
ar
X

iv
:m

at
h/

05
10

24
3v

2 
 [

m
at

h.
G

T
] 

 2
8 

O
ct

 2
00

5

Closed 3-braids are nearly fibred
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Abstract Ozsváth and Szabó conjectured that knot Floer homology de-
tects fibred links. We will verify this conjecture for closed 3-braids, by
classifying fibred closed 3-braids. In particular, given a nontrivial closed
3-braid, either it is fibred, or it differs from a fibred link by a half twist.
The proof uses Gabai’s method of disk decomposition.
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1 Introduction

Knot Floer homology was introduced by Ozsváth and Szabó [7], and indepen-
dently by Rasmussen [11]. The Euler characteristic of knot Floer homology
gives rise to the Alexander-Conway polynomial. Knot Floer homology contains
a lot of information about the knot or link. For example, it detects the genera
of classical links. Namely, we have the following theorem due to Ozsváth and
Szabó ([9], see also [5]).

Theorem Suppose L is an oriented link in S3 . Let χ(L) be the maximal

Euler characteristic of the Seifert surfaces bounded by L, and i(L) = |L|−χ(L)
2 ,

where |L| is the number of components of L. Then

i(L) = max{i|ĤFK(L, i) 6= 0}.

We always refer ĤFK(L, i(L)) as the topmost term in the knot Floer homology.

We say an oriented link L is fibred, if the complement of L fibers over the circle,
and L is the boundary of the fiber. We say the knot Floer homology of a link
is monic, if the topmost term is isomorphic to Z. Ozsváth and Szabó proved
that if the link is fibred, then the knot Floer homology is monic ([8], see also
[5]). Thus we naturally have the following conjecture (see [10]):

Conjecture 1.1 If a link in S3 has monic knot Floer homology, then it is a
fibred link.
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Not many interesting cases were tested for this conjecture. In the knot ta-
ble, there are exactly thirteen 12-crossing non-fibred knots, each of which has
monic Alexander polynomial, and degree of the Alexander polynomial precisely
gives the genus [2]. According to some unpublished computations done by Ras-
mussen, Ni and Juhász, these knots do not have monic knot Floer homology.
Moreover, the results in [6] give positive theoretical evidence to the conjecture.

In this paper, we will verify the conjecture for closed 3-braids. Our geometric
result is

Theorem 1.2 Suppose link L ∈ S3 is the closure of a 3-braid, then exactly
one of the following 3 cases happens:
i) L is the 3-component trivial link;
ii) L is fibred;
iii) L or its mirror image is the closure of a nondecreasing positive word P .
Moreover, either P is a power of one of a1, a2, a3 , or P is started with a1 and
ended with a3 . Hence in the corresponding braid diagram, after adding a half
twist, we get a fibred link.

The exact meaning of case iii) will become clear after Definition 2.2. Our
theorem, together with some simple computations of knot Floer homology, gives
the following

Corollary 1.3 A closed 3-braid is fibred if and only if it has monic knot Floer
homology.

Remark 1.4 Closed 3-braids were classified by Birman and Menasco as links
[1]. It is proved there that a generic closed 3-braid is represented by a unique
conjugacy class of 3-braids.

Remark 1.5 We are informed by Alexander Stoimenow that the classifica-
tion of fibred closed 3-braids has been obtained in [13], with the assistance of
Hirasawa and Murasugi.

The paper is organized as follows: In Section 2, we will compute the topmost
terms in the knot Floer homology of closed 3-braids. The computation uses a
result of Xu [14]. In Section 3, we apply Gabai’s method of disk decomposition
to prove Theorem 1.2.

Acknowledgements. We wish to thank David Gabai, András Juhász and
Zoltán Szabó for some helpful conversations. We also wish to thank Joan Bir-
man for some comments on the paper. We are especially grateful to Jacob
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Rasmussen, who pointed out a crucial mistake in an earlier version of this pa-
per, and to Xingru Zhang, from whose lecture the author learned Xu’s work on
3-braids.

The author is partially supported by the Centennial fellowship of the Graduate
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2 Knot Floer homology of closed 3-braids

In this section, we will compute the topmost terms in the knot Floer homology
of closed 3-braids. Although the result can be deduced from our main theorem,
the computation here has its own interest. And the computation motivates our
main theorem.

Of course, the computation becomes easier, if we already know what the genus
of a 3-braid is. Fortunately, this problem was solved by Xu [14]. In order to
explain her result, we need some preparation.

Notation 2.1 B3 denotes the group of 3-braids, σ1 and σ2 are the standard
generators of B3 . Instead of the standard presentation, we use three generators
a1 = σ1 , a2 = σ2 , a3 = σ2σ1σ

−1
2 , and the presentation

B3 =< a1, a2, a3|a2a1 = a3a2 = a1a3 > .

a1 = σ1 a2 = σ2 a3 = σ2σ1σ
−1
2

Figure 1 The generators of B3 .

The advantage of such presentation is, one can draw a1, a2, a3 cyclically on a
cylinder, thus we can permute the roles of a1, a2, a3 cyclically. The reader is
encouraged to figure this out by himself/herself.

If w ∈ B3 , then w̄ denotes its inverse. Let α = a2a1 = a3a2 = a1a3 . The
following relations will be useful to us:

aiāj = āi+1aj+1, α āi = ai+1, āiα = ai−1.
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Definition 2.2 Suppose P = aε1
· · · aεn

is a positive word. We say P is
nondecreasing if for each j ∈ {1, . . . , n − 1}, εj+1 = εj or εj + 1, where the
subscript for a is understood cyclically. P is strictly increasing, if for each
j ∈ {1, . . . , n − 1}, εj+1 = εj + 1.

Theorem 2.3 (P.J. Xu) Every conjugacy class in B3 can be represented by
a shortest word in a1, a2, a3 which is unique up to symmetries. The word has
one of the following forms:
i) αkP ;
ii) Nα−k ;
iii) NP .
Here k ≥ 0, N and P are nondecreasing positive words, P or N may be empty.

Moreover, the minimal Seifert surface of the corresponding closed braid can be
constructed from this word.

We briefly explain how to construct the Seifert surface from a word w . We first
resolve the braid to a 3-component trivial link, bounding 3 disjoint disks. Then
for each letter in w , one attaches a twisted band to connect two of the 3 disks.
This surface is called the Bennequin surface of the word w , denoted by Bw . It
has Euler characteristic 3 − l(w), where l(w) is the length of w .

From now on, we also use the word w to denote the corresponding 3-braid, if
there is no confusion. Xu’s theorem says that, for a shortest word w as above,
χ(w) = 3 − l(w).

Remark 2.4 If the subword aiai appears in w , one can replace it by a single
ai to get a new word w′ . The Bennequin surface of w is the plumbing of the
Bennequin surface of w′ with a Hopf band. It is easy to see the top terms in the
knot Floer homology of w and w′ are isomorphic as abelian groups. Moreover,
the closure of w′ is fibred if and only if the closure of w is fibred [3].

Given a reduced word w in Xu’s form, we can apply the previous “untwisting”
operation repeatedly, until we get a word also in Xu’s form, but now the N

and/or P are strictly increasing. We denote this new word by UT (w).

Theorem 2.5 Suppose L is the closure of a 3-braid w . w is in the form in
Theorem 2.3. We consider the word UT (w). If UT (w) is in the form of N or
P , and l(UT (w)) = 3t + 1 or 3t + 3, (t ≥ 0), then

ĤFK(L, i(L)) ∼= Z ⊕ Z.

In other cases, ĤFK(L) is monic, except when L is the 3-component trivial
link.
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We divide the theorem into several propositions.

Proposition 2.6 Suppose w = αkP is a word in Xu’s form, k > 0. L is the
closure of w , then L is fibred with fiber Bw . Here Bw is the Bennequin surface
of w .

Proof Suppose the first letter in P is a1 , then P = a1P
′ . w = αka1P

′ =
αk−1a2a1a1P

′ . Hence Bw is the plumbing of a Hopf band with the Bennequin
surface of αk−1a2a1P

′ = αkP ′ . By [3] we can reduce our problem to αkP ′ ,
hence to αk by induction. Our conclusion holds since αk is a torus link.

Lemma 2.7 L is in the form NP , 1 = l(N) ≤ l(P ), then ĤFK(L) is monic.

Proof We can assume N = ā2 . We will prove our result by induction on
l(P ). When l(P ) = 1, NP = ā2a1 or ā2a3 , hence L is the unknot. Now
assume l(P ) > 1, and P is strictly increasing.

If the last letter in P is a3 , then P can be written as P ′a1a2a3 . We have the
skein relation for

L− = ā2P
′a1a2a3, L0 = ā2P

′a1a3, L+ = ā2P
′a1ā2a3.

And we have ā2P
′a1a3 ∼ αā2P

′ = a3P
′ , (“∼” denotes conjugacy relation

in B3 ,) hence χ(L0) ≥ χ(L−) + 3. In the local picture of the skein rela-
tion, if the two strands in L− belong to the same component, then |L0| =
|L−| + 1, and i(L0) < i(L−); if the two strands in L− belong to different com-
ponents, then |L0| = |L−| − 1, and i(L0) + 1 < i(L−). In any case, using the

surgery exact triangle [7], we get an isomorphism between ĤFK(L−, i(L−))

and ĤFK(L+, i(L+)).

As for L+ , we have ā2P
′a1ā2a3 = ā2P

′a1a1ā2 ∼ ā2
2P

′a2
1 . As we already men-

tioned in Remark 2.4, its knot Floer homology at the top filtration level is the
same as the one of ā2P

′a1 , to which we can apply the induction hypothesis.

If the last letter in P is a1 , then P can be written as P ′a3a1 . We consider the
skein relation for

L− = ā2P
′a3a1, L0 = ā2P

′a3, L+ = ā2P
′a3ā1.

We have ā2P
′a3ā1 ∼ P ′a3ā1ā2 = P ′a3ᾱ = P ′ā1 . Length of P ′ā1 is less than

length of ā2P
′a3a1 , hence i(L+) < i(L−). We have χ(L0) = χ(L−) + 1. If the

two strands in L− belong to the same component, then |L0| = |L−| + 1, and
i(L0) = i(L−); if the two strands in L− belong to different components, then
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|L0| = |L−| − 1, and i(L0) = i(L−) − 1. In any case, we get an isomorphism

between ĤFK(L−, i(L−)) and ĤFK(L0, i(L0)). Now we apply the induction
hypothesis to L0 .

Proposition 2.8 If L is of the type NP , N and P are nonempty, then
ĤFK(L) is monic.

Proof We induct on l(N). The case when l(N) = 1 is the lemma above.
Now we assume l(N) ≥ 2, we can suppose the first letter in N is ā3 , then
N = ā3ā2N

′ .

If the last letter in P is a1 , P = P ′a1 . Then we consider the skein relation for

L− = a3ā2N
′P ′a1, L0 = ā2N

′P ′a1, L+ = ā3ā2N
′P ′a1.

We have a3ā2N
′P ′a1 ∼ a1a3ā2N

′P ′ = a3N
′P ′ . Same argument as before

shows that ĤFK(L0, i(L0)) ∼= ĤFK(L+, i(L+)). We then apply the induction
hypothesis to L0 .

If the last letter in P is a2 , P = P ′a2 . Consider the skein relation for

L− = a3ā2N
′P ′a2, L0 = ā2N

′P ′a2, L+ = ā3ā2N
′P ′a2.

L0 can be reduced to N ′P ′ , hence we get our conclusion as before, by applying
the induction hypothesis to L− = ā2N

′P ′a2a3 .

Proposition 2.9 If L is in the form P , P = (a1a2a3)
t or (a1a2a3)

ta1 , t ≥ 1.
Then

ĤFK(L, i(L)) ∼= Z ⊕ Z.

Proof Suppose P = (a1a2a3)
t , consider the skein relation for

L− = a2(a1a2a3)
t, L0 = (a1a2a3)

t, L+ = ā2(a1a2a3)
t.

L− can be rewritten as αP ′ , which was considered in Proposition 2.6, and L+

is of the type considered in Lemma 2.7. Then ĤFK(L0, i(L0)) is fit into the
exact triangle:

Z ✲ ĤFK(L0, i(L0))

Z

✻

✛
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By [5], ĤFK(L0, i(L0)) ⊗ Q is nontrivial. One then easily sees that

ĤFK(L0, i(L0)) ∼= Z ⊕ Z.

The case when P = (a1a2a3)
ta1 can be reduced to the previous one by Re-

mark 2.4.

Proof of Theorem 2.5 Our theorem now follows from Remark 2.4, Propo-
sition 2.6, Proposition 2.8 and Proposition 2.9.

Remark 2.10 With more care, one can get some information of the absolute
grading. For example, in Proposition 2.6, the topmost term lies at grading level
l(P ) + |L|−1

2 .

Remark 2.11 Our proof does not really need the fact that the Bennequin
surface of Xu’s word is the minimal Seifert surface. This fact can be proved
inductively by our argument.

Remark 2.12 During the course of this work, we noted the paper [12], in
which Stoimenow studied the skein polynomial of closed 3-braids, also using
Xu’s theorem. Our result here should be compared with Stoimenow’s work.

3 Proof of the main theorem

Lemma 3.1 Suppose w is a shortest word for L, w is not necessarily in Xu’s
form. If the array ā1a3a1a2 appears in w , then we can replace the array by
ā1a2 , thus get a new word w′ , with closure L′ . Then L is fibred with fiber Bw ,
if and only if L′ is fibred with fiber Bw′ .

Proof We draw the local picture of the closed braid near the array ā1a3a1a2

as in Figure 2a. We leave the reader to figure out the local Bennequin surface.
As in [4], we thicken Bw to a sutured manifold Bw×I , and consider its comple-
mentary sutured manifold. In Figure 2b, we draw the suture (as curves) on the
boundary of the handlebody Bw × I . There is an obvious product disk in the
complementary sutured manifold, namely, the disk bounded by the dashdotted
rectangle specified in Figure 2b.
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Figure 2a Figure 2b

Figure 3a Figure 3b

D2

We decompose the complementary sutured manifold along the product disk,
thus get Figure 3a. After an isotopy, we get Figure 3b, where the product disk
D2 is clearer.

Now decompose the complementary sutured manifold in Figure 3b, thus get
Figure 4a. After an isotopy, we get Figure 4b, which is just the local picture of
a Bennequin surface near the array ā1a2 .

Our conclusion holds by Lemma 2.2 in [4].
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Figure 4a Figure 4b

Lemma 3.2 Suppose w is a shortest word for L, w is not necessarily in Xu’s
form. If the array ā1a2a3a1a2 appears in w , then we can replace the array by
ā1a2 , thus get a new word w′ , with closure L′ . Then L is fibred with fiber Bw ,
if and only if L′ is fibred with fiber Bw′ .

Proof We note that the algebraic relation

· · · ā1a2 · · · = · · · a3ā1 · · ·

also gives a local isotopy of the Bennequin surfaces. We have ā1a2a3a1a2 =
a3ā1a3a1a2 . By Lemma 3.1, we can replace a3ā1a3a1a2 by a3ā1a2 . Now
a3ā1a2 = ā1a

2
2 , we get our conclusion by Remark 2.4.

Proposition 3.3 Suppose w = NP is a shortest word in Xu’s form for L.
l(N), l(P ) > 0. Then L is fibred with fiber Bw .

Proof Without loss of generality, can assume N,P are strictly increasing, and
the last letter in N is ā1 . By Lemma 3.1 and Lemma 3.2, we can replace P

by one of the following words: a3, a3a1, a2, a2a3, a2a3a1 . Then consider P N .
By cyclically permuted versions of Lemma 3.1 and Lemma 3.2, we can replace
N by a word with length ≤ 3. Now there are only finitely many cases for
NP we need to consider. (We note that NP should be cyclically reduced,
this restriction also reduces the cases.) For these cases, we verify our theorem
directly.
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Proof of Theorem 1.2 By Proposition 2.6, Proposition 3.3, we only need to
consider the case that w = P , P is strictly increasing. The case that l(P ) ≤ 1
is easy. If l(P ) = 3t+2, (t ≥ 0,) then it is conjugated to the form in Proposition
2.6. If l(P ) = 3t + 3 or l(P ) = 3t + 4 (t ≥ 0), then one can conjugate the
word so that it is started with a1 and ended with a3 . Now a2P is fibred by
Proposition 2.6.
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[9] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8
(2004), 311–334 (electronic)
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