Quantum noise and dynamics in quantum well and quantum wire lasers
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We calculate the relaxation oscillation corner frequency £, and the linewidth enhancement factor
a for both a quantum well and a quantum wire semiconductor laser. A comparison of the results
to those of a conventional double heterostructure device indicates that f, can be enhanced by 2 X
in the quantum well case and 3 X in the quantum wire case while « is reduced in both cases.

The application of semiconductor lasers in optical com-
munication systems requires both broad band modulation
-and low noise characteristics. Two important parameters
which determine, in part, such properties are the relaxation
oscillation corner frequency f,, which sets the useful direct
modulation bandwidth,' and the linewidth enhancement
factor a (or amplitude phase coupling factor), which deter-
mines the relation of AM to FM modulation indices’ as well
as the degree to which spectral purity is degraded by the
amplitude phase coupling.*® Although these properties
have received considerable attention both theoretically and
experimentally for conventional devices (i.e., three-dimen-
sional active layer; 3D AL), little effort has been directed
towards measurement or calculation of these properties in
lasers with one-or two-dimensional active layers (Burt’ has
recently considered @ in a quantum well laser. Our result for
this case is included here for completeness.) In this letter, we
will calculate these parameters for both a quantum well (2D
AL)and a quantum wire (1D AL) semiconductor laser.® The
results indicate that modulation performance can be signifi-
cantly improved (f, enhanced) with simultaneous reduction
of phase noise and parasitic FM (a reduced) as compared to

conventional devices.

The expressions for f, and « are of the form"®
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where P, w, 7 are the photon density, frequency, and passive
cavity lifetime of the lasing mode; ., is the nonresonant val-
ue of the refractive index; n is the carrier density. yz(n) and
x(n) are the real and imaginary parts of the complex suscep-
tibilities of the active medium. Their derivatives with respect
to the carrier density are given, respectively, by’
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where E, and T, are the lasing photon energy and the colli-
sional broadening time due to carrier-carrier and carrier-
phonon interaction, g(n,E) is the gain envelope function
which is given by

gnE)=CMp, 4 [f.(n.E)—f,(nE)], (5)
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where p,., is the reduced density of states, £.{f,) is the con-
duction band (valence band) state occupation (Fermi) func-
tion which is a function of carrier concentration n through
the quasi-Fermi energy, M is the square of the dipole matrix
element, and C contains constants which are independent of
the active layer geometry and material properties. All geom-
etry dependences in f, and « enter mainly through the gain
envelope dependence of y, (#) and y,(n). In the gain envelope
function g(n,E ) the geometry dependent factors are the re-
duced density of states p,.4 and the matrix element M. Note
that p,.., and M should be calculated for each subband then
summed up when the system has subband structures.

In a quantum well structure, having well width L, and
sufficient number of high barrier layers, the reduced density
of states with respect to heavy (or light) holes in the /,,, sub-
band is expressed as follows'?:

* 2 P \2
pualE) =~ —H | E = ()] ©
Th°L, 2mr\ L,
where m* (j = [,h ) is the reduced mass with respect to heavy
holes (4 }or light holes (/) and H (E )is the Heaviside function.
In conventional double heterostructures, the value of M can
be determined from Kane’s model.'! In the case of GaAs,
M = 1.33mE, (=M,), where m,is the electron mass and E,
is the band-gap energy. In the three-dimensional bulk crystal
the interaction between light and electrons is considered to
be approximately isotropic. In a quantum well structure,
however, the interaction between light and electrons is noni-
sotropic, owing to the discreteness of the electronic wave
number normal to the active layer. Hence, M depends on the
polarization direction of the light. In fact, the dependence of
gain on polarization direction has been observed; the gain of
the TE mode is observed to be about 2 X larger than that for
the TM mode.'” The TE mode M of the optical transitions
between electrons and heavy holes in the 7, subband, calcu-
lated for a quantum well using Kane’s model considering
only k-conservative transition, is given by'?

M:i[l + L7 (L’)]M )
4 E 2my \L,

Form this equation M is about 1.5 M,, at near equivalent
band edge.

Figure 1 shows the differential gain envelope g'(n,E)
[i.e.,dg(n,E)/dn]inaGaAs/Ga, ; Al, ; Asmultiple quantum
well laser with L, = 100 A (we call this laser as a quantum
well laser for simplicity, hereafter) and a GaAs double het-
erostructure (DH) laser when the peak gain is taken equal to
a total loss of 100 cm ~ '. The number of quantum wells and
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FIG. 1. Differential gain envelope g'(n,E) of a DH laser, a quantum well
laser, and a quantum wire laser under the condition that peak gain is equal

to 100 cm ™ '. The lasing photon energy (i.., the location of peak gain) E,,
¥:(E) and y.(E) are also illustrated.

the thickness of the barrier layers are determined so that the
optical confinement factor is the same as that of the DH
laser. E, indicates the lasing photon energy (i.e., the location
of peak gain). The functions
E) = /T [(E — E\) + #/T>f] and
{r(E)=(E—E)/[|E — E,J’ + (#/T,)*] which appear in
Egs. (3) and (4) are also illustrated (E| is set at £, + 100 meV
and T, is assumed to be 0.2 ps). For simplicity the contribu-
tion of the light hole to g'(n,E ) is neglected in this figure. The
g'(n,F)inaGaAs/Ga,  Al, ; As multiple quantum wire laser
whose quantum dimensions (L, and L ) are equal to 100 Ais
also included for later discussion (we call this laser a quan-
tum wire laser for simplicity, hereafter). £, and a involve
quantities which are convolutions of g'(n,E ) and ¥, and yx.
The curves in Fig. 1 show g'(n,E ) to be non-negative at all
energies. Therefore, all contributions to dy,/dn will be non-
negative. Hence the numerator of Eq. (1) and denominator of
Eq. (2) in a quantum well laser increase compared with that
ofa DH laser owing to the large ¢’(n,E )as shown in Fig. 1. As
aresult, increases in f, over conventional values are expected
for the quantum well case. Contributions to dyg/dn [the
numerator of Eq. (2)], however, will be positive for transi-
tions above E, and negative for transitions below E, because
©/(E) is negative below E,. Therefore, the asymmetry of
g'(n,E ) about E, is reflected in the size and sign of ¢. Since E,
of quantum well laser is near equivalent band gap, the asym-
metry of g'(n,E') is large, leading to an increase of dy /dn.
Hence both numerator and denominator in Eq. (2) increase
in a quantum well laser, which makes it difficult to deter-
mine, without a numerical calculation, whether « is reduced
or increased in a quantum well laser. Note that the position
of E, is a little higher than the equivalent band gap owing to
the energy broadening effects (the finite value of 77,), which
relaxes the asymmetric contribution of g'(n,E ).

Figure 2 shows the calculated results of a and f, as a
function of well width L, in GaAs. In this calculation, the
maximum internal gain which is necessary for laser oscilla-
tion is assumed to be 100 cm~'. The broken line gives the
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FIG. 2. a and f; of a quantum well laser as a function of well width L.

values for a conventional DH laser. In the calculation of f,
we have assumed 7 = 2.6 ps, T, = 0.2 ps,and P = 3.8 X 10"}
cm >, As shown in the figure, it should be possible to double
J, inaquantum well over its value in conventional {3D) lasers
using L, < 80 A. For the range of L,, a is also reduced. This
latter result was also found by Burt,” who, however, did not
estimate the value of @ at E|. It should be noted that  also
contains a free-carrier plasma dispersion contribution which
we have neglected in this calculation.

Next, we discuss the possibility of the further improve-
ment in f, and @ in quantum wire structures, in which the
electrons are confined in both transverse dimensions. We
consider a quantum wire structure whose quantum dimen-
sions are L, and L . In this case the reduced density of states
with respect to electrons and heavy (or light) holes in the (/,k )
subband is*

, _ (2m}p)l/2 1
“o\w /) wLL,

1
X .
VIE —#7/2m*[(i/L,)* + (k /L,)*])

On the other hand, we found that M of the transition for (i,k )
sideband is maximum when the polarization of the electrical
field is parallel with the quantum wire direction. The expres-
sion of M of the transition between electrons and heavy holes
in this case is given by

_(LEP Y, (A
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E 2m¥

This equation indicates that M is nearly 1.5 M,, at equivalent
band-gap edge. Even though the value of M is nearly equal to
the M of the quantum well laser, increases ing’(n,E ), dueto a
narrower spectral distribution of electronic states as shown
in Fig. 2, lead to improvement over the quantum well case.
Figure 3 shows the calculated values for £, and a as function
of L,( = L,). These results indicate that f, can be made about
three times larger than that of a DH laser and a can be
substantially reduced. Thus, the calculated results suggest
that a quantum wire structure should prove effective for im-
proving the quantum noise characteristics and dynamics.

(8)
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FIG. 3. a and f; of a quantum wire laser as a function of well width L.

These effects can be demonstrated using high magnetic fields
as discussed in a separate paper.'*

In conclusion, we have considered the noise character-
istics and dynamics in quantum well and quantum wire sem-
iconductor lasers by calculating the relaxation oscillation
corner frequency and the linewidth enhancement factor.
The results indicate that f, can be doubled with a concomi-
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tant reduction of @ in quantum well structures. In the quan-
tum wire lasers, f, can be enhanced by 3 X with further re-
duction of a. It is thus expected that realization of quantum
wire lasers would lead to significant improvements in dy-
namic and spectral properties over conventional devices.
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