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Robust Region-of-Attraction Estimation

Ufuk Topcu, Andrew K. Packard, Peter Seiler, and Gary J. Balas

Abstract—We propose a method to compute invariant subsets of the re-
gion-of-attraction for asymptotically stable equilibrium points of polyno-
mial dynamical systems with bounded parametric uncertainty. Parameter-
independent Lyapunov functions are used to characterize invariant subsets
of the robust region-of-attraction. A branch-and-bound type refinement
procedure reduces the conservatism. We demonstrate the method on an
example from the literature and uncertain controlled short-period aircraft
dynamics.

Index Terms—Branch-and-bound, parameter uncertainty, region-of-at-
traction (ROA).

I. INTRODUCTION

We consider the problem of computing invariant subsets of the
region-of-attraction (ROA) for systems with polynomial vector fields
and bounded parametric uncertainty. Since computing the exact ROA,
even for systems with known dynamics, is hard, research has focused
on determining Lyapunov functions whose sublevel sets characterize
invariant subsets of the ROA [8], [9], [19]. Recent advances in poly-
nomial optimization based on sum-of-squares (SOS) relaxations [12]
are utilized to determine invariant subsets of the ROA for systems
with known polynomial and/or rational dynamics solving optimization
problems with matrix inequality constraints [7], [14], [15], [17], [21].
The literature on ROA analysis for systems with uncertain dynamics
includes a generalization of Zubov’s method [4] and an iterative
algorithm that asymptotically gives the robust ROA for systems with
time-varying perturbations [11]. Systems with parametric uncertainties
are considered in [5], [13], [18]. The focus in [5] is on computing the
largest sublevel set of a given Lyapunov function that can be certified
to be an invariant subset of the ROA. References [5], [13] propose
parameter-dependent Lyapunov functions which lead to potentially
less conservative estimate of the ROA compared to parameter-inde-
pendent Lyapunov functions at the expense of increased computational
complexity.

This technical note follows [16], using bilinear sum-of-squares opti-
mization to determine invariant subsets of the robust ROA. The differ-
ences lie in the allowed uncertain parameter dependence and the class
of Lyapunov functions. The approach in [16] employs parameter-inde-
pendent Lyapunov functions for systems whose vector field depends
affinely on uncertain parameters known to lie in a given polytope, rem-
iniscent of quadratic stability analysis [3], where a single quadratic
Lyapunov function certifies the stability of an entire family of uncer-
tain linear systems, usually described by a polytope of linear vector
fields. Of course, using a common Lyapunov function tends to yield
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conservative results, and the restriction to polytopes of vector fields is
undesirable. This technical note partially alleviates both of these lim-
itations. First, vector fields are allowed to depend affinely on polyno-
mial functions of the uncertain parameters, and we develop methods
to cover these with a polytope of vector fields (so that [16] applies).
Additionally, we propose a branch-and-bound type procedure [10] to
partition the uncertainty set, computing a different parameter-indepen-
dent Lyapunov function for each cell of the parameter space. Taken
together, this collection implicitly defines a parameter-dependent Lya-
punov function, � ��� �� which is polynomial in � (state) for fixed �

(uncertain parameter), and piecewise constant in � for fixed �. We note
that in robustness analysis involving time-invariant unknown parame-
ters, it is common, [2], [22], to combine easily-computable sufficient
conditions with branch-and-bound strategies, often yielding improved
analysis results.

An alternate for the conservativeness of parameter-independent
Lyapunov functions is using polynomially parameter-dependent
Lyapunov functions as proposed in [5], [13]. Although SOS opti-
mization can be used with parameter-dependent Lyapunov functions,
the ensuing optimization problem is challenging because uncertain
parameters are treated as additional independent variables in the
SOS conditions, which can greatly affect the size of the semidefinite
programs. Moreover, choosing a suitable and effective polynomially
parameter-dependent basis for the Lyapunov function is not intuitive.

Finally, the methodology based on branch-and-bound, applied to ro-
bust ROA analysis here, is also applicable to local reachability and gain
analysis of systems with parametric uncertainty.

Notation: ��� is the set of polynomials in � with real coefficients.
For � � ���, ���� denotes the degree of �. The subset ���� ��
��� � � � �� ��� � ��� 	 	 	 � �� � ��� is the set of SOS polynomials.

For � � � and � � �� � �, the �-sublevel set 
��� of � is defined
as 
��� �� �� � �� � ���� � ��. ������ denotes the set of contin-
uously differentiable, scalar valued functions on ��.

II. ESTIMATION OF THE ROBUST ROA OF SYSTEMS

WITH PARAMETRIC UNCERTAINTY

Consider the system governed by

���	� � 
���	�� �� (1)

where � � ��� 	 �� is the vector of unknown parameters and ��� is
a known bounded polytope. For each � � ���, 
��� �� � �� � �� is
locally Lipschitz and satisfies 
�� �� � . The robust region-of-at-
traction (ROA) is the intersection of the ROAs for all systems
governed by (1), i.e.,

�����
��� � �

� � ������ ��	���� �� � ��
where ��	���� �� denotes the solution of (1) at time 	 with initial
condition �� and fixed parameter value � � ���. Trivial exten-
sions of results found in classic texts [20] show that sublevel
sets of appropriate Lyapunov functions are invariant subsets of
the robust ROA. For any � 	 �� and � � ������� define

��	 ��

���
�� � �� � �� ���
��� ��  �.

Proposition 2.1: If there exist � �  and � � ������ such that

� �� �  ��� � ��� �  ��� ��� � �� � (2)


	�
 �� �������� ��� (3)


	�
�� 	 
����	 (4)

hold, then for all �� � 
	�
 and for all � � ���, ��	���� �� exists,
satisfies ��	���� �� � 
	�
 for all 	 � , and ������ ��	���� �� �
, i.e., 
	�
 is an invariant subset of the robust ROA. �
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Now restrict attention to a special case, where the dependence of �
on � is affine, to obtain conditions equivalent to (4) but suitable for
numerical verification (a generalization to polynomial dependence on
��� is treated in Section III). Assume that (1) is in the form

����� � �������� �

�

���

���������� (5)

where ��� ��� � � � � �� � �� � �� are known locally Lipschitz func-
tions and satisfy ����� � � for � � �� 	� � � � ��, and � � 


. Further,
denote the set of vertices (extreme points) of 


 by ����. Then, the affine
dependence of the vector field on � trivially implies the following (e.g.,
[16]).

Proposition 2.2: For the vector field in (5) and � � ������,
������ � �� �� . 	

Consequently, for any � � ������ satisfying (2) and (3), and

�������	 
 �� �� (6)

the sublevel set ���� is an invariant subset of the robust ROA. In order
to enlarge the computed invariant subset of the robust ROA by choice
of �� we introduce a fixed, positive definite, convex function 
, called
the analysis shape factor and maximize � while imposing the con-
straints (2)–(3), (6), and ���� �� �� � �� � 
��� � �	 � ���� . This
is written as an optimization problem

�
	�


���
�� �� ��

� ����������
� ������� ��

���� ���� ���� �� ���� � ���� � (7)

Here,  
 ������ denotes the set of candidate Lyapunov functions
over which the maximum is computed. In practice, 
 is problem-de-
pendent and chosen by the analyst. Since the form of the certified inner
estimate of the robust ROA is a sublevel set of 
, the sublevel sets of

 should be well-understood (for in high-dimensions they cannot be
visualized), and should reflect directionality/scaling information that
the analyst is interested in learning with regard to the robust ROA. In
order to relax the problem in (7) to a SOS programming problem, we
require ��� ��� � � � � �� and 
 to be polynomials and restrict � to be
a polynomial in � of fixed degree. Further, we use generalizations of
the S-procedure [16] to obtain sufficient conditions for the set contain-
ment constraints in (7) and SOS conditions for polynomial nonnega-
tivity [12]: if  � ����, then  is nonnegative.

Let �	� �  , ��, ��, and �� be prescribed finite-dimensional
subsets of ���, and denote � � ������� ���. For a polytopic subset
� of 


 and positive definite polynomials �� and �� (typically ����� �
���

�� with small scalars ��), define ����	���� as

����	���� �� ��
� �� ������ �� �� �� �� ��

� ������� ��

�� � ����� ����� � ����� ����� � ����� �� !! � � ��� (8a)

� � �� � � �� � ��� � �� � � �� � ���� (8b)

� ��� � 
��� � �� � ��� � ����� �� (8c)

� �� � � ������ ��� �� �

�

���

���� ����� � �� � ����

�� !! � � ���(8d)

The feasibility of the constraints in (8) is sufficient for the feasibility
of the constraints in (7). Therefore, ������	���� � �

	�


���
��. Note

that in (8a), since �� is a finite set, ����� ���	��� is a finite set of
polynomials in �, indexed by �.

The optimization in (8) is naturally converted to a bilinear semidef-
inite program (SDP), with 3 “types” of decision variables: the free
parameters in � , the free parameters in the � polynomials, and the

free parameters introduced by the SOS constraints. The SDP is bi-
linear in the free parameters in � and multipliers �, as evidenced by
the product terms (e.g., � ��� , �� ���� , etc). We have made signifi-
cant pragmatic progress in obtaining high-quality solutions to (8), using
simulation to first derive a convex outer-bound on the set of feasible �
parameters [17], followed by coordinatewise optimization over � and
���� ���� �����Nevertheless, the nonconvexity is not to be taken lightly,
and any numerical attempt to compute ����	���� must itself treated
as a lower bound.

Finally, note that, if �� and �� have positive definite quadratic part,
then the feasibility of (8) implies the robust stability of the uncertain
linearized dynamics established with a common quadratic Lyapunov
function. For systems with cubic vector fields, the feasibility of (8) is
also necessary by the following theorem whose proof is in Appendix.

Theorem 2.1: Let ��� � � � � �� be cubic polynomials in � satisfying
����� � � � � � ����� � �, � � �, �� � �, �� � �, 
��� � ����,
����� � �����, and ����� � �����. For � � 


, let �� be such that
��� is the linear (in �) part of ����� � �

���
�������. If there exists

� � � satisfying��
� ����� � � for all ��� � ����, then the constraints

in (8) are feasible with ��� � � ������ � � and ����� � ������ � �.
	

III. POLYNOMIAL PARAMETRIC UNCERTAINTY

We extend Section II to systems with polynomial parametric uncer-
tainty

����� � �������� �

�

���

������������ �

�

���

����������������� (9)

where ��� ��� � � � � ��� ���� � � � � ���� � �� � �� are vector
valued polynomial functions satisfying ����� � � � � � ���� ��� �
�, and ��� � � � � �� � ����� are scalar valued polynomial functions,
and � takes values in a bounded polytope 


. We begin with ��� � 	
(for simplicity) and then generalize for ��� � 	.

Replacing ������� by an artificial parameter �, the dynamics in (9) can
be written as

����� � �������� �

�

���

������������ � ������������ (10)

Our approach is based on covering the graph of �,
��� ����� � ���� � � �


 , by a bounded polytope " 
 ����.

Then, the dependence of the vector field in (10) on the parameters
����� �� is affine and ����� �� takes values in the bounded polytope ".
Therefore, results from Section II are applicable for the system in (10)
by replacing 


 by ".

A polytope " covering the graph of � can be obtained by
bounding � from above and below by affine functions ��� ��� � ��
and ��� ��� � �� over the set 


, namely "���� ��� ��� ��� ��
��� �� � ���� � � �


� ��� � � �� � � � ��� � � �� .

The volume of " is a linear function of ��, ��, ��, and ��,
�������"���� ��� ��� ���� � ��� � ���

�

���
��� � ��� � ��� ���

�� .
The polytope with smallest volume among such covering polytopes
can be characterized via

�#�
� �� �� ��

�������"���� ��� ��� ���� ������� ��

������� �
�
� ��� � �� � � ��

������� �
�
� ��� � �� � �� � ��� �


� (11)

An upper bound for this minimal volume can be computed by a
linear SOS optimization problem. To this end, let affine functions
 �, � � 	� � � � � ! , provide an inequality description for 


, i.e.,



 � �� � �� �  ���� � �� � � 	� � � � � !	.
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Proposition 3.1: The value of the optimization problem

���
����� �� �� ��

������������ ��� ��� ����

��	
�� � ��� � ����� � � ��� ��� 	 � �� � � � � 


� ������ � �
	
� ��� � �� �




���

��������������� � ������

������� �
	
� ��� � �� �




���

��������������� � ������ (12)

is an upper bound for (11). Here �’s are finite dimensional subsets of
�����. 

Proof: Since ��� is defined by ������ � ����������
 , constraints
in (12) imply that �	� � � �� � ���� � �	� � � �� for all � ����.

Remark 3.1: ������������ ��� ��� ������ ����������� ��� �� ���
������������ ��� �� ����, hence the optimizing values of � and � in
(12) can be computed by two smaller optimizations. 

In case ��� � �, affine upper and lower bounds for ��� � � � � ��
(regardless of whether � are polynomials) can be used to construct a
polytope covering the graph of ���� � � � � �� � as formally stated in
the following proposition from [1].

Proposition 3.2: For � � �� � � � ����, let �	�� � �� and �	�� �
�� be affine functions bounding � over ��� from below and above,
respectively. Then, the polytope � with the vertex set

�� ��
���

��� ��� � � � � �� � � 	��� �

� � �
	
�� � �� � � � ��� ��� � � �� � � � � ���

contains the graph of ���� � � � � �� �� 

This gives one specific procedure to cover the graph of a vector-
valued multivariate polynomial by a convex polytope. Advances in
graph covering strategies and quantifying the trade-off between the
number of vertices and the volume of the covering polytope would be
relevant to the robust ROA problem.

IV. BRANCH-AND-BOUND TYPE REFINEMENT

IN THE PARAMETER SPACE

The problem in (8), applied with� � ���, computes invariant subsets
of the robust ROA characterized by a single Lyapunov function though
its results may be conservative: the certified invariant subset may be too
small relative to the robust ROA. On the other hand, a less conservative
estimate of the robust ROA is “obtained” by solving (8) for each � ����

with � � ���. For a subset � 
 ���, define

�
�
���������� �� ���

���
�������������� (13)

Then, ������������� � ��������������. However, computing
�������������� requires solving an optimization problem for each
� ����, and consequently is impractical. Next, we propose an informal
“branch-and-bound” type procedure for computing lower and upper
bounds for ��������������, i.e., localizing the value of ��������������.
The method is based on computing a different Lyapunov function for
each cell of a finite partition, �, of ���.

Branch-and-bound (B&B) is an algorithmic method for global op-
timization based on two steps: the search region is partitioned into a
union of smaller regions, or cells (branching) and then upper and lower
bounds for the objective function restricted to each cell are computed
(bounding) [10]. These steps are repeated, refining the partition each
repetition (e.g., subdividing the cell with the worst lower bound). If the

upper and lower bounds are such that their difference converges to zero
uniformly as the size of the cell goes to zero, then the B&B algorithm
converges to a global optimum. Without such specific guarantees, steps
are simply repeated until the gap between the upper and lower bounds
gets suitably small or a maximum number of steps is reached. Addi-
tionally, for our problem, we take into account the polytopic covering
described in Section III, and recompute this covering whenever any cell
is subdivided.

The lower and upper bounds are defined over any polytope � 
 ���.
Certainly �� ��������� is a lower bound for ������������. Upper
bounds for ������������ can be obtained via divergent trajectories and
infeasibility of certain necessary conditions for the constraints in (8).
Let � � � and ������ be the minimum value of � attained on all non-
convergent trajectories of (5), with ������ �� if there is no non-con-
vergent trajectory. Since every trajectory entering an invariant subset
of the robust ROA has to converge to the origin, ���� ��� cannot be a
subset of the robust ROA; hence, for any ����� and � , ������������ �
������. Note, any non-convergent trajectory yields an upper bound on
������, and consequently on ������������. In order to establish an-
other upper bound, let � � � and � � � be fixed. If there exists
� � � certifying that ���� is in the robust ROA through the con-
straints in (7), then � has to be (i) positive for all nonzero � � 	�, (ii)
less than or equal to 1 (without loss of generality) and decreasing along
every trajectory of (5) (for this fixed �) starting in ���� . Therefore, if
no � � � satisfies properties (i) and (ii), then there is no � � � certi-
fying that ���� is in the robust ROA via (7). The minimum such value,
denoted ������, is an upper bound on ������������. In the case � is
parameterized as � ��� � �	 ���� with � a vector of basis functions
and � a vector of real scalar decision variables, constraints on � along
trajectories are affine constraints on �; consequently, an upper bound
on ������ can be determined by simulation and linear programming
(see [17]). As in all ��� algorithms, the minimum (over the subsets
that partition ���) of these upper and lower bounds are upper and lower
bounds for ��������������.

V. IMPLEMENTATION ISSUES

The optimization problem in (8) provides a recipe to compute in-
variant subsets of the robust ROA. However, the number of constraints
in (8) and consequently the number of decision variables increase
exponentially with � ���� because (8d) contains a SOS constraint
for each vertex value of the uncertainty polytope. The increase in the
problem size may render (8) computationally challenging for even
modest values of � � ���. An ad-hoc, sequential approach (from
[16]), partially alleviates this difficulty, but without quantified, a priori
guarantees as to its success. To this end, let � be a polytopic subset of
��� and ������� be a finite sample in �, with (typically) significantly
fewer points than �� :

• Solve (8) with �������, ����� , and � and call the optimizing
Lyapunov function �������.

• For each � � �� , compute

�� �� ���
	���� �� �� ��

� ��	
�� �

�
� � ����� ��� � ����� ���

� �� � ���������
� ��������� �	 �

�

���

����

� ��� � �
 � ���� (14)

and define ������� �� ��� ��� � � � ���. At this point,
�� �� is an invariant subset of the robust ROA.
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• Determine the largest sublevel set �
��� �� ���

of � con-
tained in �� �� by solving

�
���	�


� ���	���� �� ���
� �� ��

�

	
���� �� �� � ����

� ��� � ���� � ������� � �
���	�
� � ����� (15)

While this sequential procedure sacrifices optimality (i.e.,
for a given polytopic subset 	 � ���� �

���	�


� ���	���� �
�����	����), it has some practical advantages: For a fixed
Lyapunov function candidate �������, constraints in (8d) (one
SOS constraint for each vertex value of 	) decouple. There-
fore, it is possible to determine largest value of � such that
�� �� � �� � 	� � 
����������
��� �� � �� for every
� � �� by solving (14) independently for each � � �� .

Remark 5.1: If 	������ is a singleton, the value
�� ���	���� � �

���	�


� ���	���� is always non-nega-
tive and can be interpreted as a measure of potential improvement
in the lower bound for ��������	���� by further subdivision of 	.
Therefore, it may be used as an informal stopping criterion in the
� algorithm. However, we re-emphasize that �� ���	����
is computed solving a non-convex optimization problem, so that its
use as an upper bound is ad hoc and referred to as a “quasi-upper”
bound (e.g., see Fig. 2). �

VI. EXAMPLES

For the following examples, we implemented the sequential proce-
dure from Section V using the method from [17] in the first step with
����� � ����� � ������� and ���� � ���.

A. An Example From the Literature

Consider the system, [6], governed by

�� �
���

��� � ���
�

���� � ��� � ���

����� � ��� � ����
�

�
��� � ���

���� � ���
�
�

with � � ��� �� �� ���. We applied the refinement procedure with the
initial partition ���� ��� for ��� � � � and ��� � � �. Upper and lower
bounds for ����� (top left for ��� � � � and top right for ��� � � �) and
certified invariant subsets of the robust ROA are shown in Fig. 1. In both
cases, the first iteration (a parameter independent Lyapunov function
for ���, [16]) and even a few more do not yield a certified region.

B. Controlled Short-Period Aircraft Dynamics

We apply the robust ROA analysis for uncertain controlled short-
period aircraft dynamics (see Appendix for parameters)

��� �

������� � ��������� � ����������

������� � ���
�
���� � ���������

��

�

��� �� � ��� � �����

��� � �����

�

�

where �� � � �� �� �� �
� , ��, ��, and �� denote the pitch rate, the

angle of attack, and the pitch angle, respectively, ��� and ��� are cubic
polynomials, ���, ���, and ��� are quadratic polynomials, ��� and ��

Fig. 1. Top figures: Bounds for � versus number of ��� iterations with
��� � � � (left) and ��� � � � (right). Curves with “�” are for the lower
bounds obtained by directly solving (8) with � taken as the 4 vertices of the
corresponding cell and curves with “ ” are for the lower bounds obtained by
applying the sequential procedure from Section V and taking � as the
center of the corresponding cell. Bottom figure: Intersections of sublevel sets of
� ’s certified to be in the robust ROA with ��� � � � (inner red, solid curve)
and ��� � � � (outer red, solid curve), sublevel sets of � certified to be in the
robust ROA ��� � � � (inner black, dashed curve) and ��� � � � (outer black,
dashed curve), estimate of the robust ROA reported in [6] (blue, dotted curve).
Gray dots are the initial conditions of trajectories which do not converge to the
origin for some � � ��� 	
.

Fig. 2. Lower bounds for � with ��� � � � (solid black with “�”) and
��� � � � (solid blue curve with “ ”) and � (solid red with “�”) computed
at the centers of the cells generated by the ��� Algorithm for the ��� � � �
run. Dashed curves are for (computed values of) � where � is the center of
the cell with the smallest lower bound at the corresponding step of the ���
refinement procedure for ��� � � � (dashed black with “�”) and ��� � � �
(dashed blue with “ ”).

are vectors in 	�, ���, ���, ���, and ��� � 	, and �, the elevator
deflection, is the control input. �� � ������ ����� and �� � ������ ����
model the variations in the center of gravity in the longitudinal direc-
tion and the mass, respectively. The control input is determined by
��	 � ��� ���� � ������� and � � ��	, where �	 is the controller
state and the plant output � � � �� �� �

� . Define � �� � ��� �	 �
� .

We applied the B&B refinement procedure with ��� � � � and
��� � � � using the sequential implementation on 9 processors: after
each � iteration, the cell with the smallest lower bound is subdi-
vided into 3 subcells and cells with next three smallest lower bounds
are sub-divided into 2 subcells. Fig. 2 shows the lower bounds and
upper bounds. Smallest value of � attained on divergent trajectories,
���, is 8.60 and obtained for ���� ��� � �������������� and the
initial condition (0.17,2.65, �����,1.24).

C. Controlled Short-Period Aircraft Dynamics With First-Order
Unmodeled Dynamics

Consider the closed-loop system in Fig. 3 where uncertain first-order
dynamics are introduced between the controller output ��� and the
plant input ��� from Section VI-B

���� � ����� ����! ��� �	�� ����

� ���� � ��"���
�� �	

�� �	
����� (16)
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Fig. 3. Closed-loop system with the uncertain first-order dynamics between the controller and the plant �� � �� � � ��.

Here, �� � ���� �� and �� � ������ ���� are uncertain parameters
and ���� ��� ��� is introduced to examine the effect of unmodeled dy-
namics on the ROA. Let ��� 	 ����� � ��� and � 	 ��
���� �
����
 � ��
���� be a realization of � and � 	 � ��� �� �� �

� de-
note the state of the closed loop dynamics. The resultant vector field
is affine in ��, ��, ��, ��, ����, ����, and ��� , so the covering poly-
topes are in �� with 128 vertices. We applied the sequential approach
of Section V, using the center of each parameter hyper-rectangle as
	������. The 
�
 algorithm partitioned the 4-dimensional � space
into 2221 regions, certifying ����	� in the robust ROA. Simply due
to the large number of partitions, this indeed required significant time
to solve. Nevertheless, every computational step consisted of either
finding a Lyapunov function for a single, not-uncertain vector field;
or assessing the certification power of a given Lyapunov function on a
specified vector field. These individual computations are “simple,” in
that they involve no uncertainty, and decoupled. The complexity is the
large number of computations performed, which taken together, yield
a certified robust ROA for the uncertain vector field.

VII. CONCLUSION

This technical note considers the problem of finding certified, inner-
estimates of the region-of-attraction for a certain class of uncertain
nonlinear systems. At its core, the solution approach combines Lya-
punov analysis, S-procedure relaxations, and SOS/SDP optimization.
Four factors contribute to the problem complexity: number of state vari-
ables; degree of vector field; number of uncertain parameters; depen-
dence of vector field on uncertain parameters. The challenges associ-
ated with state dimension and vector field degree (often large optimiza-
tion problems) appear somewhat common across solution techniques.
By contrast, the issues which arise from uncertainty are attacked using
a variety of diverse techniques.

We address the difficulties due to parameter uncertainty through par-
allelization, partitioning the parameter space, solving a large number
of (uncoupled) sub-problems. While the Lyapunov function for each
sub-problem is independent of the uncertain parameter, the net result
yields a parameter-dependent (piecewise-constant in the parameter)
Lyapunov function. This is an alternative to more direct approaches
which use explicitly parameter-dependent Lyapunov functions, e.g.,
[5], [13], and a single optimization (with additional indeterminate and
decision variables, used to represent the uncertain parameters and cap-
ture their constraints) to solve the problem.

Of course, the question of how fine the parameter space partition
must be before the proposed method yields a certified robust ROA is
still largely open, so it is impossible to say that one approach is supe-
rior/inferior to another. Similarly, we do not claim that the proposed
strategy is practical for all instances of systems modeled by (9). In-
deed, large numbers of uncertain parameters, entering the dynamics
in complex ways might require an untenable level of parameter space
partitioning to yield a positive result. Nevertheless, we have illustrated
the approach on several academic, but nontrivial, examples, including
a 5-state, 4-parameter model with non-affine parameter dependence.
Moreover, for cubic (in state) vector fields, we have a (weak) positive
result which follows from Theorem 2.1, namely for any specific parti-
tion of the parameter space, if over each cell, the linearized uncertain

dynamics are quadratically stable, then the certification conditions (8)
are guaranteed to be feasible (with analytically derived choices for the
decision variables). Among other things, this implies that the uncertain
linearization could provide insight into the level of parameter space di-
vision needed for robust region-of-attraction certification.

APPENDIX

Let ���� be a vector of all monomials of degree 2 with no repetition
and �
 be its length.

Lemma 9.1: Let  � �� and  	 � � �. Then there ex-
ists a positive definite matrix � � �� �� such that ������ 	
����������. �

Proof: Let �� � ���� be such that ������ 	 ���, then
�� � ��� 	 �

���
�����

������	
�

���
������

� ������ 	

����������. Note that � 	 ��
� � � ���

�

�
has full column rank

since every entry of ���� is ��� for some � � �, � � �; conse-
quently, � 	 �� ��� ��� � �.

Proof of Theorem 2.1: Let � � � satisfy ��
�� ��� � ����,

for all � � 				, and � � �� (by scaling ). Let � �	 ��������,
� ��� �	 �� ��, and � � � be a Gram matrix for ������ ���
(by Lemma 9.1). Let ��� � ���� and ��� 	 ��

�� � �� ��

be such that ��������� and ������������ are cubic and quartic
(in �) parts of 
� ��
��� � �

���
��������, respectively. De-

fine ����� �	 ����� ��������� �, ������ �	 ����
� � with

��� �	 ���� ��

�� � ��������
����� ����� ��� (where for a

symmetric matrix �, �� denotes the projection on the positive
semidefinite cone), ������ �	 �, � �	 ��� ��������� � � � 				�,
and � �	 �������. Then, � � �� and � ��� �  ��� � �� � ���
are SOS since they are positive semidefinite quadratic polynomials.
For � � 				, !���� �	 � ��� � � ���� � �"� �"������� � ���	
� �� ����� �
� � �

� ����� �� , where


� 	
������ � �� � ��

�
�� ���

��

�

��

�
���� ����

�

�

�
� ��

�

��

�
���� ����

� (17)

Note that ���� 	 ����� ��

�� � ��������
����� ����� �����

� ���� ��

�� ���������
����� � � ���� ��� � ��������

��

���� � � ��� � ��������
����� . Consequently, 
� is positive

semidefinite by the Schur complement formula applied to the far left
term in (17) and !� � ����.

Parameters for the uncertain controlled short-period air-
craft dynamics: #
����� 	 ����������� � ����������� �
���������������
������� � �������� � ���
��� � ��
�����;
$� 	 � � ��������� � �� ; !�� 	 ��
���
�; %
����� 	
����
������� � ����������� � ���
����������������� �
����
���� � ����������; !�� 	 ��������
; #������ 	
�����
��� � ��������������������� � ��������� � ������
���;
!�� 	 ��������; $�� 	 � � ������

� � �� ; %������ 	
����
������� � ���������������
�����

�
� � �����
�� �

����������; !�� 	 ��������.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on February 1, 2010 at 14:27 from IEEE Xplore.  Restrictions apply. 



142 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 1, JANUARY 2010

REFERENCES

[1] F. Amato, F. Garofalo, and L. Glielmo, “Polytopic coverings and robust
stability analysis via Lyapunov quadratic forms,” in Variable Structure
and Lyapunov Control. : Springer-Verlag, 1994, pp. 269–288.

[2] V. Balakrishnan, S. Boyd, and S. Balemi, “Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems,” Int. J. of Robust and Nonlinear Control, vol. 1, no. 4,
pp. 295–317, 1991.

[3] B. R. Barmish, “Necessary and sufficient conditions for quadratic sta-
bilizability of an uncertain system,” Journal of Optimization Theory
and Applications, vol. 46, no. 4, pp. 399–408, 1985.

[4] F. Camilli, L. Grune, and F. Wirth, “A generalization of Zubov’s
method to perturbed systems,” SIAM Journal on Control and Opti-
mization, vol. 40, no. 2, pp. 496–515, 2001.

[5] G. Chesi, “Estimating the domain of attraction of uncertain poynomial
systems,” Automatica, vol. 40, pp. 1981–1986, 2004.

[6] G. Chesi, “On the estimation of the domain of attraction for uncertain
polynomial systems via lmis,” in Proc. Conf. on Decision and Control,
Bahamas, 2004, pp. 881–886.

[7] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “LMI-based computation
of optimal quadratic Lyapunov functions for odd polynomial systems,”
Int. J. Robust Nonlinear Control, vol. 15, pp. 35–49, 2005.

[8] E. J. Davison and E. M. Kurak, “A computational method for deter-
mining quadratic Lyapunov functions for nonlinear systems,” Auto-
matica, vol. 7, pp. 627–636, 1971.

[9] R. Genesio, M. Tartaglia, and A. Vicino, “On the estimation of asymp-
totic stability regions: State of the art and new proposals,” IEEE Trans-
action on Automatic Control, vol. 30, no. 8, pp. 747–755, 1985.

[10] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 679–719, 1966.

[11] A. Paice and F. Wirth, “Robustness analysis of domains of attraction
of nonlinear systems,” in Proceedings of the Mathematical Theory of
Networks and Systems, 1998, pp. 353–356.

[12] P. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical Programming Series B, vol. 96, no. 2, pp.
293–320, 2003.

[13] W. Tan, “Nonlinear Control Analysis and Synthesis Using Sum-of-
Squares Programming,” Ph.D., Berkeley, UC, 2006.

[14] W. Tan and A. Packard, “Stability region analysis using polynomial
and composite polynomial Lyapunov functions and sum-of-squares
programming,” IEEE Transactions on Automatic Control, vol. 53, pp.
565–571, 2008.

[15] B. Tibken and Y. Fan, “Computing the domain of attraction for polyno-
mial systems via BMI optimization methods,” in Proc. American Con-
trol Conf., Minneapolis, MN, 2006, pp. 117–122.

[16] U. Topcu and A. Packard, “Local stability analysis for uncertain non-
linear systems,” IEEE Transactions on Automatic Control, 2008.

[17] U. Topcu, A. Packard, and P. Seiler, “Local stability analysis using
simulations and sum-of-squares programming,” Automatica, vol. 44,
pp. 2669–2675, 2008.

[18] A. Trofino, “Robust stability and domain of attraction of uncertain non-
linear systems,” in Proc. American Control Conf., Chicago, IL, 2000,
pp. 3707–3711.

[19] A. Vannelli and M. Vidyasagar, “Maximal Lyapunov functions and do-
mains of attraction for autonomous nonlinear systems,” Automatica,
vol. 21, no. 1, pp. 69–80, 1985.

[20] M. Vidyasagar, Nonlinear Systems Analysis, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[21] T.-C. Wang, S. Lall, and M. West, “Polynomial level-set methods
for nonlinear dynamical systems analysis,” in Proc. Allerton Conf.
Commun., Control, Comput., Allerton, IL, 2005 [Online]. Avail-
able: http://cslgreenhouse.csl.illinois.edu/allerton/archives/allerton05/
PDFs/Papers/II_C_6.pdf

[22] P. M. Young, M. P. Newlin, and J. C. Doyle, “� analysis with real
parametric uncertainty,” in Proc. Conf. Decision Control, 1991, pp.
1251–1256.

A Switching Anti-windup Design Using
Multiple Lyapunov Functions

Liang Lu and Zongli Lin, Fellow, IEEE

Abstract—This technical note proposes a switching anti-windup design,
which aims to enlarge the domain of attraction of the closed-loop system.
Multiple anti-windup gains along with an index function that orchestrates
the switching among these anti-windup gains are designed based on the min
function of multiple quadratic Lyapunov functions. In comparison with the
design of a single anti-windup gain which maximizes a contractively in-
variant level set of a single quadratic Lyapunov function as a way to en-
large the domain of attraction, the use of multiple Lyapunov functions and
switching in the proposed design allows the union of the level sets of the
multiple Lyapunov functions, each of which is not necessarily contractively
invariant, to be contractively invariant and within the domain of attraction.
As a result, the resulting domain of attraction is expected to be significantly
larger than the one resulting from a single anti-windup gain and a single
Lyapunov function. Indeed, simulation results demonstrate such a signifi-
cant improvement.

Index Terms—Actuator saturation, anti-windup, composite Lyapunov
functions, domain of attraction, switching systems.

I. INTRODUCTION

Anti-windup is a traditional approach to dealing with actuator sat-
uration. The idea is to augment the closed-loop system that was de-
signed without taking actuator saturation into consideration so that the
negative effect of actuator saturation is weakened. Earlier works on
anti-windup design try to minimize the effect of saturation in a direct
way by reducing the difference between the input and output of the ac-
tuators (see, for example, [1], [8]).

Later works on anti-windup aim to reduce the effect of saturation
indirectly by trying to improve the closed-loop stability and perfor-
mances (see, for example, [3], [14], [16]–[18], [27] and the references
therein). One of the earliest works that address the stability of control
systems with anti-windup compensation involves the application of the
scalar Popov and circle criteria ([9]). Stability analysis of multivariable
systems with anti-windup compensation was carried out in ([15], [22]).
The �� formalism was introduced in [24] and adopted by several other
authors (see, for example, [11], [25]).

More recently, an anti-windup design algorithm was developed with
the explicit goal of enlarging the domain of attraction of the resulting
system [3]. By expressing a saturated linear feedback law on the convex
hull of some auxiliary linear feedbacks and using a single quadratic
Lyapunov function, a set of conditions under which an ellipsoid, as
a level set of the Lyapunov function, is contractively invariant and
thus inside the domain of attraction, are established in terms of bi-
linear matrix inequalities in the auxiliary feedback gains, the positive
definite matrix that defines the quadratic Lyapunov function and the
anti-windup compensation gain. The design of the anti-windup gain
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