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Pole Assignment With Improved Control Performance
by Means of Periodic Feedback

Javad Lavaei, Somayeh Sojoudi, and Amir G. Aghdam

Abstract—This technical note is concerned with the pole placement of
continuous-time linear time-invariant (LTI) systems by means of LQ sub-
optimal periodic feedback. It is well-known that there exist infinitely many
generalized sampled-data hold functions (GSHF) for any controllable LTI
system to place the modes of its discrete-time equivalent model at pre-
scribed locations. Among all such GSHFs, this technical note aims to find
the one which also minimizes a given LQ performance index. To this end,
the GSHF being sought is written as the sum of a particular GSHF and
a homogeneous one. The particular GSHF can be readily obtained using
the conventional pole-placement techniques. The homogeneous GSHF, on
the other hand, is expressed as a linear combination of a finite number
of functions such as polynomials, sinusoidals, etc. The problem of finding
the optimal coefficients of this linear combination is then formulated as a
linear matrix inequality (LMI) optimization. The procedure is illustrated
by a numerical example.

Index Terms—Generalized sampled-data hold functions (GSHF), linear
matrix inequality (LMI), linear time-invariant (LTI), linear time-varying
(LTYV), zero-order hold (ZOH).

I. INTRODUCTION

Sampled-data control system design has been the subject of ongoing
research activity in the literature in the past few decades. Discrete-time
controllers are used in a broad range of applications such as robotics,
autopilot, radar systems, etc., due mainly to their simple implementa-
tion, good performance and high accuracy. Various methods have been
proposed in the literature for the analysis and synthesis of discrete-time
control systems [1]-[5].

A typical discrete-time controller for a continuous-time system
consists of a sampler, a digital processing unit, and a zero-order hold
(ZOH). The processing unit’s function may include, for instance,
a Luenberger observer together with a linear time-invariant (LTI)
discrete-time state feedback. The overall control operator (including
sampler, processor and ZOH), however, acts as a linear time-varying
(LTV) law for the original continuous-time system. It is noteworthy
that the problem of output feedback stabilization by means of periodic
controllers has been extensively studied for both discrete-time systems
[6] and continuous-time systems [7], [8].

The idea of employing generalized sampled-data hold functions
(GSHF) in lieu of ordinary ZOHs can be traced back to the papers
[9], [10]. Several properties of GSHFs such as robustness and noise
rejection were studied in [11], where it was shown that not only does
a GSHF have a simple structure, but it also acts as a state feedback
control without requiring a state estimator. Furthermore, it is known
that GSHFs are very effective in simultaneous stabilization of LTI
systems [12], [13]. The implementation of a GSHF is rather simple,
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requiring only a memory device (for storing the GSHF over one
period) and a simple processor (for multiplication). Nonetheless, the
design of a desirable GSHF may be a formidable job. To be more
precise, the design of an LQ optimal GSHF constitutes a two-boundary
point differential equation, for which no tractable systematic method
is known to date [14]. To circumvent this problem, a novel technique
was proposed in [15] to attain a near-optimal GSHF, by converting the
infinite-dimensional working space to a finite-dimensional one. This
was carried out by expressing the GSHF as a linear combination of
some prescribed functions. The technique provided in [15] was further
developed in [13] to find a locally optimal GSHF by solving a linear
matrix inequality (LMI) problem, iteratively.

GSHFs are also known to be very effective in decentralized con-
trol of interconnected systems. In fact, a system that is not stabilizable
with respect to LTI decentralized controllers may be stabilized via a
proper decentralized GSHF [16]. Furthermore, it was shown in [17]
that GSHFs outperform conventional LTI controllers, for a certain class
of decentralized control systems.

This technical note deals with pole placement for continuous-time
LTI systems using LQ suboptimal GSHFs. In general, there exist in-
finitely many GSHFs satisfying the pole-placement requirement in the
discrete-time domain [11]; each one of them, however, has a distinct
intersample ripple effect. Thus, it is desired to find a GSHF which min-
imizes the intersample ripple, while it places the modes of the closed-
loop discrete-time equivalent model at prescribed locations. To this
end, a continuous-time quadratic cost function is defined to evaluate the
performance of the closed-loop system. The technique provided in [15]
is then adopted to map a given set of functions, referred to as the char-
acterizing functions, into a new set. Given a particular GSHF achieving
the pole-placement property, it is shown that adding any linear combi-
nation of the functions in the new set to this GSHF would not change the
location of the closed-loop modes in the discrete-time domain. How-
ever, proper adjustment of the coefficients of this linear combination
can improve the overall performance of the closed-loop system in the
continuous-time domain. The problem of finding the optimal set of co-
efficients is formulated as an LMI optimization, the solution of which
leads to the globally optimal GSHF with respect to the given set of char-
acterizing functions. The results obtained in this work can be general-
ized to design a structurally constrained (e.g., decentralized) GSHF.

The plan of the technical note is as follows. Some preliminary results
are presented in Section II, followed by the problem formulation. The
main results of this work are given in Section III. A practical example
is then provided in Section IV. Finally, some concluding remarks are
drawn in Section V.

Notation: Throughout this technical note, the sets of real, integer
and natural numbers are denoted by R, Z and N, respectively.

II. PRELIMINARIES

Consider an LTI system S with the following state-space represen-
tation:

#(t) = Ax(t) + Bu(t)
y(t) = Ca(t) )

where z(t) € R", u(t) € R™ and y(¢) € R" are the state, input and
output of the system, respectively. Assume that the pair (A, B) is con-
trollable and that the pair (A, C') is observable. Suppose also that the
initial state :(0) is a random variable with zero mean and the covari-
ance matrix Xo. Consider a desirable set of modes {\, A2,..., A } in
the Laplace domain, along with a sam}pling period h. Let these modes
be mapped to the locations e*1" ¢*2" . e*»" in the z-plane. The
goal is to design a discrete-time controller in the form of a general-
ized sampled-data hold function (GSHF) to place the modes of the dis-
crete-time equivalent model at eMh g2k o eAnh while the inter-
sample ripple effect in the original system is minimized. The control
law being designed has the following form:

uw(t) = F(t — rh)ylr], wh<t<(k+1)h, K€EZ (2)
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where F(t) is the GSHF to be obtained, which is periodic with the
period h. Note that the discrete argument corresponding to the samples
of any continuous-time signal is enclosed in brackets throughout this
technical note; e.g., y[x] := y(xh). In the special case when F'(t) is
equal to 1, the controller (2) turns out to be a simple zero-order hold
(ZOH).

It is well-known that the state of the system S under the controller
(2) is governed by the equation given below

t

a(t) = [eTmA 4 /c(t_T)ABF(T — kh)Cdr | z[k]  (3)
r:h

for all x and ¢ such that

kh<t<(k+1)h, k€L “)
Consequently, one can write:
zlk+1] = Agz[k], K€L ®)
where
h,‘
Ag=[e" 4 / e "IABF(r)Cdr (6)

0

If F'(t) is designed in such a way that the eigenvalues of the matrix Ay
are placed at e e*2" . ¢*n" then the system response at the
sampling instants 0, h, 2k, ... decays as if the modes of the original
continuous-time system were placed at Aq, Ao, ..., A,. This signifies
that for an appropriate choice of the sampling period /, the pole-place-
ment problem for the continuous-time system S can be translated anal-
ogously to that for the discrete-time equivalent model with the matrix
Ay, as noted above.

Assume that the sampling period % is not pathological [1] (it is to
be noted that in any compact interval in the one-dimensional space,
only a finite number of sampling periods are pathological). Since the
pair (A, C)) is observable, it follows from [1] that the pair (¢"*,C)
is observable as well. Find a gain L for which the eigenvalues of the
matrix ¢ + LC are equal to the desirable values Mo et
Now, solve the equation

h
/C(h_T)ABF(T)dT =L

0

@)

for the variable F'(¢). One solution of this equation, denoted by Fy (¢),
can be obtained as follows [11]:

Fo(t)y = BT =04 w'L (8)

where W_ is the controllability Gramian associated with the control-
lable pair (A, B) over the interval [0, k), i.e.:
h

W. = /e(h*T)ABBTe(hfr)ATdT.

0

&)

It is easy to argue that (7) has infinitely many solutions (recall that even
the classical pole-assignment via conventional state-feedback control
does not necessarily have a unique solution for multi-input multi-output
systems). This question will be addressed in the next section.

III. MAIN RESULTS

Corresponding to each initial state x(0), define the following
quadratic performance index:
J(2(0)) = / (x(t)TQ:L(t) + u(t)TRu(t)) dt

0

(10)

where () and R are given positive semi-definite and positive definite
matrices, respectively. Since the initial state of the system is a random
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variable, define .J as £{.J(x(0))}, in which £{-} denotes the expecta-
tion operator. The objective here is to find a GSHF F'(¢) to achieve the
following:

i) the pole-placement requirement as given by (7);

ii) the optimal performance index .J for the system S.

As substantiated in [14], finding a GSHF F'(t) to address only criterion
(ii) involves solving a two-boundary point differential equation. Since
the corresponding problem is computationally cumbersome, a method
is proposed in [13] to design a GSHF which is only (locally) optimal
with respect to a given set of basis functions, using an LMI formulation.
This technique will be exploited in the present work to address both
criteria discussed above.

Consider a given set of scalar real-valued functions {(; ()}, re-
ferred to as characterizing functions, which are linearly independent
over the field of real numbers. Denote the distinct eigenvalues of A
withoy,02,...,0p, and assume that the multiplicity of o; as an eigen-
value of A is equal to «v;, i € {1,...,p}. Create a column vector

V(¢) consisting of n scalar functions t#~'e~7¢ Vi € {1,...,p},
vj € {1,...,«;}. Define now
h
r= [Vola® o -l
0
h
T = /V(t)gm(t)dt, Vi e N. an

0

Assumption 1: The matrix I' is nonsingular.

Note that the above assumption can always be met by a proper
choice of the characterizing functions {¢;(t)}: ,. Introduce the
following functions:

(1) :=—[G(1)  C(1)
where ¢ € N.

Lemma 1: The functions {&(t)} 2,
the field of real numbers.

Proof: The proof is an immediate consequence of the observa-
tions given below:

* For every integer ¢ > 1, the function & (¢) contains a term
Cn+i(t) which does not exist in any of its prior functions
Ei(t),&2(), ..., &im (t).

» {¢(t)};2, are linearly independent over reals. [ |

Theorem 1: Let f(t) be a linear combination of the functions
{&(t)};2,. For any arbitrary matrix N € R™*", the GSHF
F(t) Fo(t) + f(t)N places the modes of the system S at
{eM .., e* "] in the discrete-time domain.

Proof: One can write
h

[ v

0

grt(t)] 1—711—; + Cn-‘ri (f) (12)

are linearly independent over

h

[v6wa

0

h

- /V(t)[CI(t) G(t)

0

G(®]dt | 07T,

h
==Lt [V (0t =0 (13)
Q
or equivalently
h
/rf*le*"”g,,(r)df =0 (14)
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for all integers 7, ¢ and j satisfying

neN, 1€{l,... jJe{L ..., ai}. (15)

D}

Using the Cayley—Hamilton theorem, one can conclude from the above
equation that

h

/ c(hf’—)ABEn (r)dr =0, VnéeN.

0

16)

Thus:

h

/c("'_T)AB]‘T(t)dT =0.

0

a7

Given the above relation, the proof results from the discussion fol-
lowing (7). |

Consider an arbitrary positive integer g. According to Theorem 1,
the GSHF

Fo(t) + Gi&i(t) + Ga&o () + -+ + Gy (1) (18)

places the modes of the discrete-time equivalent model at the desired
locations e*1", e*2"__ e*n® for any arbitrary m x r real matrices
G1,Ga,. .., G4. Animportant implication of this result is that no con-
straints have been imposed on the matrices G'1, G, ..., (4. Define
now

H(f) = [El(t)lﬂl 52 (f)[m
7
G = [G{ Gl ... GqT]
where I, is the m x m identity matrix. The objective is to find the
matrices G, . . ., G, such that the performance index J corresponding

to the system S under the GSHF Fy (#) + I1(#)G is minimized. To this
end, a number of matrices are defined in the sequel

Ea(t) Im]
19)

i

&1 (1) ::e,tA—i—/(6(177)‘4BF0(T)C) dr, (20a)
t‘ ’
By (t) = / (N*”“‘BH(T)) dr, (20b)
Oh‘
By = / (@l(t)'l'cgq)l(t)) dt
0 h.
+ / (CTFo(t)TRFO(t)C) dt, (20¢)
h.U
B, = (<I>1(t)TQtI)2(t)) dt
’ h
T / (CTFO(t)TRH(t)) dt, (20d)
hD
By = /(@z(t)'Tchz(t)) dt
3
h
+/(H(t)TRH(t)) dt, (20¢)
2
=" 4+ LC, (20f)
P =P34+ P,GCH(R,GO) +CTGTR,GC. (209
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Theorem 2: The optimal matrix G' minimizing the performance

index .JJ can be obtained by solving the following optimization
problem:

min trace( K Xo)
K.G

it {—K +@

'K
K } <0. 1)

-K

Proof: Using (3), one can show that the performance index cor-
responding to the system S under a stabilizing GSHF Fy(t) + II(¢)G
can be written as

o /(DR
J(2(0)) = Z / (;l,»T (t)Qu(t) + o (t)Ru(t)) dt

k=0 Hh

i (:L'T [H]@J[h])

k=0

oo

70)Y (@“Tci@“) (0).

k=0

(22)

Therefore
J=&{Jz0)} =& {ar(O)TK;B(O)}

=& {trace (K;L‘(()):L’((])T)} = trace(K Xo) (23)

where K is the solution of the following Lyapunov equation:

PTKd+P— K =0. (24)
It is known that the closed-loop stability condition and the above
equation can be concurrently replaced by the inequalities X' > 0 and
®TK® + ® — K < 0 in the underlying optimization problem (see
Lemma 2 in [18] for a detailed discussion on this point). The proof
results from applying the Schur complement formula to these two
inequalities. |
Problem 1: Consider the following LMI optimization problem:

I{}ig trace( A Xo) (25)
subject to :
LK 4 by + B.GC + (0,GC)T dTK CTGT®?
Ko -K 0 <0.
:GC 0 -1
(26)

Denote a minimizer of this convex optimization with (K™, G™).

Remark 1: It is important to note that the matrix ®5 in (20e) is
positive semi-definite; therefore, its square root exists.

Theorem 3: Among the GSHFs of the form Fy(t) + II(#+)G
(which place the modes of the discrete-time equivalent model at
eMh M2k e*nP) the one that minimizes the performance index
Jis Fo(t) + (1) G*.

Proof: Observe that

K® -K 0
—K 4+ &3+ 3,GC + (3,.GO)YY 'K

+ . .

Ko —K

_K D Ty Al g 1
{ K+o & Ix}:{c Gq}q{q’éGC 0}

} . Q@7

The proof follows by applying the Schur complement formula to the
above equation, and using the result of Theorem 2. |
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Designing an LQ optimal GSHF in the form of a linear combination
of a given set of functions is formulated in [13] as an iterative LMI, due
to its nonconvexity in general. In contrast, it is shown in this technical
note that if the elements of this set (i.e. &, ¢ € N) are related to each
other in such a way that a pole-placement condition is met, then the
underlying optimization can be recast as an LMI problem.

Remark 2: 1t is straightforward to show that the matrix 44 given in
(6) is the same for both GSHFs Fy(¢) and Fy(t) + II(¢#)G. Hence, (5)
yields that the state of the system S under both GSHFs is the same at
the sampling instants, but the corresponding inputs are different at the
sampling times unless &1 (0) = --- = £,(0) = 0.

Remark 3: Designing a structurally constrained GSHF to achieve
the pole-placement objective is discussed in [12], and a formula analo-
gous to (8) is presented therein to attain the desired GSHF. The method
provided here can be employed to improve the performance of the cor-
responding structurally constrained GSHF while maintaining the de-
sired locations for the closed-loop modes. It is to be noted that in the
case when F'(t) is required to be a constrained matrix (e.g., a block-di-
agonal matrix representing a decentralized control structure), certain
entries of G in Problem 1 must be set to zero.

IV. NUMERICAL EXAMPLE

Consider the problem of controlling the planar motion of two un-
manned aerial vehicles (UAVs) in a leader-follower formation. Let the
vehicles be labeled as UAV 1 (leader) and UAV 2 (follower). The goal
is to fly the UAVs at a constant velocity vo with the relative distance
vector dg. To this end, one can write the following equation of motion
for UAV i (i =1, 2):

X507 [ulbeos(wat)] [0 0

Yi(t) v (1) sin (i (t)) 0 0| [ait)

bt | = 0 ol o] e
i (t) 0 10

where X (), Yi(t), ¥:(t), vi(t), a; (t) and w;(t) denote the horizontal
coordinates, vertical coordinates, heading angle, speed, acceleration
and angular velocity of UAV i, respectively (see [19] or [20] for the
detailed derivation of the equations presented in this example). So long
as v;(t) is bounded away from zero, a proper change of variables can
be used to rewrite the equation of motion in the following form:

57T [0 L] [z 021
Lé(t)} - {02 02] Lé(t)} + {IJ i @9
where ()2 represents the 2 X 2 zero matrix, and
iy Xi(t) i vi(t) cos (’L[u(t))]
s(t) = |:Yi(t) ] » at) = {vi(f)sin(wi(f)) ’
S = | @ (t) cos (¢ () — vi(t)wi(t) sin (’L[fi(t))]
(t) |:ai () sin (v; () + vi(H)w; (t) cos (¢ (1)) | 30)

In order to write the formation model in relative coordinates, define
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(a) (b)

Fig. 1. (a) Trajectories of the UAVs under the initial GSHF; (b) the relative
distance between the UAVs.

It is easy to verify that

02 02 02 I2 02
.Z‘(t) = I2 02 —IQ ;l'(f) + 02 02 ’ll(t). (32)
02 02 02 02 I
Let the output of the above system be
|02 I 02 ,
=[5 o 5l 33)

Denote the i-th entry of (¢) and the j-th entry of w(¢) with z,(¢) and
u;(t), respectively, for every i € {1,...,6}andj € {1,...,4}.Itis
worth noting that:

o (x1(t), z2(t)) is the velocity vector of UAV 1 minus the desired

velocity vo.

o (x3(t),24(t)) is the distance between UAV 1 and UAV 2 minus

the desired relative distance do.

o (w5(t),ws(t)) is the velocity vector of UAV 2 minus the desired

velocity vo.

Using the above formulation, the formation flying problem posed in
this example reduces to designing a stabilizing controller for the system
governed by (32) and (33). A periodic feedback will be contrived in
the sequel to achieve this end. Assume that h = 1sec,do = 0, vo =
[2 2]", and that the modes of the discrete-time equivalent model are
desired to be placed at {0.550, 0.551, 0.552, 0.553, 0.554, 0.555} (this
is, in fact, a simple rendezvous problem). A particular GSHF satisfying
the pole-placement constraint can be obtained using (8) as the one given
in (34), shown at the bottom of the page.

The trajectories of the UAVs under the initial GSHF are plotted in
the 2-D plane in Fig. 1(a) for the first 10 s of the flight. Moreover, the
relative distance between UAV 1 and UAV 2 is depicted in Fig. 1(b).
These figures demonstrate that the distance between the UAVs gradu-
ally decreases. To improve the performance of this control system, it
is desired to design a cheap control optimal GSHF. Suppose that the
initial state #(0) is a random variable with zero mean and identity co-
variance. Choose R = 10~ *L, and Q = diag(0,0,4,4,0,0), which
imply that there is almost no constraint on the control effort and only
the relative distances in the 2 and y directions are to be regulated.

Consider the basis functions i () = e_(t/ko), k € N. The function
&1(t) can be computed using (12), on noting that

2 (1) = vo u'(t) I™'Ty=[1.840 —8.126x 10" 2.051 x 1072
x(t) = | 21(t) — 21 (t) — do u(t) == ['uz(f)} . (€2)) = e s _3 i o

z%(t) — vy ‘ —1.714 x 10> 1.714 x 10> 1.187x 107 ']". (35)

_%gg y %t 6231 0 5979 - ]20607010 - %t 789 0 831
Fo(t) = 0 2500 T 12507 0 —32500 T 50007 (34)

0 = 2477 951, 0 _ 1789 201, 0
1000 ~ 200" 6251 5070 10000 ~ 2500 6 as1
0 3500 — 12500 0 ~ 5000 — 5000°
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Fig.2. (a)Trajectories of the UAVs under the suboptimal GSHF; (b) the relative
distance between the UAVs.

According to Theorem 1, the GSHF F'(t) = Fy(t) + G1&:1(¢) satisfies
the pole-placement requirement for every arbitrary matrix GG of ap-
propriate dimension. One can solve Problem 1 in order to find a matrix
that minimizes the performance index .J. This leads to

199.137 0 —-1.372 0
. 0 198.763 0 —2.837
G = —199.137 0 1.3724 0 (36)
0 —198.763 0 2.837

The performance index .J corresponding to the particular GSHF Fy ()
and the suboptimal GSHF Fy (t) + G1 & (1) is equal to 66.3 and 25.3,
respectively. This means that adding only one function (g = 1) to the
initial GSHF Fu(¢) improves the performance of the system by about
62%. For the sake of simulation, consider the following deterministic
initial state:

z(0)=[1 0 1 1 0 1. (37)
The trajectories of UAVs 1 and 2 under the suboptimal GSHF are
sketched in the 2-D plane in Fig. 2(a) for the first 10 sec of the flight.
In addition, the relative distance between the UAVs is provided in
Fig. 2(b). By comparing Fig. 2(b) with Fig. 1(b), one can observe that
under the suboptimal GSHF, the UAVs fly very close to each other
most of the time, whereas the initial (particular) GSHF reduces the
distance between the UAVs slowly (notice that the L, norm of the
relative distance given in Fig. 2(b) is much smaller than that of the
one in Fig. 1(b)). As shown in Figs. 1(a) and 2(a), this is achieved
by forcing the UAVs to follow some oscillatory paths. Note that the
input energy of the optimal control system in the transient period [0,
10] is about five times greater than that of the initial control system
(because in the cheap control problem the input energy is not taken
into account). Hence, the suboptimal GSHF designed using the method
proposed in the present work reduces the relative distance between the
UAVs by about 62% in average (in the LQ sense specified earlier), at
the cost of exerting more input energy.

V. CONCLUSION

This work tackles the problem of designing a suboptimal general-
ized sampled-data hold function (GSHF) which places the modes of
the discrete-time equivalent model of a given continuous-time linear
time-invariant (LTI) system in the desired locations. Given a control-
lable continuous-time LTI system, there exist infinitely many GSHFs
to assign the closed-loop poles of the discrete-time equivalent model in
prescribed locations. In order to find a GSHF in the above-mentioned
infinite set which yields an optimal LQ performance with respect to a
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certain subset of this infinite set, the underlying hold function is ex-
pressed as the sum of two functions: the particular GSHF and the ho-
mogeneous GSHF. It is straightforward to design the particular GSHF
using existing techniques. The homogeneous GSHF, on the other hand,
is parameterized systematically using a given set of so-called character-
izing functions. A new set of functions is subsequently formed in terms
of the characterizing functions, in such a way that any linear combina-
tion of the functions in the resulting set is a homogeneous GSHF. The
problem of finding the optimal linear combination is translated into an
LMI optimization. Simulations demonstrate the performance benefits
of the proposed design approach.
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