . Now

Hence

If

then . Otherwise, . We claim
for all . If not, then

yielding , a contradiction. Hence, if , then
either or for all .

Induction hypothesis: Suppose the second assertion holds
for . We will prove it for .

Induction: Fix an . First note that . Con-
sider all links . By the induction hypothesis, either

or for all . For
an , we have from (10), for

where, from (17)

From (18), , and hence the
induction hypothesis implies that either or

. Lemma 5 then implies that, for each , there exists
a unique such that .
The minimum over is , and these
minimizing constitute . All the sources that go
through a link in are assigned the common rate , and
they are collected into .

Since and , the corresponding satisfies

(35a)

(35b)

However, for all . Hence (35)
and Lemma 5-2 (with )
imply that either or

. The proof is
completed by noting that , since

.

APPENDIX C
CORRECTNESS OF RATE ALGORITHM

To show the correctness of the algorithm in Section III-D to
find XCP’s equilibrium rates, it suffices to show that the results
satisfy the two conditions stated in Section III-B.

Each source is assigned a rate in the same step as a particular
link . If is chosen according to (24) with the true equilibrium
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values of and , then , since that is the condition
from which (24) was derived. Similarly, (24) implies , as
established in the proof of Theorem 6.

The correctness of the algorithm can thus be established by
showing that the true equilibrium values of and are used
when the final value is calculated in step 2.4.1. For each link ,
the values of and depend only on network parameters and
flows with rates , by Lemma 2-1. That is, if the rates
selected by the algorithm are such that the rate of each link
is greater than the rates of the flows flowing through but bot-
tlenecked elsewhere, then the rates must form an equilibrium of
XCP. The theorem then results from the following lemma.

Lemma 9: For each and for which is defined,
. Moreover, if , then for each and for

which is defined, .
Proof: Consider an arbitrary link, , and iteration, . If

does not carry any flows in , then
as required. Consider now the case that does carry a flow in

.
Let be the rate of flows allocated in iteration ,

normalized to link . Let and
. Then and are the fraction of allocated flows and

allocated capacity on link before step 2.4.1 of iteration , while
and are the values after the update, where

.
Let be the value of calculated from (27) using

and . Note that by Lemma 2-3, since .
Moreover, , since if then link would have
been an element of and would not be defined.
To prove the lemma, it is sufficient to show that and
that if then .

Below, the argument will be dropped when no ambiguity
can arise. Differentiating (27) with respect to , and noting that

is the larger of the two solutions of (27), gives

Now

giving

If , then , and remains greater than . This
is because , since and . This
establishes the second part of the lemma.

If , then the right-hand side need not be positive. How-
ever, the second factor is bounded, and so approaches expo-

nentially as increases, and so can never drop below . In par-
ticular, , which establishes the first part of the lemma.
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