
Theory of Dissipationless Nernst Effects

Doron L. Bergman1 and Vadim Oganesyan2

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
2Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314, USA

(Received 14 October 2009; published 11 February 2010)

We develop a theory of transverse thermoelectric (Peltier) conductivity �xy, in a strong magnetic

field—this particular conductivity is often the most important contribution to the Nernst thermopower. We

demonstrate that �xy of a free electron gas can be expressed purely and exactly as the entropy per carrier

irrespective of temperature (which agrees with the seminal Hall bar result of Girvin and Jonson). In two

dimensions we prove the universality of this result in the presence of disorder which allows explicit

demonstration of a number of features of interest to experiments on graphene and other two-dimensional

materials. We also exploit this relationship in the low-field regime and analyze the rich singularity

structure in �xyðB; TÞ in three dimensions; we discuss its possible experimental implications.
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The magnetothermoelectric Nernst-Ettingshausen effect
[1] has enjoyed renewed interest in recent years, first as a
probe of superconducting fluctuations, and more generally,
as a novel transport characterization of electronic correla-
tions. Following the initial work on the cuprates [2] strong
magnetothermoelectricity was found in a variety of inter-
esting materials. While precise theoretical treatment is
lacking for most of these cases, phenomenological descrip-
tions in terms of conventional weak-field quasiparticle
transport theory [3–6] or effective classical hydrodynamic
models [7,8] have been used with varying degree of suc-
cess [9].

In this Letter we break from these earlier studies to treat
the finite field response directly, with no recourse to a low-
field regime. Our chief accomplishment is the exact ex-
pression of the off-diagonal Peltier conductivity �xy in

terms of entropy of free fermionic carriers (see Eqs. (5)–
(7) and (10). In two dimensions we prove the universality
of this expression (which also applies to Dirac fermions) in
the presence of quenched disorder and compare it against
available experimental data. In three dimensions we ob-
tain, essentially in a closed form, the entire intricate sin-
gularity structure in �xy (as a function of magnetic field

and temperature) inherited from the Landau level spectrum
which bears strong resemblance to thermoelectric phe-
nomenology of graphite [10]. As �xy is somewhat of a

less studied and, hence, poorly understood quantity, at least
as compared to electrical conductivity or entropy, our basic
result directly linking �xy and entropy (importantly, with-

out invoking the so-called ‘‘entropy currents’’ used else-
where in the literature [5,11]) is useful both for simplifying
computations but also for developing intuition.

Current flow in the presence of weak electric field and a
small thermal gradient is determined by

J ¼ � � E� � � rT; (1)

J Q ¼ T� �E� � � rT; (2)

where J, JQ, T,E, �, �, � are, respectively, the charge and
energy currents (slightly modulated in space), tempera-
ture and electric field strength, and electrical, Peltier, and
heat conductivity tensors, respectively. Peltier conductiv-
ity is usually extracted from electrical conductivity and
thermopower, S ¼ ��1 � �, measured in a zero-current
configuration.
For convenience we consider a particular, Hall ‘‘brick’’,

sample shape (see Fig. 1) of finite extent along x and z axis,
although our results will be independent of this assump-
tion. Ignoring spin and possible valley quantum numbers
the free electron Hamiltonian in a Landau gauge is

H ¼ � @
2

2m
½ð@y � x=‘2BÞ2 þ ð@xÞ2� þ @

2k2z
2m

þ VðxÞ; (3)

where mz, m, VðxÞ, B, �e and ‘B ¼
ffiffiffiffiffi
@

eB

q
are the electron

masses in the ẑ direction and x-y plane, confining potential
along the x axis, magnetic field along the z axis, electron

FIG. 1 (color online). Hall ‘‘brick’’ in a confining potential
VðxÞ (above) and its Fermi surfaces showing three occupied
Landau bands (depicted using different colors). The spectrum
is discrete along kz axis and continuous along x. The chiral
surface states occupy nonflat portions of the Fermi surface and
flow along brick’s sides.
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charge and magnetic length, respectively. The confining
potential along the z axis (not shown explicitly) is assumed
to be featureless (hard walls), whereas one along the x axis,
VðxÞ, has a more gradual rise as would be the case in
graphite nanoribbons [12,13], for example. Consequently,
the wave functions are standing waves along the z axis,
labeled with a discrete set of kz ’s. If VðxÞ ¼ 0 the spec-
trum of this problem consists of Landau levels dispersing

with kz, �n;kz ¼ @!n þ @
2k2z
2mz

, where !n ¼ eB
m ðnþ �0Þ, with

�0 ¼ 1=2 (but can be different generally [14]). Provided
VðxÞ varies smoothly on scales set by the magnetic length,
the spectrum of the Hall brick can be reconstructed by an
adiabatic shift of Landau bands at each kz and n, e.g., by
absorbing VðxÞ into a spatially varying �0. Thus, the Fermi
sea of the Hall brick is a locus of points in the kz-ky plane

where �n;kz < �, the chemical potential (see Fig. 1). It is

bounded by a set of closed Fermi surfaces each made up of

two flat segments in the bulk (with kF;n ¼ �ðẑ=@Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
��@!n

2mz

q
)

and chiral surface states propagating in �ŷ directions on
opposite sides of the brick [15].

Bulk transport properties of the Hall brick can be com-
puted using quantum Hall edge formalism [16,17] for each
transverse mode kz. Recall [16,17], that although micro-
scopic current distributions depend sensitively on the de-
tails of the confining potential bulk transport coefficients
computed by integrating over these distributions are in-
dependent of edge specifics, as they must be. The three
nonzero Hall electric, Peltier, or thermal conductivities

can be written as �xy ¼ � e2

h C0, �xy ¼ kBe
h C1 and �xy ¼

� k2BT

h C2, respectively, with the help of Cq ¼ P
kz
cqðkzÞ=Lz

and

cqðkzÞ ¼ �X
n

Z 1

@!nþ@
2k2z
2mz

��
d�

�
�

kBT

�
q @fð�Þ

@�
: (4)

Here and elsewhere, the Fermi function is denoted by

fð�Þ ¼ 1=ð1þ e�=ðkBTÞÞ, with kB the Boltzmann constant.
These coefficients are for electrons, for holes �xy and �xy

reverse sign. Explicit expressions for cq can be obtained by

a further variable change d� ! df and a definition fn �
fð@!n þ @

2kz
2mz

��Þ, with a familiar result for c0ðkzÞ ¼P
nfn and somewhat less familiar expressions for c1ðkzÞ ¼P
n½fn logfn þ ð1� fnÞ logð1� fnÞ� and c2ðkzÞ ¼P
n½�2

3 þfnlog
2ð1=fn� 1Þ� log2ð1�fnÞ� 2Li2ð1�fnÞ�,

where Li2ðzÞ is the polylogarithm function. Thus, we find
that, up to an overall prefactor, �xy is the entropy per

particle added over Landau bands and averaged over trans-
verse modes

�xy ¼ kBe

hLz

X
n

X
kz

½fn logfn þ ð1� fnÞ logð1� fnÞ�: (5)

Equation (5) is the basic result on which the rest of this
Letter builds (thermal conductivity is left for future work
[15]).

The two-dimensional limit of Eq. (5) is obtained by
omitting the sum over kz modes and setting fn ¼
fð@!n ��Þ

�xy ¼ ekB
h

X1
n¼0

½fn logfn þ ð1� fnÞ logð1� fnÞ�; (6)

which shows a sequence of thermally broadened nearly

symmetric peaks of height� kBe
h log2 as a function of B or

�, centered at quantum critical points separating integer
Hall plateaux (where �xy shows activated behavior). This

structure was discovered and explored previously, albeit in
the context of thermopower, by Girvin and Jonson [17,21]
(although these authors apparently made no identification
with the entropy). We now provide a proof that an exact
quantum critical result in Eq. (6) is, in fact, universal in the
presence of disorder.
For simplicity we consider a setting with generic, short-

ranged quenched disorder, strong magnetic field and no
boundaries. We shall make use of two well-established
facts about this system. First, we point out that the so-
called ‘‘generalized’’ Mott formula

C1ðT;�Þ ¼ �
Z 1

�1
d�

@fð�Þ
@�

�

kBT
C0ð�þ �; T ¼ 0Þ (7)

has been previously shown [21,22] to be an exact relation
between �xyðT ¼ 0Þ and �xyðTÞ. Second, it is now

well established [23] that at T ¼ 0 the integer quantum
Hall plateaus remain sharp steps in the presence of disor-

der, such that �xyðT ¼ 0; �Þ ¼ e2

h

P
n�ð���CnÞ [here

�ðx < 0Þ ¼ 0 and unity otherwise]. The transitions are
located at mobility edges �Cn typically (but not neces-
sarily) near the centers of clean Landau levels. Substituting
the universal behavior of �xyðT ¼ 0Þ into the generalized

Mott formula we find a generalization of Eq. (6), with an
important adjustment that fn should be evaluated at the
mobility edges, � ¼ �Cn, rather than the Landau levels of
the problem without disorder.
Simple as it is, this proof is important on a number of

counts. First, it corrects the findings of Jonson and Girvin
[21], who studied the effects of quenched disorder using
self-consistent Born approximation and concluded that
their earlier, clean limit expressions [17] were not univer-
sal. Second, universality in the presence of disorder implies
that any experimentally observed deviations must be due to
experimental uncertainties, electron-electron or electron-
phonon interactions, disequilibration and/or finite size ef-
fects or other physics omitted thus far. Recent experiments
on graphene [24] found a surprisingly robust confirmation
of Eq. (6) for most plateaux transitions even in the strongly
disordered samples, which also hints at the broader uni-
versality of Eq. (6), e.g., with respect to band structure
details. In fact, we have confirmed this universality theo-
retically for Dirac fermions [15]. Third, the fact that the
peaks are centered about the true critical points in the
presence of disorder provides a very important additional
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insight highlighting the difference between the density of
states (as measured through magnetization) and the en-
tropy—while the former accounts for both localized and
extended states, the entropy of localized states is strictly
zero; hence, the activated behavior of �xy is preserved.

Fourth, the standard Mott formula

�ðTÞ ¼ �ð�2=3Þðk2BT=eÞA�@�ðT;�Þ=@�; (8)

with A� ¼ 1 is violated in this dissipationless regime,
essentially due to singularities of zero-temperature con-
ductivity. For concreteness we can use (6) and the finite T
expression for �xy in the absence of disorder to obtain

A�ð�; TÞ � 3
�2 	j@!n ��j in the activated regime and

A� ¼ 12 log2=�2 � 0:84 precisely at the transition—ob-
serve that Mott formula slightly overestimates �xy near the

transition and grossly underestimates it away, in the acti-
vated regime, as T ! 0. Finally, it is worth recalling that
existence of delocalized states in two dimensions is due to
a subtle interplay of magnetic field and disorder which
becomes particularly intricate as B ! 0 [25]. Thus, while
the generalizedMott relation continues to hold in this limit,
the fate of �xy (and �xy) rests with evolution of extended

states, which may depend on factors not treated here, e.g.,
details of lattice structure [25]. In short, the limit B ! 0 is
rather subtle and left for future work.

Next, we consider the three-dimensional regime of large
Lz, so that a quasicontinuum of momenta kz appears below
the Fermi level, so we can write simply

�xy ¼ ekB
h

X
n

Z 1

�1
dkz
2�

½fn logfn þ ð1� fnÞ logð1� fnÞ�:

(9)

One low temperature (Sommerfeld) expansion of this
expression can be obtained by linearizing electron disper-
sion about each of the flat Fermi surfaces with Fermi

velocity, vFn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�� @!nÞ=mz

p

�xy ¼ � ekB
h

�2

3

Xnmax

n¼0

kBT

2�@vFn

; (10)

where nmax ¼ ½��, the index of the highest occupied
Landau level, is the integer part of � ¼ ð�=@!c � �0Þ.
Defining thermal de Broglie lengths for motion along the

z axis, 
Tz ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTmz

p
and perpendicular to it 
T ¼

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTm

p
we can rewrite

�xy¼�ekB
h

�2

3

‘B

Tz
T

Xnmax

n¼0

1ffiffiffiffiffiffiffiffiffiffiffiffi
��n

p

¼ i
ekB
h

‘B

Tz
T

½�ð1=2;��Þ��ð1=2;1þnmax��Þ�

(11)

in terms of �, the Hurwitz zeta functions (i � ffiffiffiffiffiffiffi�1
p

). This
approximate expression for �xy vanishes linearly with T as

T ! 0, it also diverges at a set of critical fields BCn ¼

�m
eðnþ�0Þ defined by @!n ¼ � via one sided root singularities,

due to one-dimensional van-Hove singularities appearing
every time a Landau band empties, with kFn ! 0. Clearly,
Sommerfeld expansion breaks down around these critical
points and we need to do better.
To that end we rewrite Eq. (9), with bn � 	ð�� @!nÞ

and fz � fðz2 � bnÞ,
�xy ¼ � ekB

h
Tz

X
n

FðbnÞ; (12)

FðbÞ � �
Z 1

�1
dzfz logfz þ ð1� fzÞ logð1� fzÞ; (13)

FðbÞ ¼

8>>><
>>>:

�1=
ffiffiffi
b

p
for b ! 1

�e�b for b ! �1
� 2 at b ¼ 0
� 2:4 for b ¼ bmin � 1:3

(14)

in terms of the crossover function F (which is everywhere
positive), whose relevant regimes are listed above and
displayed in Fig. 2. Most importantly, in quantum critical

regimes @ejB� BCnj=m & kBT we predict� ffiffiffiffi
T

p
variation

of �xy � �2ðe=hÞðkB=
TzÞ.
Experiments.—The broad range of materials where our

theory may be tested directly includes conventional de-
generate and nondengerate semiconductors [19], semi-
conductor heterostructures and graphene [24,26,27], bulk
semimetals [10,28], quantum critical points, esp. ones with
pronounced changes in the Hall number [29]. Our discus-
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FIG. 2 (color online). Using effective mass parameters m ¼
0:05me, mz ¼ 3me, and carrier density n ¼ 10�18=cm3 we plot
the expected behavior of �xy across the quantum limit showing

both�T and quantum critical,� ffiffiffiffi
T

p
(in the inset), behaviors. We

take T ¼ 0:5; 1; 2; 4½K� for the �T plot, and T ¼
0:25; 0:125; 0:0625; 0:03125½K� in the inset (identifiable by the
fact that lower temperature gives sharper peaks). We compute
�xy in units of �0 ¼ � kBe

h
 , where 
 ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mzkBð1 KelvinÞ

p . The

quantum critical behavior of the scaling function F is charac-
terized by a temperature and field independent value at the
crossing point (signifying the crossing of the Landau band’s
bottom) and a temperature independent value at the peak T away
from the crossing point.
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sion here will be limited to some very recent experiments
on graphene and graphite—the relative abundance of data
and features make these ideal test beds.

Several groups have recently examined thermoelectric-
ity in graphene [24,26,27] with data broadly confirming the
existence of peaks in thermopower near plateaux transi-
tions. In particular, analysis of the data to extract �xy

reveals [24] a reasonable agreement with Eq. (6), although
the experimental values appear somewhat smaller than the
theoretical prediction in the entire doping range studied. It
is unclear at present whether the observed discrepancy is
within experimental uncertainty or if additional theory of
inelastic processes (e.g., electron-electron or electron-
phonon interactions) is necessary. As the noninteracting
theory predicts peaks whose heights are independent of
temperature, with widths (in field or gate voltage) narrow-
ing as T ! 0 it would be of particular interest to measure
the temperature dependence of �xy.

Our theory for three dimensions appears to capture gross
experimental features in graphite [10] rather well. The
overall scale of the observed signal is reproduced by the
effective mass parameters for two dominant electron and
hole bands previously used [30] in graphite: the estimate of
�xy was obtained from thermopower data in Ref. [10] by

taking diagonal resistivity �ðBÞ � 2� 10�5B� �m per
Tesla and neglecting �xx�xy contribution. Most impor-

tantly, the experiments clearly demonstrate the existence
of asymmetric singularities synchronous with Landau level
emptying transitions. Well away from these transitions �xy

usually vanishes linearly with temperature, as expected by
the simple Sommerfeld expansion of Eq. (10). While
showing a clear breakdown of �T scaling near the singu-
larities, the existing data [10] are insufficient to confirm the

� ffiffiffiffi
T

p
law discussed above, unfortunately.

In conclusion, we identified carrier entropy with �xy

exactly, irrespective of temperature. We demonstrated
that strong localization in two dimensions enforces this
relationship, computed �xy in three dimensions and exam-

ined available experimental data in graphene and graphite.
While there is considerable degree of qualitative and quan-
titative agreement between our theory and the experiments,
much work remains to appreciate the full reach and im-
portance of our observation. Clearly, some theoretical
treatment of inelastic processes is needed—while it ap-
pears [15] that weak electron-electron interactions leave
our result intact, phonon effects (e.g., drag) on the Nernst
thermopower are less understood [18,31]. Careful direct
measurements (or extractions) of�xy will be of great use as

well. Finally, strongly correlated regimes, both at zero [32]
and finite [33,34] temperatures may also exhibit a version
of �xy-to-entropy correspondence.
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