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Abstract. It is difficult to predict exactly what blind subjects with
camera-driven visual prostheses �e.g., retinal implants� can perceive.
Thus, it is prudent to offer them a wide variety of image processing
filters and the capability to engage these filters repeatedly in any user-
defined order to enhance their visual perception. To attain true port-
ability, we employ a commercial off-the-shelf battery-powered gen-
eral purpose Linux microprocessor platform to create the
microcomputer-based artificial vision support system ��AVS2� for
real-time image processing. Truly standalone, �AVS2 is smaller than a
deck of playing cards, lightweight, fast, and equipped with USB, RS-
232 and Ethernet interfaces. Image processing filters on �AVS2 oper-
ate in a user-defined linear sequential-loop fashion, resulting in vastly
reduced memory and CPU requirements during execution. �AVS2

imports raw video frames from a USB or IP camera, performs image
processing, and issues the processed data over an outbound Internet
TCP/IP or RS-232 connection to the visual prosthesis system. Hence,
�AVS2 affords users of current and future visual prostheses indepen-
dent mobility and the capability to customize the visual perception
generated. Additionally, �AVS2 can easily be reconfigured for other
prosthetic systems. Testing of �AVS2 with actual retinal implant car-
riers is envisioned in the near future. © 2010 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.3292012�

Keywords: portable artificial vision system; microprocessor; image processing; vi-
sual prosthesis; smartphone; real-time image processing.
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Introduction

ystems providing artificial vision are becoming a reality.1–23

n particular, �extraocular or intraocular� camera-driven
piretinal implants are being used in chronic patient trials
lready6,5 �Fig. 1�. With blind subjects, it is difficult to predict
xactly what they can perceive with such camera-driven vi-
ual prostheses, especially since they �currently� provide only
ens of stimulating retinal electrodes, thereby allowing only
or limited visual perception �pixelation�. Thus it is important
o offer them a wide variety of image processing filters and
he capability to engage these filters repeatedly in any user-
efined order to enhance their visual perception in daily life.

Image processing systems �Fig. 2�, such as the artificial
ision simulator �AVS�24–26 �Fig. 3�, provide these capabilities
nd perform real-time �i.e., 30 fps� image processing and en-
ancement of digital camera image streams before they enter
he visual prosthesis. AVS, in particular, comprises numerous

ddress all correspondence to: Wolfgang Fink, PhD, Visual and Autonomous
xploration Systems Research Laboratory, California Institute of Technology,
200 East California Blvd, Mail Code 103-33, Pasadena, CA 91125. Tel: 626-
95-4587; E-mail: wfink@autonomy.caltech.edu
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efficient image manipulation and processing modules, such as
user-defined pixelation, contrast and brightness enhancement,
grayscale equalization for luminance control under severe
contrast and brightness conditions, user-defined grayscale lev-
els for potential reduction of data volume transmitted to the
visual prosthesis, blur algorithms, and edge detection.27,28

AVS provides the unique ability and flexibility for visual pros-
thesis carriers to further customize their individual visual per-
ception afforded by their respective vision systems by actively
manipulating parameters of individual image processing fil-
ters, even altering the sequence of these filters.

The original implementation of the AVS processing system
has been laptop computer based and hence not truly portable.
To provide independent mobility for the blind and visually
impaired using camera-driven artificial visual prostheses �Fig.
1�, we introduce in the following a stand-alone, battery-
powered, portable microcomputing platform and software
system for real-time image processing for camera-driven arti-
ficial vision prostheses, the microcomputer-based artificial vi-
sion support system ��AVS2�.29

1083-3668/2010/15�1�/016013/10/$25.00 © 2010 SPIE
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2 Methods
2.1 Hardware Platform
For the purpose of creating a small, stand-alone, battery-
operated, and portable version of AVS, namely �AVS2, we
employed a commercial off-the-shelf, battery-powered, gen-
eral purpose miniaturized Linux processing platform: the
Gumstix™ �by Gumstix, Incorporated, Portola Valley, Califor-
nia� microcomputer environment �Fig. 4�. It is lightweight
�8 g�, fast �600-MHz clock speed or better�, and equipped
with USB, Ethernet, and RS-232 interfaces.

In particular, the Verdex-Pro class Gumstix micro-
computer has the following specifications �see http://
www.gumstix.net/Hardware/view/Hardware-Specifications/
Verdex-Pro-Specifications/112.html�:

• Marvell® PXA270 CPU with XScale™

• 600-MHz clock speed
• Ethernet
• USB
• RS-232
• dynamic RAM+Flash RAM
• 80�20 mm, 8 g, −25 to 85 °C, 3.5 to 5.0 VDC
• battery powered �includes driving USB cameras and on-

board USB/Ethernet/RS-232 interfaces�.

2.2 Microcomputer-Based Artificial Vision Support
System Processing Architecture

For visual processing purposes, �AVS2 imports raw video
frames from a camera connected via its built-in USB port �or

Contrast,

Brightness,

Equalization

Inversion,

Custom-

Grayscaling

Blurring,

Edge-

Enhancing

Custom

Retinal-

Implant-

Array

Fig. 3 �Top� Typical palette of image processing modules that can be
applied in real time to a video camera stream driving an artificial
visual prosthesis. �Bottom� a user-defined subset of filters �pixelation
plus grayscale equalization plus contrast enhancement� applied in a
real world scenario: recognizing a door and doorknob in a low con-
trast environment.
ig. 1 One instantiation of an artificial vision prosthesis: an intraocu-
ar retinal prosthesis using an external microelectronic system to cap-
ure and process image data and transmit the information to an im-
lanted microelectronic system. The implanted system decodes the
ata and stimulates the retina via an electrode array with a pattern of
lectrical impulses to generate a visual perception.
ig. 2 Schematic diagram of a real-time image processing system for
rtificial vision prostheses, which are driven by an external or internal
amera system.
January/February 2010 � Vol. 15�1�2
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lternatively via its built-in Ethernet port, see Fig. 5�. �AVS2

hen reduces the resolution of the video frames to match the
ixel resolution of the patient’s visual prosthesis �i.e., pixela-
ion or downsampling, see Fig. 5�. �AVS2 subsequently pro-
esses the downsampled video frames through user-selected
mage filters in a linear, sequential-loop fashion, resulting in
astly reduced memory and CPU requirements during execu-
ion, making the use of a microprocessor possible. The fre-
uency and order of the image processing modules are deter-
ined via a predefined, user-selectable “control string” or

cript without recompilation of the image processing code
Fig. 5�. �AVS2 then issues the processed video frame data
ver an outbound connection �via RS-232, wired Ethernet, or
nternet� to the visual prosthesis system in real time �Fig. 5�.

The control string or script defines the order and frequency
hat the image filters are applied to the input video frames.
ach image filter in a specific sequence is applied to the re-
ults of the filter before it, in a net cascading effect. Thus,
lter 1 is applied to the raw pixelated video frame; filter 2 is

hen applied to that result, and so on to the last filter, at which
ime the processed image is ready to be issued for stimulation

ig. 4 Gumstix™-based �AVS2, a stand-alone, battery-operated, por-
able, general purpose microcomputing platform for real-time image
rocessing.

Fig. 5 Schematic of �A
ournal of Biomedical Optics 016013-
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of the prosthesis. This cycle repeats anew for each incoming
video frame. Before use, the blind subject is tested and the
specific sequence of filters that provides him the best results is
determined. This sequence is incorporated into the control
script, which is then downloaded onto the device. In the cur-
rent implementation of �AVS2, the control script is not
changeable by the user; however, implementing �AVS2 on an
advanced embedded platform such as an Apple iPhone could
allow the user the selection of a number of prepared control
scripts in real time �e.g., one for daytime, one for nighttime,
etc.�.

In particular �AVS2 adheres to the following modular
processing architecture �Fig. 5�.

Stage 1: camera image acquisition. �AVS2 utilizes access
to an “image generator,” i.e., a digital video camera. The cam-
era may be local, directly connected via the built-in USB port,
or it may be a local or remote IP camera on an accessible
network. For a locally connected �hardwired� camera, �AVS2

will open an exclusive read channel to the device over the
USB bus to gain access to the camera’s video buffer. For an IP
camera, �AVS2 will access the camera at its IP address, using
the access protocol specific to the type of camera in use �e.g.,
HTTP, UDP�.

Stage 2: image capture. Once �AVS2 has established a con-
nection to a digital video camera, it must extract discrete im-
age frames from the camera. It does this by reading the cam-
era’s YUV frame buffer.

Stage 3: custom image processing including pixelation.
The standardized image representation is reduced in reso-
lution �pixelated� to match the pixel resolution of the patient’s
retinal implant electrode array. For example, if the original
image representation has a resolution of 640�480 raw pix-
els, the image is downsampled to the patient’s electrode array
size, e.g., 16�16 pixels, thus becoming a 256-byte pixel ar-
ray. This downsampling affords �AVS2 its real time capabil-
ity, as it allows for a subsequent dramatic speed-up of other-
wise computationally expensive image processing filters that
can now be equally efficiently executed on the reduced-size
pixel array rather than the full-resolution camera video frames
�for more detail see Sec. 2.4�. Specialized image processing

rocessing architecture.
VS2 p
January/February 2010 � Vol. 15�1�3
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lters �e.g., contrast, brightness, gray equalization, gray lev-
ls, inversion, edge detection, and image blur27,28� are then
pplied to the resolution-reduced/pixelated image �pixel ar-
ay� according to a predefined/user-selectable control string or
cript to enhance its essential characteristics, cleaning up the
mage before issuance to the retinal implant.

tage 4: image data transmission. The final stage in
AVS2 processing causes the processed pixel array to be sent

o a power and data telemetry system �Fig. 5� that subse-
uently outputs the image data, e.g., by means of electrical
urrent pulses on the patient’s retinal implant electrode array
o generate visual perceptions, i.e., so-called phosphenes.

.3 Microcomputer-Based Artificial Vision Support
System Connectivity

AVS2 supports a variety of interfaces that enable its con-
ectivity to input devices such as digital cameras, and to out-
ut devices such as artificial vision systems. The interfaces
urrently supported are as follows.

.3.1 Universal Serial Bus Camera Interface
AVS2 contains a fully supported, general purpose USB port,

llowing for the connection of a wide range of USB devices,
ncluding many types of USB web cameras, without the need
f an external power supply. Alternatively, accessing an IP
amera is possible as well, using an HTTP protocol to an IP
amera connected to the onboard Ethernet port. When using a
UV-capable USB or IP camera, the camera’s grayscale video

rame buffer is directly accessible to the �AVS2 image pro-
essing filters.

.3.2 Ethernet-Based �Transmission Control Protocol/
Internet Protocol� Data Exchange Protocol

o integrate the �AVS2 with artificial vision prostheses, an
xtensible Ethernet-based �i.e., TCP/IP� data exchange proto-

ig. 6 Schematic view of Ethernet-based data exchange protocol bet
rosthesis.30
ournal of Biomedical Optics 016013-
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col �Fig. 6� has been developed �for details see Ref. 26� to
facilitate the transfer of the �AVS2-manipulated �video� out-
put data to, e.g., power and data telemetry systems for retinal
prostheses.30 This Ethernet-based protocol allows for maxi-
mum flexibility between systems, and is capable of two-way
data transfer as well as status message transmission. The in-
terface protocol is sufficiently flexible, so that it is also pos-
sible for a power and data telemetry system to transmit its
own data �e.g., measurement data obtained from the vision
implant� back to �AVS2 for feedback control, further pro-
cessing, and analysis. Additionally, contingency measures are
integrated into the protocol, providing for negative acknowl-
edgements and data resend requests, should the need arise in
which data is required to be resent.

2.3.3 RS232 Communication Protocol
Using the onboard universal asynchronous receiver/
transmitter, it is possible to write the �AVS2-manipulated
�video� output data to the Gumstix serial port at speeds of up
to 921,600 baud, using a RS-232 8N1 format: each data byte
is actually nine bits long, i.e., eight data bits and one stop bit.

2.4 Microcomputer-Based Artificial Vision Support
System Real-Time Image Processing Capability

The real-time image processing capability of �AVS2 is en-
abled by the downsampling of the native resolution of the
artificial vision prosthesis camera system before image pro-
cessing filters are applied. For example, if the original image
representation has a resolution of 640�480 raw pixels �i.e.,
307,200 pixels�, and if the implanted electrode array of an
epiretinal vision implant has a dimension of 16�16 stimulat-
ing electrodes �i.e., 256 electrodes�, then the downsampling/
binning of the 640�480 pixel image to 16�16 pixels af-
fords a speed-up factor of 1200 �i.e., 3 orders of magnitude� in
subsequent filter processing. This process allows otherwise
computationally expensive image processing filters �e.g., blur-

AVS2 and a power and data telemetry system of an artificial vision
ween �
January/February 2010 � Vol. 15�1�4
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ing� to be executed in real time �i.e., in excess of 30 fps�
ithout loss of filter validity/efficiency. In the Appendix in
ec. 5 we show mathematically and numerically, for a set of
elevant image processing filters, that downsampling first and
ubsequent filtering of the reduced size image yields the exact
r nearly exact same end result �i.e., is commutable or nearly
ommutable� compared to downsampling after image process-
ng filters have been applied to the full-resolution camera
ideo frames. This speed-up enables the employment of com-
utationally low power, portable, and battery-powered micro-
omputing platforms to perform real-time image processing
ithin an artificial vision system, thereby affording users en-
anced mobility and independence.

Results
able 1 demonstrates the binning/downsampling performance
fficiency of �AVS2 for various artificial vision prostheses
ith electrode array dimensions ranging from 4�4 to 32
32. For example, �AVS2 is capable of binning an in-
emory source image �i.e., a frame� of 160�120 pixels

own to 8�8 pixels at a rate of 354 frames per second �fps�.
Table 2 shows individual and total filter performance effi-

iencies for various electrode array dimensions, obtained with
n in-memory frame of 160�120 pixels. The results show
hat the application of filters to the workflow impact the pro-
essing only marginally. For example, adding a contrast filter
o the 8�8 case reduces the frame rate by only 3, from 354
no filters� to 351 fps. This demonstrates that binning/

able 1 Binning/downsampling performance efficiency of �AVS2 in
imensions and a camera frame resolution of 160�120 pixels.

Camera frame resolution

Electrode array dimension 4�4 pixels

Binning performance 370

able 2 Individual and total filter performance efficiencies �includin
ision prostheses with various electrode array dimensions and a cam

Binning dimension 4�4 pixels 8�

Contrast filter 369

Brightness filter 368

Gray equalization
filter

300

Gray level filter 370

Inversion filter 371

Edge detection
filter

368

Image blur filter 367

All filters engaged 302
ournal of Biomedical Optics 016013-
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downsampling represents the bulk of the processing, whereas
the individual filters �or even a sequence of all listed filters�
pose a minimal additional processing burden, i.e., the image
processing filters are “lightweight.” In practice, the real-time
frame rate is much more dependent on the maximum frame
rate of the camera used, some of which are limited to 10 fps,
such as the camera used for our development.

As far as the actual CPU utilization of the Gumstix is
concerned, using a camera frame resolution of 160
�120 pixels with a sustained frame rate of 10 fps �including
the bidirectional communication between �AVS2 and the
camera to generate the YUV frame buffer� results in only a
10% CPU load �measured using the Unix “top” command�. In
practice, the CPU load is linearly dependent on the camera
frame rate, theoretically allowing for a maximum of 100 fps
at a camera frame resolution of 160�120 pixels, whereas
many implanted prostheses require only 60 or fewer frames
per second for optimal functioning.

Figure 7 displays application of the previous filters to a
typical scenario �i.e., a darkened hallway�. Here the simulated
electrode array dimensions of the artificial vision prosthesis
�i.e., binning� are 32�32.

Furthermore, duration tests with two common battery
types were performed. The first test used a single 6-V 2CR5
alkaline battery, resulting in an average duration of 2.7 h. The
second test used a NiMH 6-V�5-Ah rechargeable battery
pack, resulting in an average duration of 12 h.

per second for artificial vision prostheses with various electrode array

160�120 pixels

pixels 16�16 pixels 32�32 pixels

54 303 265

binning/downsampling� of �AVS2 in frames per second for artificial
e resolution of 160�120 pixels.

els 16�16 pixels 32�32 pixels

296 244

293 233

253 221

301 256

302 262

266 170

293 236

217 137
frames

8�8

3

g prior
era fram

8 pix

351

349

288

352

353

341

349

280
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The Gumstix natively supports a multiboot versatility. If a
icroSD memory card is inserted into the Gumstix’s card

lot, the Gumstix will boot from the system installed on it
nstead of booting from its own internal flash RAM. Thanks to
his capability, we have been able to provide several custom-
ailored image filter cascades, each on its own microSD card,
uch that a change from one setting to another can easily be
ccomplished by swapping cards. On reboot, �AVS2 auto-
atically executes the new processing cascade established on

he microSD card without further user interaction, and con-
inuously performs real-time image processing.

Conclusion
o support existing and future camera-driven artificial vision
rostheses, we have devised the microcomputer-based artifi-
ial vision support system ��AVS2�: a small, stand-alone,
attery-operated, customizable image processing system that
tilizes a general purpose miniaturized Linux processing plat-
orm �Fig. 4�. �AVS2 provides real-time image processing
or artificial vision systems while maintaining portability and
hus independence for its users. Moreover, with its general
urpose computing capabilities, it can easily be reconfigured
o support prosthetic systems beyond artificial vision, such as
ontrol of artificial limbs.

Multi-purpose systems, such as smartphones �e.g., Apple
Phone, BlackBerry, or Android phones�, would be ideal plat-
orms to host �AVS2, as they provide a cell phone link and
ntegrated GPS functionality, in addition to image processing
apabilities. It should be noted that at the time of this writing,
he application programming interface �API� of the iPhone
oftware development kit �SDK� did not provide for live cam-

Original Image Contrast Filter Brightness Filter

Gray Equalization Filter Gray Level (8) Filter Inversion Filter

Combination Gray Equalization

Edge Detection Filter Blur Filter and Blur Filters

ig. 7 Example filters of �AVS2 applied to a typical scenario �i.e., a
arkened hallway�. The electrode array dimensions of the artificial
ision prosthesis are 32�32.
ournal of Biomedical Optics 016013-
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era stream access. Such support is anticipated with the next
SDK update. Nevertheless, we have proceeded to port a static
version of �AVS2 to the iPhone, applying the suite of filters
to still-image manipulation and storage functionalities. This
will be updated to perform real-time video processing on the
iPhone as soon as its SDK supports live camera stream ac-
cess.

We would like to emphasize that the employment of
�AVS2 in visual prosthetics is by no means limited to retinal
implants �epi- or subretinal� only.1,4–6 On the contrary,
�AVS2 is directly and immediately applicable to any �artifi-
cial� vision-providing/stimulating system that is based on an
external �e.g., eyeglass-mounted� or internal �e.g., intraocular
camera� video-camera system as the first step in the
stimulation/processing cascade, such as optic nerve
implants,10–12 cortical implants,13–16 electric tongue
stimulators,17–20 and tactile stimulators �both electrical and
mechanical21–23�. In addition, �AVS2 can interface to infrared
�IR� camera systems to augment the visual cues with thermal
information, allowing for “supervision” at night and during
adverse weather conditions such as fog.
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Appendix
In the following we show mathematically and numerically, for
a set of relevant image processing filters, that downsampling
first and subsequent filtering of the reduced size image yields
the exact or nearly exact same end result compared to down-
sampling after image processing filters have been applied to
the full-resolution camera video frames. The degree of com-
mutation between both procedures for the respective image
processing filters is reported in the following in units of gray
value differences.

1 General Definitions for Image Processing
Filter Proofs

In the following, all divisions in �a /b� form denote integer
divisions, and all divisions not enclosed within brackets rep-
resent regular divisions. All q �quotients, with 0�q�255 as
applied to filters operating on 256 grayscale values� and r
�respective remainders� are �N. Note that in general, for any
integer division �a /b�=q* with corresponding remainder r*,
we can eliminate the integer division notation via

q* +
r*

b
=

a

b
, 0 � r* � b .

Let xi, 0�xi�255, denote the gray value of the pixel to be
filtered, f�xi� be the image processing filter applied to the
pixel, and n denote the number of pixels to be processed into
one superpixel, i.e., downsampling. The downsampling is as
follows:
January/February 2010 � Vol. 15�1�6
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x̄ = ��i=1

n

xi

n
� =

��
i=1

n

xi� − r1

n
,

ith r1 being the remainder of �i=1
n xi /n, 0�r1�n, and q1 the

uotient, 0�q1�255.

General Observations
et a ,b ,c�0, and �Z, but b /c is not an integer. Then �a
b /c� can be rewritten by:

If a � 0 b/c � 0, then

a � 0 b/c � 0,
a + �bc �

a � 0 b/c � 0, a + �bc � − 1

a � 0 b/c � 0, a + �bc � + 1.

ith the previous definitions, the downsampling first versus
ltering first procedures are:

Procedure1: downsample first, filter second.

f���i=1

n

xi

n
�� = f�x̄� .

rocedure2: filter first, downsample second.

��i=1

n

f�xi�

n
� = f�x� .

.1 Type 1: Additive Filters

ilter description

f�xi� = xi + a, a is a constant � Z .

valuation
rocedure1:

f�x̄� = x̄ + a .

Procedure2:
since r1 /n�1, and a ,q1 are both integers,

f�x� = ��i=1

n

�xi + a�

n
� ,

= �x̄ +
r1

n
+ a� ,
ournal of Biomedical Optics 016013-
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= x̄ + a .

Comparison

f�x̄� = x̄ + a = f�x� .

The order of downsampling and filtering is inconsequential
with respect to the resulting gray values. Both procedures are
commutable.

2.2 Type 2: Multiplicative Filters

Filter description

f�xi� = �axi�, a =
b

d
is a rational constant � R � 0.

Evaluation

Procedure1: let r2 be the remainder of f�x̄�= �ax̄�, such that

f�x̄� = � b

d
���

i=1

n

xi� − r1�
n

� ,

=

b

d
���

i=1

n

xi� − r1� − r2

n
,

=

b��
i=1

n

xi�
dn

−
r1

n
−

r2

n
.

Procedure2: let ri be the remainder of �bxi /d�, 0�ri�d, such
that

f�x� = ��i=1

n

�axi�

n
� = ���

i=1

n �bxi − ri

d
�	

n
� .

with r3, 0�r3�n, being the remainder of the prior division,
it follows

f�x� =

��
i=1

n �bxi − ri

d
�	 − r3

n
,

=

b��
i=1

n

xi�
dn

−

�
i=1

n

ri

dn
−

r3

n
.

Comparison
The two procedures differ by
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��
i=1

n

ri

dn
+

r3

n
� − � r1

n
+

r2

n
� .

ote that 0�r1�n, 0�ri�d, and 0�r3�n. Hence, the
reatest difference with respect to the resulting gray values
etween the two procedures is

��
i=1

n

ri

dn
+

r3

n
� − � r1

n
+

r2

n
� � 2.

oth procedures are nearly commutable.

.3 Type 3: Inversion Filter

ilter description

f�xi� = 255 − xi.

valuation
rocedure1:

f�x̄� = 255 − x̄ .

rocedure2:

f�x� = ��i=1

n

�255 − xi�

n
� ,

=�255 −

�
i=1

n

xi

n
� ,

=255 − ��i=1

n

xi

n
� − 1,

=255 − x̄ − 1.

omparison

f�x̄� = 255 − x̄ = f�x� + 1.

herefore, the respective gray values of the two procedures
iffer by a constant value of 1. Hence, they are nearly com-
utable.

.4 Type 4: Gray-Value Reduction Filter

ilter description
et v denote the new number of gray levels. For practical
urposes, 1�v�256, v�N. Let c be the number of original
ournal of Biomedical Optics 016013-
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grayscale values incorporated into each new grayscale value,
and � be the interval between gray values of the new gray-
scale.

c = �256

v �, � = � 255

v − 1 �, 1 � c � � � 2c� � � .

The gray-value reduction filter function then reads:

f�xi� = �xi

c �� .

Evaluation

Procedure1: let r4 be the remainder of x̄ /c, 0�r4�c. Recall
that x̄= ���i=1

n xi�−r1� /n. Hence, Procedure1 yields:

f�x̄� = � x̄c �� = � x̄ − r4

c
�� ,

=


��
i=1

n

xi� − r1

n
� − r4

c
� ,

=

��
i=1

n

xi

cn
−

�r1

cn
−

�r4

c
.

Procedure 2: let ri be the remainder of �xi /c�, 0�ri�c, and r5

be the remainder of ��i=1
n �xi /c�� /n�, 0�r5�v.

f�x� = ��i=1

n �xi

c ��
n

� ,

=

�
i=1

n �xi

c �� − r5

n
,

=

�
i=1

n � xi − ri

c
�� − r5

n
,

=

��
i=1

n

xi

cn
−

��
i=1

n

ri

cn
−

r5

n
.

Comparison
The two procedures differ by
January/February 2010 � Vol. 15�1�8

31.215.226.60. Terms of Use:  http://spiedl.org/terms



R
1

T

T
o
o
v
t
v

�

C
W
v

N
c
=
i

w

T
5

2
F
t
s
o

Fink, You, and Tarbell: Microcomputer-based artificial vision support system for real-time image processing…

J

��r1

cn
+

�r4

c
� − ���

i=1

n

ri

cn
+

r5

n
� .

ecall that 0�r1�n, 0�r4�c, 0�ri�c, 0�r5�n,
�c���2c.

0 � ��r1

cn
+

�r4

c
� � ��

c
+ �� � 2 + 2c ,

0 � ���
i=1

n

ri

cn
+

r5

n
� � ���

i=1

n

c

cn
+ 1� = � + 1 � 2c + 1.

herefore, since

0 � ��r1

cn
+

r4

c
� � 2 + 2c, 0 � ��

i=1

n

ri

cn
+

r5

n
� � 2c + 1,

��r1

cn
+

r4

c
� − ��

i=1

n

ri

cn
+

r5

n
� � 2c + 2.

hus, the greatest difference between the resulting gray values
f the two procedures is 2c+2. Hence, the lower the number
f new gray values, the larger the deviation of resulting gray
alues, and vice versa. Thus, the degree of commutation be-
ween both procedures depends on the number of new gray
alues.

�� Proof of 1�c���2c
onsider c= �256 /v��1, �= �255 /v−1�= ��255v /v−1� /v�.
ith 1�v�256, v�N, the numerator of � can take on

alues

2552

254
� �255v

v − 1
� �

255 � 2

1
.

ote the left side of this inequality is �256 but �257 and
orresponds to v=255, while the right side corresponds to v
2, and is equal to 510. To the left side of this series of

nequalities, we can then tag

256 �
2552

254
� �255v

v − 1
� �

255 � 2

1
,

hich then implies that c��.
Furthermore, 2c=2�256 /v�� �2�256 /v�−1= �512−v /v�.

he smallest possible value for the numerator of 2c is
12−v=512−2=510=255�2 /1. Hence, ��2c.

.5 Type 5: Blur Filter
or the blurring, we developed and implemented a computa-

ionally inexpensive code that consists of two subsequent
weeps across the respective image �downsampled or full res-
lution�: first a vertical sweep �i.e., by columns� followed by
ournal of Biomedical Optics 016013-
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a horizontal sweep �i.e., by rows�. In both sweeps only NN
=1 horizontal or vertical nearest neighbors, respectively, are
considered. The nearest neighbors are equally weighted. This
blur procedure delivers an effective blur �e.g., Fig. 7� and is
applied in lieu of computationally expensive Gaussian blur
filters.27,28 We randomly generated 320�320 pixel images,
then proceeded to: 1. blur the image once with the number of
nearest neighbors NN=1, and downsample the image to ei-
ther 4�4, 8�8, 16�16, or 32�32; or 2. downsample the
image to either 4�4, 8�8, 16�16, or 32�32, then blur it.
Results between the same downsampling dimensions of the
two procedures were compared, and the respective average
deviation per pixel was recorded. The numerical simulations
revealed that the deviation between the two procedures is
minimal �i.e., they are nearly commutable�: worst average de-
viation was 4.4�3.4 on 32�32 downsampled image, and
best average deviation was 0.58�0.58 on a 4�4 down-
sampled image. 10,000 simulation runs were conducted, re-
spectively.

2.6 Type 6: Gray Equalization Filter
For the gray equalization we employed the filter described in
Refs. 27 and 28. We randomly generated 320�320 pixel im-
ages, then proceeded to: 1. equalize the image once with
slope=0, and downsample the image to either 4�4, 8�8,
16�16, or 32�32; or 2. downsample the image to either 4
�4, 8�8, 16�16, or 32�32, then equalize it �with slope
=0, see Refs. 27 and 28�. Results between the same down-
sampling dimensions of the two procedures were compared,
and the respective average deviation per pixel was recorded.
Average deviations were obtained via averaging the differ-
ences between corresponding pixels in images produced
through first equalization then binning and first binning then
equalization. Increased binning results in increased deviation:
32�32 resulted in an average deviation of 58�33, 16�16
resulted in 61�35, 8�8 resulted in 64�37, and 4�4 re-
sulted in 72�34. 10,000 simulation runs were conducted,
respectively. The numerical simulations revealed that large
downsampling �e.g., 4�4� after equalization merely centered
pixel gray values around the middle of the grayscale �i.e.,
128�, suggesting that it is more effective to perform gray
equalization after downsampling to attain meaningful equal-
ization effects, as it utilizes the entire grayscale range of 0 to
255.
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