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Abstract—We consider the Wyner-Ziv (WZ) problem of lossy
compression where the decompressor observes a noisy version of
the source, whose statistics are unknown. A new family of WZ
coding algorithms is proposed and their universal optimality is
proven. Compression consists of sliding-window processing fol-
lowed by Lempel-Ziv (LLZ) compression, while the decompressor
is based on a modification of the discrete universal denoiser
(DUDE) algorithm to take advantage of side information. The new
algorithms not only universally attain the fundamental limits, but
also suggest a paradigm for practical WZ coding. The effectiveness
of our approach is illustrated with experiments on binary images,
and English text using a low complexity algorithm motivated by
our class of universally optimal WZ codes.

Index Terms—Discrete denoising, rate-distortion function,
sliding-window coding, universal algorithm, Wyner-Ziv coding.

1. INTRODUCTION
ONSIDER the basic setup shown in Fig. 1 consisting of a

source with unknown statistics driving a known discrete
memoryless channel (DMC), and a decoder that receives a
compressed version of the source in addition to the noisy
channel output. The goal is to minimize the distortion between
the source and the reconstructed signal by optimally designing
the encoder and decoder. This is the problem of rate-distortion
coding with decoder side information, commonly known as
Wyner—Ziv compression after the seminal paper [1]. Even
without side information, the problem of finding universal
practical schemes that get arbitrarily close to a given point
on the rate-distortion curve is notoriously challenging (see
[2]-[4] for recently proposed practical schemes). Even when
the discrete source distribution is known, no practical scheme
is currently known to approach the rate-distortion function
when the source has memory. Other than the region of low
distortion, the rate-distortion function is not known even for a
binary Markov source (see [S]-[7]).
As an example of practical motivation for the setup shown in
Fig. 1, consider the problem of audio/video broadcasting where
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Fig. 1. The basic setup of WZ coding.

in addition to the analog signal, the decoder has access to some
additional information transmitted in a digital channel for in-
stance. In such setup, a legacy receiver only observes the output
of the channel, while a more sophisticated receiver in addition
has access to coded information which helps boosting repro-
duction fidelity. Thus, we can view the setup as one of universal
systematic channel coding where the added “redundancy” is re-
ceived error-free.

An alternative view of this problem is as a denoising problem
where the denoiser, in addition to the noise-corrupted data, has
access to a fidelity-boosting (FB) sequence conveyed to it via a
channel of capacity R. Both viewpoints are equivalent because
the source/channel separation theorem [8] guarantees that there
is no loss in separating the source coding and channel coding
operations at least under certain sufficient conditions on source
and channel [9]. Therefore, the encoder is able to send any in-
formation with entropy less than the channel capacity almost
losslessly to the decoder. Consequently, although in practice we
would often have a channel of capacity R, we simply consider
the encoder-channel-decoder chain as a noiseless bit pipe of rate
R.

Note that in these two viewpoints the role of the main signal
and fidelity-boosting signal is interchanged. In this paper, we
adopt the latter, and suggest a new algorithm for WZ coding of
a source with unknown statistics. We show that, for stationary
ergodic sources, the algorithm is asymptotically optimal in the
sense that its average expected loss per symbol converges to the
minimum attainable expected loss.

The encoder of the proposed algorithm consists of a sliding-
block (SB) coder followed by Lempel-Ziv (LZ) compression
[10]. SB lossy compression is shown in [11] to be able to per-
form as well as conventional lossy block compression. We ex-
tend this result to the WZ coding setup, and show that the same
result holds in this case as well. The reason we use SB codes
instead of block codes in our algorithm is the special type of de-
coder we employ. The decoder is based on a modification of the
discrete universal denoiser (DUDE) algorithm [12], DUDE with
FB (fbDUDE), to take advantage of the FB sequence. We prove
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that the optimality results of the original DUDE carry over to
fbDUDE as well.

As mentioned before, in our setting we always assume that
the channel transition matrix is known both to the encoder and
the decoder. As argued in [12], the assumption of a known
channel and an unknown signal is realistic in many practical
scenarios. Furthermore, unlike the DUDE setting [12], in the
setup of this paper the decoder can easily learn the channel,
e.g., by having the encoder dedicate a negligibly small portion
of its rate to describing the first few components of the source
sequence which then act as a training sequence. Further still,
if a modicum of feedback from decoder to encoder is allowed,
then the encoder too can be informed of the channel arbitrarily
precisely. Therefore, unlike in the DUDE setting where knowl-
edge of the channel plays a key role [13], [14], in our setting,
at least decoder knowledge of the channel is not crucial, and
our schemes can be easily modified to accommodate channel
uncertainty.

Some progress towards practical WZ coding schemes has
been made in recent years, as seen, e.g., in [15]-[20]. The pro-
posed schemes, however, operate under specific assumptions
of a known (usually memoryless) source and side information
channel. Practical schemes for more general source and/or
channel characteristics have yet to be developed and, a fortiori,
no practical universal schemes for this problem are known.

The problem of WZ coding of a source with unknown sta-
tistics was recently considered in [21], where existence of uni-
versal schemes in a setting similar to ours is established. In con-
trast, our schemes suggest a paradigm for WZ coding of discrete
sources which is not only practical but is justified through uni-
versal optimality results.

The organization of the remainder of this paper is as fol-
lows. In Section II, the notation used throughout the paper is
introduced. Section III presents fbDUDE, the extension of the
DUDE denoising algorithm [12] to take advantage of a FB se-
quence, and shows how the asymptotic optimality of the orig-
inal DUDE carries over to this case as well. Section IV pro-
poses SB WZ codes and proves a result on their relationship to
WZ block codes. In Section V, our new WZ coding algorithm
is presented and its optimality is established. In Section VI we
present some experimental results, concluding in Section VII
with a brief discussion of possible extensions of this work. Out-
lines of the proofs are given in the main body, with the full proofs
relegated to the Appendix .

II. NOTATION

Let X, X , and Z denote the source, reconstructed signal, and
channel output alphabets, respectively. In this paper, for sim-
plicity, we restrict attention to

X:)E:Z:{al,...,a]\r}

though our derivations and results carry over directly to non-
identical finite sets X, X , and Z. Bold low case symbols, e.g.,
X, ¥, z, denote individual sequences. The discrete memoryless
channel is described by its transition matrix IT, where II(4, 5) de-
notes the probability of getting «; at the output of the channel
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when the input is «;. Recall that we assume that the matrix II is
known both by the encoder and the decoder.

Let A : X x X —IR™ be the loss function (fidelity crite-
rion) which measures the loss incurred in denoising (decoding)
a symbol ¢; to another symbol «j, which will be represented by
a N x N matrix, A : {\(«a;, a;)}. Moreover, let

)\max = ma’X)\(aLaj) (1)
iJ
and note that \,,x < oo, since the alphabets are finite. The
normalized cumulative loss between a source sequence =" and
reconstructed sequence 2", is denoted by

1 n
n naAn = - A i-Ai .
pn(z", 2") n; (i, &)

Let 7; and A; denote the ith column and the jth column of II
and A matrices respectively, i.e.

H:[’/T1|...|7FN] A:[)\1||)\N]

For N-dimensional vectors u and v, u® v denotes the N -di-
mensional vector that results from componentwise multiplica-
tion of u and v, i.e.

u © v[i] = u;;. (2)

As in (2), we denote the ith component of a vector by either a
subindex or, when that could lead to some confusion, in square
brackets.

III. DUDE WITH FIDELITY BOOSTING INFORMATION

The DUDE algorithm was proposed in [12] for universal
noncausal denoising of a discrete signal corrupted by a known
DMC. The DUDE is described by (3) and (4)

X"l(z")[L] = arg ngé‘l rT(z", z;’:ll, zZﬂ)H_I[AT o, (3)
where, for § € Z

r(z",d',0")[B] =
|{l+1§i§n—l:zf:ll:al,zfii:bl,zi:ﬂ}L 4)

Remark: Although in (3) itis implicitly assumed that the tran-
sition matrix II is a square matrix, this assumption is not nec-
essary. As noted in [12], as long as the rows of II are linearly
independent, the results can be generalized to nonsquare ma-
trices by replacing IT™" with II” (Il II")~1 in (3). The linear
independence of the rows of II requires the channel inputs to be
identifiable, i.e., it is not possible to fake the output distribution
corresponding to any of them using some input distribution over
the other input symbols. This property, which holds for most
channels of interest, will be assumed throughout the paper.

In short, DUDE works as follows. In its first pass through the
noisy data, it estimates the conditional marginal distributions
of the clean data given their noisy observation of P x|z~ (-|-)
by first estimating the bidirectional conditional probabilities
P .1z~ (+]-) through counting, and then using the invertibility
of the DMC. Then in the second pass, it finds z; based on these
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estimations. The DUDE denoising algorithm is noncausal and
therefore each output depends on the whole noisy sequence.
The following optimality results have been shown for DUDE
[12].

1) Stochastic setting: the source is assumed to be stationary,
and no further constraints are imposed on its distribution.
Asymptotically DUDE performs as well as the best de-
noiser that knows the source distribution provided that the
context length £ grows adequately with the data size.

2) Semistochastic setting: the source is assumed to be an in-
dividual sequence, and the only randomness is assumed
to originate from the channel. Asymptotically, DUDE per-
forms as well as the optimal denoiser in the class of sliding-
window denoisers for that particular sequence.

Better experimental performance than the DUDE has been
achieved by alternative methods to estimate the bidirec-
tional conditional probabilities [22]-[24]. As we discussed in
Section I, decoding for the WZ problem can also be considered
as a denoising problem where the denoiser, in addition to the
noisy signal, has access to a FB sequence designed by the
source encoder to be as helpful as possible to the decoder. From
this perspective, we are motivated to generalize DUDE so as to
handle not only the output of the DMC, but the fidelity boosting
information. A desirable feature of such a generalization is the
optimality in senses analogous to those described above. A
natural way to accomplish this, which we refer to as f{bDUDE
is described in (5) and (6).

Xtz g
= arg ;rgg vl (2" ", z}:ll, zfii y;fz)ﬂ_l[/\i Ony,] (5)

where, for § € Z, and t = max{l,m} as shown in (6) at the
bottom of the page.

Note that the counting process is done simultaneously in
both the noisy and FB sequences. Although seemingly more
involved, the denoising algorithm described in (5) and (6), is
simply the DUDE algorithm working on an enlarged context.
For the fbDUDE, the context of each symbol in the noisy
signal in addition to the conventional DUDE context of noisy
neighboring symbols, consists of the same context window
of the FB sequence. Note that in contrast to the conventional
context of noisy neighboring symbols, in the context window of
the fidelity boosting sequence there is no “hole in the middle”.
It should be noted that our proposed generalization of the
DUDE will not be effective with reasonable computational
complexity unless the fidelity boosting sequence depends on
the original clean signal in a sequential manner, such as a
sliding-window. An example of a nonsequential dependence
is a fidelity boosting sequence generated by an arbitrary linear
block code.
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In order to show that the optimality results of [12] carry over
to this case, consider a channel II, with input z; = (z;,y;),
and output z; = (z;,y;), where z; is the output of the original
channel I, when the input is z;. Note that this channel does not
disturb the second component of its input vector (z;,%;). As
shown in the next result, since the newly defined channel II in-
herits its invertibility from the original channel II, the results of
[12] concerning asymptotic optimality of DUDE can be applied
to this case as well.

Theorem 3.1: Provided that t,,|X|*'» = o(n/logn),V X,y

n—tny
li Mz, T;
n l—r)noo n — 2tn . (xleL)‘|
i=tp+1
= lim Dy, m, (2", y",Z2"), as. (7)
n — oo ’
where
Dy, m,. (2", 9", 2")
n—ty w it
2 n T mn
> A (331 f(yi—ln y Zi—m,, ))
i=t,+1

= min
f:y2ln+1 X Z2mn+l — X

n — 2t,

and z; is the output of the denoiser in (5) and (6) with parameters
I, My, and ¢, = max{l,, mn}.

Remark 1: Here the class of decompressors is restricted to
sliding-window decoders of finite-window length on both noisy
data and FB sequence. Theorem 3.1 states that in the semis-
tochastic setting where both the source and the FB sequence are
individual sequences, with probability one, the asymptotic ac-
cumulated loss of the fbDUDE decoder is no more than the loss
incurred by the best decoder of the same order in this class.

Remark 2: Although Theorem 3.1 is stated for the semis-
tochastic setting, as in [12], there is a counterpart in the sto-
chastic setting where the source and FB sequences are jointly
stationary processes.

IV. SLIDING-WINDOW WYNER-ZIV CODING

The majority of achievability proofs in the information
theory literature are based on the idea of random block coding.
Shannon pioneered this technique for proving his coding
theorems for both lossy compression and channel coding. In
rate-distortion theory, besides the conventional block codes,
sliding block codes were introduced in 1975 by Gray, Neuhoff,
and Ornstein [11] and independently by Marton [25], and
shown to achieve the (block-coding) rate-distortion function
in [11]. SB encoders apply a function with a finite number of
arguments to the source sequence, outputting another sequence

r(z",y", a0 e ) [B]= |{t—|— 1<i<n—t:

—m

i—1 _ 1 il _ gl itm _ om . _
zi_p =a,z; =0yt —cfm7zl—/3}|.

(6)
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that has lower entropy, but resembles the original sequence as
much as the designer desires.

In the rest of the section, we show that sliding block WZ
coding achieves the Wyner—Ziv rate-distortion function for sta-
tionary sources.

A. Block Coding

A WZ block code of length n and rate R consists of encoding
and decoding mappings, f,, and g,,, respectively, which are de-
fined as follows:

fo X" —{1,2,...,[2"%]}
gn 2" x {1,2,... [2"F]} — X"
The performance of such code is defined as the expected average

distortion per symbol between the source and reconstruction se-
quences, i.e.

- 1
E[pn(Xn7Xn)] = gE

zn:/\(XuXi)]

where X" = g, (2", f.(X™)).
The rate distortion pair (R, D) is said to be achievable if for
any given ¢ > 0, there exists f,,, and g, such that

Elpn (X", g (2" f2(X"))] < D+ ¢

for all sufficiently large n. For a given source X, and memory-
less channel described by transition matrix II, the infimum of
all achievable distortions at rate R is called Dx 1, i.e.

Dx n(R) = inf{D : (R, D) is achievable}.

More explicitly, Dx m(R) is the distortion-rate function of our
WZ coding setting.

B. Sliding-Block WZ Compression

An extension of the idea of SB rate distortion coding is SB
WZ coding. In this section, using the techniques of [11], we
show that in WZ coding any performance that is achievable by
block codes is also achievable by SB codes.

A WZ SB code consists of two time-invariant encoding and
decoding mappings f and g. The encoding mapping f with con-
straint length of 2k + 1 maps every 2k + 1 source symbols into a
symbol of Y which is the alphabet of the FB sequence; in other
words

[y, (8)

This encoder moves over the source sequence and generates the
FB sequence Y by letting

Y = F(X[F). ©)

On the other hand, the decoding mapping g with the constraint
length of max{2! + 1,2m + 1} maps a block of length 2{ + 1
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of the noise corrupted signal and a block of length 2m + 1 of Y
sequence to a reconstruction symbol, i.e.

g: Z?H—l X y2m+1 _)‘)2' (10)
The decoder slides over the noisy and the FB sequences in a
synchronous manner, and generates the reconstruction sequence
by letting

X; = g(Z 48 vitm).

=171

Y

The following theorem states that SB-WZ codes perform at least
as well as WZ block codes.

Theorem 4.1: Let (R, D) be an interior point in the (block)
WZ rate-distortion region of a jointly stationary processes
X and Z representing the source and FB sequences respec-
tively. For any given €; > 0, there exists a SB-WZ encoder
f: X%+ Y where log |Y| > R, and a SB decoder g with
parameters [ and m, such that

D E XX, g(ZH, VM) < D + e, where V; =

=17 " i—

FXER).
2) H(Y) = lim LH(V1,...,Y,) < R — e, for some
e > 0. " -

Proof: The complete proof is presented in Appendix A; a
sketch of the main idea follows. The proof is an extension of
the proof given in [11] for showing that SB codes achieve the
same performance of block codes in the rate-distortion problem,
which in our scenario corresponds to the case where the de-
coder has only access to the FB sequence and there is no channel
output.

Since (R, D) is assumed to be an interior point of the achiev-
able region in the R — D plane, it is possible to find a point
(R1,D) such that Ry < R, but still the new point is an in-
terior point of the achievable region. Since (Ry, D) is an in-
terior point, there exists a block WZ encoder/decoder, (f,,, )
of rate R; and block length n, and average expected distortion
less than D + ¢, for any € > 0. Instead of considering the ini-
tial point of (R, D), we consider this new point with Ry < R
because, according to the theorem, our goal is to show that
there exists a SB encoder resulting in a FB sequence with en-
tropy rate lower than R. In order to achieve this goal we follow
techniques similar to those in [11]. To derive a SB code from
a block code, the most challenging part is dividing the source
sequence into blocks of fixed length such that it is possible to
apply the block code to these sub-blocks. This is a demanding
task first because we are looking for a stationary SB code, and
second because the decoder is also a SB decoder which should
be able to discriminate between different coded blocks concate-
nated by the encoder. The main tool in our proof, as in [11], is
the Rohlin-Kakutani theorem of ergodic theory. This theorem
enables us to define a SB encoder which finds blocks of length
n to apply the block code to them, and puts a fag sequence of
negligible length [ne]| after each encoded block. This tag se-
quence is not included in any of the codewords of the WZ block
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coder (f,,, g,) (the existence of such rag sequence is shown in
the proof). This would enable the decoder to discriminate be-
tween different coded blocks, while letting the encoder to gen-
erate a stationary FB sequence. The rest of the proof is devoted
to showing that the SB code defined in this way would satisfy
our desired constraints. [ |

To conclude this section, note that the two-step achievability
proof of Wyner and Ziv in [1] for proving their WZ theorem
(rate-distortion with side information) is extended in [26] to de-
vise a method which is used to prove a few SB source coding
theorems (theorems of Berger, Kaspi and Tung [27]-[29]) for a
general finite-alphabet ergodic multiterminal source. The focus
in [26] is on multiterminal sources for which we can no longer
use the method used in [11] to derive SB codes because the tag
sequences in the coded version received by different terminal
are not synchronized. In our case, since we have only one ter-
minal to code, and the side information is just the output of the
DMC due to the source, it is still possible to use the method used
in [11].

V. WYNER-ZIV DUDE

In Section III, we introduced the fbDUDE, a natural exten-
sion of the DUDE algorithm to the case where in addition to
the noisy signal the denoiser has access to encoded side infor-
mation. As described in Section III, this extension could easily
be obtained by considering a larger context for denoising each
symbol which comes from working on both signals simultane-
ously. Then Theorem 3.1 expressed the asymptotic optimality
of the fbDUDE denoiser. Section IV introduced SB-WZ coding,
and in Theorem 4.1 it was shown that using SB-WZ codes in-
stead of WZ block codes incurs no loss of optimality. Motivated
by the results established so far, in this section, we propose a
new WZ coding scheme, and prove its asymptotic optimality.

For any given block length n, let f¥ and g denote the en-
coder and the decoder of the scheme, respectively. The scheme
has a number of parameters, namely [, k,,, m,, and §, that their
meaning is made explicit in the following description of the al-
gorithm.

1) Encoder: For a given source sequence z" define
S(z™, k,, R) to be the set of all SB mappings of window
length 2k,, + 1 with the property that their output is a
sequence whose Lempel-Ziv compressed version LZ(-)
is not longer than nR, i.e.

1
S(z", kn, R) 2 {f c X Ly T Lz
n

(7)< RY.

(12)
Note that f(z™) is assumed to be equal to y", where y; =
faith ") for kn +1 <i < n—ky,,and y; = 0 otherwise.
For each f € S, and integers [,, and m,, define

V([ ln,mn)

n—kny

Ao

i=k,+1

=minE ZZH”

y:t’:;”))] (3)
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where the minimization is over all decoding mappings g :
Z2ntl 5 Y2matl L X Let f*(I,,,m,,) be the mapping
in S that minimizes V' (f, L, m,), i.e.

Fo(lnymn) = arg min V(f, bn, mn) (14)
and also let g* be the decoder mapping corresponding to
f* that achieves V(f*, 1, mp).
Then, the FB encoded sequence is the LZ compression of
£ (2™) which is sent to the decoder.

2) Decoder: Upon obtaining f7(z™) with an LZ de-
compressor, the decoder employs the fbDUDE de-
sgribed in Section III, i.e., the reconstructed signal is
X (20, (@),

The main result of this paper is the following theorem,

which shows that the described WZ-DUDE coding algorithm
is asymptotically optimal.

Theorem 5.1: Let k,, l,,, and m,, increase without bound
with n, but sufficiently slowly that ¢, |X|*» = o(n/logn),
where t,, = max{l,,, m,}. Then, for any R > 0, and any sta-
tionary ergodic source X

lim E[p

n — oo

n (X7 g, (27, 6,(X™))] = Dxn(R).  (15)

Proof: The full proof can be found in Appendix B. A brief
outline of the proof is as follows. The first step is using Theorem
4.1, to find a SB-WZ code with mappings f and g which results
in a final expected distortion less that D + 5, and a FB sequence
of entropy rate less than R — €5 (e2 goes to zero as €; does). The
second step uses the fact that for any stationary ergodic process,
the LZ coding algorithm is an asymptotically optimal lossless
compression scheme. Therefore, by choosing sufficiently large
block length, the difference between the bit per symbol resulting
from LZ compression of the FB sequence, and its entropy rate
could be made sufficiently small. The third step is using the
asymptotic optimality of fbDUDE decoding algorithm which
guarantees that by choosing decoding window lengths properly,
there is no loss in using fbDUDE decoder instead of any other
possible sliding-window decoder. [ |

Note that the only part of our scheme of questionable prac-
ticality is its encoding which requires listing all mappings of
some finite window length which generate a FB sequence with
LZ description length less than some fixed value depending on
block length and coding rate. This is a huge number, e.g., for the
binary case there are 22" mappings having a window length
of 2k + 1 (for k = 1 there are 256 mappings). Therefore, we
cannot implement the algorithm as described, but as shown in
Section IV, this new scheme inspires pragmatic universal WZ
coding schemes attaining good performance.

Finally, it is worth mentioning the relationship between
our encoding algorithm and the Yang—Kieffer fixed-rate lossy
coding algorithm described in [30]: For block length n, the
encoder constructs a codebook C,, consisting of all reconstruc-
tion blocks having LZ description length less than nR. The 2™
is represented by the nearest codeword z" in C,,. Yang and
Kieffer [30] show that for any stationary ergodic source, this
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Fig. 2. Original binary image 0.6 b.p.p.

conceptually simple (but not implementable) scheme achieves
the rate-distortion function as n goes to infinity. In our case, we
construct our codebook in a similar way, but since the encoder
knows that the decoder has access to the output of the DMC as
well, the codeword that results in minimum average expected
loss is chosen (the expectation is taken over all possible channel
outputs for the best possible SB decoder).

VI. PRAGMATIC APPROACHES AND EXPERIMENTAL RESULTS

As aforementioned, the demanding aspect of the WZ-DUDE
algorithm is finding the optimal mapping f*. In all of the
following cases, instead of looking for the optimal mapping,
we choose a not-necessarily optimal mapping along with the
WZ-DUDE decoder. Furthermore, in all of the following cases,
the distortion measure is Hammig distortion, i.e., for z, 2 € X

ANz, %) = {(1)7 i;

> &>

(16)

5]

A. Binary Image With BSC

In this experiment, instead of looking for the optimal map-
ping, we use a lossy JPEG encoder. Since except for the en-
coding of the DC component, JPEG works on 8 x 8 blocks sep-
arately, it can be considered as a SB encoder of window length 1
working on the superalphabets formed by 8 x 8 binary blocks.
Figs. 2 and 3 show the original binary image and its noise-cor-
rupted version under a binary symmetric channel with crossover
probability 0.15. Fig. 4 shows the JPEG encoded image which
requires 0.22 bit per pixel (b.p.p.) after JPEG lossless compres-
sion, compared to 0.6 b.p.p. required by the original image. The
average Hamming distortion between the original image and
the decompressed one is 0.0556. Fig. 5 shows the result of de-
noising the noise corrupted image with DUDE ignoring the FB
sequence. In this case the resulting average distortion is 0.0635.
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Fig. 3. Noise corrupted image, generated by passing the original signal through
a BSC(0.15).

Fig.4. The FBimage,y, generated by lossy JPEG coding of the original image,
0.22 b.p.p., p(a™,y™) = 0.0556.

On the other hand, Fig. 6 shows the result of denoising the noisy
signal when the FB sequence is also taken into account. The de-
coder/denoiser in this case is WZ-DUDE with parameters | = 1
and m = 1. The final average distortion between the recon-
structed image and the original image is 0.0407.

B. Text With Erasure Channel

In this section, we consider the case where our source is an
English text document, and the DMC is a memoryless erasure
channel that erases each symbol with probability e. To con-
struct the FB sequence, we use a method which is similar to the
first run of the DUDE algorithm in which it tries to estimate
P 1zmi(-]-), to estimate Py, xni(-]-). For a given window
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1|¢l-.-¥

fl-

Fig. 5. Output of DUDE for ! = 1. p,, (2™, &™) = 0.0635.

Fig. 6. Output of the WZ-DUDE decoder for I = m =
R = 0.22b.p.p., pn(z™,2™) = 0.0407.

length of 2k + 1, the encoder generates the count matrix repc
as follows:

ii]f = bk z; = [}
a7
For each left and right contexts a* and b*, the vector
Tene(7™, ¥, b%) is a 1 x |X| vector with Sth component being
equal to the number of times the Jth element of X have ap-
peared in z™ sequence with its right and left contexts being
equal to a* and b* respectively. Therefore, from the count
Vector Tepc(z” xz_i asz{) corresponding to the right and left

contexts of x;, the MAP estimation of z; is

BR8] = i ik = o

rcnc(

arg max renc(z", 217}, :v;i]f)[ﬁ] (18)

BeX

1743

75

erasure correction %

VI

Fig. 7. Percentage of erasures that are recovered by WZ-DUDE decoder versus
the size of the FB alphabet }, fork = 1 and k = 2,and € = 0.1.

which is the symbol in & is the most frequent symbol in z™
among those with the same right and left contexts of z;. Simi-
larly, for given right and left contexts, we can rank all the sym-
bols in X according to their repetition frequency in our text
within the given contexts. Now for a FB alphabet cardinality
of N, define Y = {1,..., N}. The encoding function f is as
follows:

L, ifx; = [, where ropc(a™ ij xjill‘)[/f]
is the /th largest element, and/ < N
N, otherwise.

fity) =

(19)

After constructing the sequence y™ by sliding f over the
original text, the LZ description of the resulting sequence
is transmitted to the decoder. As mentioned in [12], the
DUDE denoising rule for an erasure channel is equivalent
to a majority-vote of the context counts, i.e., replacing each
erasure with the most frequent symbol with the same context.
WZ-DUDE decodes the erased symbol z; by first computing
Tdec(2" zf_,i zfif ). For moderate values of e, one would
expect I'epc, and ryec to rank the symbols similarly. Therefore,
based on rge. count vector, and y;, Z; is the source alphabet cor-
responding to the y;th largest element of rqec(2", z;:,t z;ﬂ“ ).
Note that in this case, the window length of the SB encoder and
decoder should be the same, otherwise 4™ does not help the
decoder.

Fig. 7 shows the percentage of erased symbols that are re-
covered by our WZ-DUDE decoder for different values of V.
For our experiments we have used the English translation of
Don Quixote de La Mancha, by Miguel de Cervantes Saavedra
(1547-1616)!. The text consists of approximately 2.3 x 106
characters. The channel is assumed to have erasure probability
0.1.In Fig. 7, N = 1, corresponds to the case where there is no
FB available to the decoder, or in other words, it corresponds to
the performance of the DUDE. As it can observed, for N = 1
using larger context size k improves performance; As N in-
creases, k = 1 outperforms k£ = 2. In addition both curves seem

Iwhich is available online from the Project Gutenberg web-site at
http://promo.net/pg/http://promo.net/pg/
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Fig. 8. %P(X', # X,) versus €, where P(X, # X) is the probability of
error of the optimal denoiser that knows the source distribution, and is computed
using (20) , for a BSMS with ¢ = 0.25 passing through an erasure channel
which erasure probability of €.

to eventually saturate as IV increases. Although one might ex-
pect that increasing /N would always improve the performance,
and tending it to |X’|, one should be able to recover all erased
symbols, we see in Fig. 8, this does not hold for our scheme.
The reason is that, once one of the symbols in the context of
an erased symbol is erased, the decoder is not able to construct
the count vector rge.(2", z;’:i, z;ﬂ‘), which is crucial in inter-
preting the FB sequence. In such cases we let z; to be the space
character which has the largest frequency in the text. Therefore,
the best error-correction performance that can be achieved by
our scheme is upper bounded by the probability that none of the
symbols in the context of an erased symbol are erased, which is
equal to (1 —e)2*. In our example, for k = 1 the upper bound is
0.92 = 0.81, and for k = 2, it is 0.9* ~ 0.66, which coincides
with our curves.

To illustrate the performance of the algorithm, a small excerpt
of length 154 of the original text, its noise-corrupted version,
and the outputs of its DUDE and WZ-DUDE decoded versions,
for different values of k, and N are presented.

* Clean text:

... methodising with rare patience and judgment what had
been previously brought to light, he left, as the saying is,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

* Erasure-corrupted source: (12 erasures)
... *et*odising with ra*e pati*nce and judgment what had
been previously brought to ligh*, he 1*{t* as the s*yin* is,
no stone untu*ned under which any*hin*,...

* DUDE denoiser with no FB sequence, k = 1 (7 errors +
1 erasure)
... bethodising with rave pationce and judgment what had
been previously brought to ligho, he lifto as the sayind is,
no stone unturned under which any*hing,...

* WZ-DUDE denoiser, k = 1, N = 2, R = 0.16 b.p.s. (2
errors)
... mhethodising with rare patience and judgment what had
been previously brought to light, he lefth as the saying is,
no stone unturned under which anything,...

e DUDE denoiserwith no FB, k = 2 (3 errors)
... bethodising with rate patience and judgment what had
been previously brought to light, he lefts as the saying is,
no stone unturned under which anything,...

e WZ-DUDE denoiser, k = 2, N =2, R = 0.12 b.p.s. 2
errors)
... rethodising with race patience and judgment what had
been previously brought to light, he left, as the saying is,
no stone unturned under which anything,...

C. Binary Markov Source With Binary Erasure Channel

Consider a binary symmetric Markov source with transition
probability ¢, denoted by BSMS(q), which goes through a
memoryless binary erasure channel (BEC) with erasure proba-
bility e. Let X™ and Z™ be the input and output of the channel re-
spectively. Note that in this case ¥ = {0, 1},and Z = {0, 1, e},
where e denotes an erased symbol. Without having access to any
other information, the optimal denoising rule which minimizes

the probability of error is X; = argmax P(X; = a|Z"). The
aEX
probability of error of this optimal denoiser is shown in (20) at

the bottom of the page, where

f(l7 r? a? ﬂ)
£p (X1 # X, folﬁr_ll =erqp1-1,%4i1 =, Zijr = ﬂ)
min {P(AXZ = 07 Zji_lr_:f = €r4i—1, Zifl =, Zi+r = ,8)

P(X; = 17Z§jz1:11 =erpi1,Zio1 = &, Zipr = ()}

no stone unturned under which anything,... 21
+Z P(Xi# X, Zii# e, Zipp #eZj=e forj=i—l+1,...i+r—1)
=1 r=1
=22 > ) flrap (20)

I=1 r=1 a€X BEX
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where e,,, denotes a vector of length m with all elements equal
to e. Note that f(I,m, «, 3) is an easily computable function.
For example, for ¢ < %

f(17 170/0) :f(17 17 17 1)7
=P(X; # Xi,Zi=e¢,Zi-1 = Zip1 = 1)
2

q 2
= — 1—
Ce(1-e)

and shown in (23)—(27) at the bottom of the page.
Similar expressions can be derived for higher values of [ and
m. Note that

(22)

lim EP()AQ £X;)=q¢q

e—0e

(28)
and

1 A
lim —P(Xl 7§ Xl) = 0.5.

e—1le

(29)

Fig. 8 shows the percentage of erased symbols decoded erro-
neously versus e, for a BSMS with ¢ = 0.25. The points in Fig. 8
are computed by evaluating (20), and, therefore, reflect the per-
formance of an optimal denoiser that knows the source distri-
bution. It can be observed that as e increases this percentage
increases as well. The reason is that for small values of e each
erased symbol is surrounded by nonerased symbols with high
probability, and therefore since q is relatively small, the erased
symbol can be recovered correctly with high probability. On the
other hand, as e increases, the probability of having two consec-
utive erased symbols, which are harder to recover, increases as
well.

Now consider the WZ setup, where in addition to the output
of the BEC, the decoder has access to a FB sequence of rate I
designed by the encoder to improve the decoder’s performance.
For generating this FB sequence we again use DUDE counts.

1745

For a fixed k, the encoder first forms the count matrix consisting

of Tenc(a®, b*) for all 22* possible right and left contexts, each

of length k. Then the FB sequence is

0. i v (X XIH(X] >
Feno(X; 2, XTI — Xi]

1, otherwise

Yi= (30)

In other words, Y; is 1 whenever X; is different from what it is
predicted to be from its context. As aforementioned, the DUDE
decision rule for the BEC is majority-vote decoding. In the case
of a binary source instead of text, if there are erased symbols
in the context of an erased bit, we do not simply let X; equal to
some prefixed symbol. When in addition to Z; some other bits of
Z f'_",’: are erased, the decoder’s count vector r'qec(Z, f:,i , ij_'f) is
the average of count vectors corresponding to all possible binary
contexts coinciding with Z/TF at the nonerased positions. If k,
bits out of 2k are erased, then there exist 2%< such contexts that
agree with original context in the 2k — k. nonerased bits. Let
b = arg max rdec(Zf:;, Zﬁ:{“)[ﬁ], then
pe{o,1}

g={b, 0y

1-0b, if Y;

0;
" (31)

Consider again the BSMS with ¢ = 0.25 passed through a
BEC with e = 0.1. From Fig. 8, an optimal denoiser that only
has access to the output of BEC will decode at least 25.13%
of the erased bits wrongly. On the other hand, the DUDE de-
noiser decodes 25.44% of erased bits erroneously, which is al-
most equal to the performance of the optimal nonuniversal de-
noiser which knows the statistics of the source. Now assume
that the encoder also sends to the decoder the FB sequence Y™
constructed as described in (30). From our simulation results,
for this case, the entropy of the FB sequence is around R = 0.3,
and applying the described WZ-DUDE decoder to (Y™, Z™) re-
duces the probability of error to 19.3%.

f(1,1,0,1) = f(1,1,1,0)

=P(X;# X, Zi=e.Zisy=1—Ziy1 =1)

Lol - (1 - e)?,

=54 (23)
£(1,2,0,0) = f(1,2,1,1) = f(2,1,1,1) = £(2,1,0,0)

=P(X; # Xi,Zi = Zis1=e,Zi_1 = Ziza = 1)

=¢*(1—q)e*(1 - e)?, 24)
£(1,2,0,1) = £(1,2,1,0) = £(2,1,0,1) = £(2,1,1,0)

=P(X; 4 Xi,Zi =Zip1=e,Zi1=1—Zijo=1)

= %( T+ (-9 e’(1-¢) (25)
£(2,2,0,0) = £(2,2,1,1)

=P(X; # X, Zin=Zi=Zijq1=e¢,Zig=Zira=1)

=2¢°(1 - g)*e*(1 —e)?, (26)
£(2,2,0,1) = (2,2,1,0)

P(Xi# Xi,Zi1=Zi=Zip1=e,Zi_2=1—Zipo = 1)
=L g 0P 12301 — ) (1 — &)? @7

2
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VII. CONCLUSION AND FUTURE DIRECTIONS

This paper deals with WZ coding of a source with unknown
statistics; a new WZ coding algorithm, WZ-DUDE, was pre-
sented and its asymptotic optimality was established. In order to
optimize the scheme one would list all possible mappings that
have a certain property and look for the one that gives minimum
expected loss. However, we saw that even a simple encoding
mapping, namely an off-the-shelf lossy compressor, achieves
considerable improvement compared to the case where either
the FB sequence or the noisy signal are not present at the de-
coder.

The original DUDE is tailored to discrete-alphabet sources
going through a DMC, and making it applicable to contin-
uous alphabet sources entails more than a trivial extension,
which has been accomplished in [31] and [32]. As mentioned
in Section III, since our fbDUDE decoder is a special case
of the original DUDE algorithm, one would expect that by
following the same methods used in [31], [32], it might be
possible to devise a decoder which works on continuous data.
The nontrivial part is finding a proper encoder. In this case
it is not possible to list all SB encoders of some finite block
length, because there are an infinite number of them even for
window length of one. One simple solution is to look into
all mappings which map to a quantized version of the source
alphabet. How to choose this quantized alphabet, and whether
this would result in a scheme that asymptotically achieves the
performance bounds is a question that requires further study.
Finding a sequential version of the described scheme, where
the decoder is subject to a delay constraint is another interesting
open avenue. Adapting our WZ-DUDE algorithm to perform
effectively with nonstationary data is another open avenuee.
For example, often real data is more accurately modeled as
a piecewise stationary source. In the recent work [33], the
sDUDE denoising algorithm is described which, unlike DUDE,
tries to compete with a genie-aided SB denoiser that can switch
between SB denoisers up to m times, where m is sublinear
in the block length n. When the clean data is emitted by a
piecewise stationary process, the sSDUDE algorithm achieves
the optimum distributiondependent performance.

APPENDIX A
PROOF OF THEOREM 4.1

The proof is an extension of the proof given in [34] which is
for the case where there is no FB sequence. Let X = {X;;V i €
IN*} be a stochastic process defined on a probability space
(X, 3, P), where X denotes the o-algebra generated by cylinder
sets, and P is a probability measure defined on it. The shift op-
erator T : X*° — X°° is defined by

(TX)p = Tpt1, XEX® n>1.
Let X and X denote the source and reconstruction alphabets,
respectively, which are both assumed to be finite.

Since (R, D) is assumed to be an interior point of the achiev-
able region in the R — D plane, there exists 6y > 0, such that
(R — 6, D) is also an interior point for any 0 < § < &g. De-
fine R, £ R — 6. Since (R, D) is an achievable point, for any
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given € > 0, there exists a block WZ encoder/decoder, (f,,, g,)
of rate R, and block length 7, which is sufficiently large based
on ¢, and average expected distortion less than D + €. Assume
that among our infinite choices, we pick a WZ code whose block
length n is large enough such that

. { 1 logn } <
max<{ ——, ———— €.
V' nlogl|Y|

This constraint will be useful in our future analysis.

In order to prove that there exists a SB code satisfying the
constraints given in Theorem 4.1, the given block code (f,,, g, )
should somehow be embedded in the SB encoder/decoder map-
pings. For defining a SB code based on a block code, the natural
question is how to define blocks in the infinite length source se-
quence. Moreover, after finding a way for distinguishing blocks
in the input sequence, the next problem is how the decoder is
going to detect the coded blocks in the infinite length received
FB sequence. To answer the first question, as usually done in
the literature, we resort to the Rohlin—Kakutani (RK) Theorem
of ergodic theory [35].

(AL)

Theorem 7.1 (Rohlin—-Kakutani Theorem): Given the er-
godic source [A, i, U], integers L and n < L, and € > 0, there
exists an event F' (called the base ) such that

1) F,\TF,..., T*"1F are disjoint,
L—1
2) PlUTF)>1—¢
i=0
3)  P(S(a")|F) =P (S(a™))
4y Sa™)={x:z2" =a"}.

This theorem states that for any given L, and any n less than
L, there exists a base event F', such that the base and its L
disjoint shifts, basically cover the event space, i.e., any given
sequence X with high probability belongs to T°F for some
0 < ¢ < L — 1. The last property states that the probability
distribution of the n-tuples is the same both in the base and in
the whole space.

For a given € > 0, n, the block length of the block encoder/de-
coder (f,,,g,),and L,, 2 n+ [ne], let F be the base event given
by the RK theorem for these parameters. Define G to be every-
thing in the event space which is not included in U,L.L:"O_1 TiF.
Note that by the RK theorem P(G) < e. To show the existence
of a finite length SB encoder, we first prove the existence of
an infinite length SB encoder, f (>) and then show that it can
be truncated appropriately such that the resulting finite window
length code also satisfies our desired properties.

Note that £(°°) maps every infinite length sequence x into a
symbol in the FB sequence alphabet )/, and defines the FB se-
quence as §; = f(°°)(7"x). As mentioned earlier, one problem
is enabling the decoder to discriminate between the encoded
blocks embedded in the FB sequence. One simple solution is
requiring the SB encoder to interject a predefined synchroniza-
tion sequence, which is not contained in any of the codewords,
between the encoded blocks. Lets = 17,,.], where 1, is a vector
of length r with all of its elements equal to 1, denote the syn-
chronization block. From now on, symbols 0 and 1 denote two
arbitrary distinct symbols in ). The following lemma shows that
as long as || > 2B~ it is possible to construct a codebook
of 2" distinct codewords none of them containing s.
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Lemma 7.2: 1f|Y| > 2B~ wheree, = w
it is possible to find a codebook C C Y" with 2nE codewords
such that s = 1,. is not contained in any of them.

Proof: Let N, denote the number of sequences in )" that
contain s as part of them. There are n — [ne| + 1 positions
that might be the start of the s. For each of them it is possible
to construct |Y|*~ "€l sequences that contain s starting at that
certain position. Therefore, N is upper-bounded as follows:

N, < (n— [ne] + 1)|y=lrel, (A2)

On the other hand, if |Y|" — N, > 2", then it is possible to

choose 2" codewords as desired. Combining this with (A2), it
is sufficient to have

YI" =20 > y|r ] (A3)

or
V" (1 = 0|y > onR (A4)

or
log|V| > R —en (A5)
where ¢,, is as defined in the statement of the lemma. [ |

Therefore, using the previous lemma, it is possible to con-
struct a codebook C with 2nF1 codewords, such that none of
them contain s. Further, we can assume that the codewords in C
are chosen such that the first and the last symbols of all of them
are equal to 0. Note that if | Y| satisfies (A5), then the number
of codewords that satisfy the requirement of Lemma 7.2 is ex-
ponentially more than 2"%; Therefore, ir is possible to choose
such a codebook. This assumption makes sure that for any y" €
C, the synchronization sequence can uniquely be detected in
»8ne] and also in s1,..., 8], Y15+ -5 YUn
with no amblgulty

Now each codeword in the codebook C can be mapped into
a unique codeword in C. The role of each element in C in the
coding is then played by the corresponding vector in C that it
is mapped to. Since in the WZ coding, the codebook is only
an indexing of the input blocks, such a mapping only acts as a
renaming of the vectors in the codebook, and does not have any
other effect.

Now we define an infinite length encoder f(>) based on the
partitioning of the event space given by the RK Theorem as
follows:

1) x € T*F, for some 0 < i <

where [go,gjl, A

2) x € T'F, for some n <

s[i —n + 1],
3) x € G:let f()(x) = yo, where y is an element in )
which is not used in s.

After defining the SB encoder, we can define the SB de-

coder, g, which generates the reconstruction process as X, =
g(ZI VMY with M = 2(n + [ne]) + 1. The decoder g
searches the block Y™ for a synchronization sequence. At

1+1
most there will be one such sequence. If it detects one string s,

< m—1:let fO)(x) = g
f ( n—i— 1)
1 < Ln — 1: let fO)(x) =

1747

which starts at p0§itiqn 7+ r,Al < r <n+1,then it lets )A(i =
Up—ri1, where [0, Us, ... U] 2 g, (ZE777, Yitr=m). If it
detects no synchronization sequence, the decoder outputs some
fixed arbitrary symbol.

In order to compute the expected average distortion between
the source and reconstruction sequences, note that since the
original process and its reconstruction are jointly stationary,
the average expected distortion between them is equal to
EXXo, Xo)

n—1
EA(Xo, Xo) = S E [/\(XO,XO)|TiF] P(TF)
= L,—1 L,—1
+ B | A(Xo, Xo)] U T'F (U TF)

+E [,\(XO,XO)IG] P(G). (A6)
By the stationarity of the source
L,—1
P< U T'L'F) = (n+ [ne])P(F) (A7)
i=0
and P < L] > = [ne]P(F). Therefore
U S 3 L[leiF
= n+ [ne] =
[ne]
~ n+ [ne]
(a)
<e (A8)

where (a) follows from (A1). Moreover, from the RK Theorem,
P(G) < ¢, which together with (A8) shows that

M Xo, Xo) < ZE[ (Xo, Xo)|T" } P(TF) + 2\ maxe.
(A9)
For bounding the first term in (A9), note that
ZE[ (Xo, Xo)|T*F ] P(TF)
_ZE[ (Xi, Xi |F} P(F)
<E [pn(XﬁX")lF] (A10)

where the last line follows from the fact that P(F) < 1. On

the other hand, by the RK theorem, E |p, (X", X™)|F } =

E[pn(X™, g,.(Z™,f,(X™)))]. Consequently, combining all of
the previous results

BIA(Xo, X0)] < Elon(X" g(2", fu(X")))]

+ 2Amax€, < D + (1 4 2\ pax)e.(ALD)

From the finite SB code approximation theorem ([36, The-

orem 3.1]), for any o > 0, and any infinite SB code f (%) there

exists k = k(o, f(°)), and finite SB code f*) of window-

length 2k + 1, such that the outputs of the codes f(°>°) and

f*) coincide except on a set of probability no larger than o.
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This result enables us to truncate f(°), and get a finite code
£ such that P (f(>)(X) # f*)(X)) < o. Now assume that
o =¢/(2M+1) and k = k(o, f(°)), and define {Y;} and {Y;}
asV; = fB)(XF) and V; = f(°)(X). Then, from Lemma
3.2 of [34]

P (g (Z53. YT ) # 9 (Z;'i’% ,szﬁ[»
<(2M + 1)P (Y £ Y)

<(2M +1)o
—c. (A12)

(A12) states that from the truncation of f° the expected distor-
tion will not increase by more than /,,.¢. Therefore, combing
this with our previous results, we conclude that

E[A(Xo, X0)] < D + (1 4 3Amax)e. (A13)
So far we have shown the existence of a SB code which gen-
erates a reconstruction sequence within maximum distance of
D + (14 3Amax )€ to the source. Now we show that the entropy
rate of the {Y;} sequence, where Y; = f(*)(X/TF), is as close
to R as desired. In order to do this, we first bound the entropy
rate of the {Y;} process, where Y; = f(°)(X). Then

1 1 -
—H(Y™) < —H(Y™Y™
—H(Y™) < HY™ Y™

1 - 1 .
=—HY™)+—HY™yYy™
—HE™) + HY™ ™)

1 - 1 N

=—HY™ 4+ —HY™&V™|y™)
m m

1

- 1 -
<—HEY™)+ —HY™ V™)
m

3

< —H(Y™) + hy(0)

(Al4)

3

where fory,y € V, y®y = 0if y = § and 1, otherwise, also for
0<a<l1,h(a)=—aloga—(1-a)log(l—a). Therefore,
letting . grow to infinity, we conclude that

H(Y) < HY) + hy(0). (A15)

Now we turn to bounding H (Y). Let {6;} denote a sequence
defined as follows:

4, Yiis the 5" letter of a codeword
where j € {1,...,L,}
otherwise.

0; = (A16)

0

Then the entropy rate of the generated FB process Y can be
upper-bounded as follows:

H(Y)= lim iH(Y/m)

m—>00 M
1 ~
lim —H(Y™, 0™)
m—> 00 M,

= lim l[H(amHH(WW)}

m — oo M

IA

= lim [lH(f)m)+H(Ym|}7m‘l79m)}

m—o00 | M

IA

lim
m —> 0o

{%H(Gm)—i—H(?mDN/m_l,Hm)} (A17)
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() GRS . .
< elog |V + D> HVm|YiiThss m = )P (0 = j)

J=1

1 — — o1 .
S610g|y|+ﬁZH(Ym|Ym—j+179m:J)

7j=1
1
= clog Y]+~ H(f,(X")

<elog|V|+ Ry (A18)

where (a) follows from the facts that, for n + 1 < j < Ly,
H(Y,,|Y™ 1,0, = j) = 0,and P(f,, = 0) < e. Moreover,
we show that the entropy rate of the {6;} process can be made
arbitrary small:
1
lim —H(O™)

m—>00 M,

lim H(#,,]6™")

m —> oo

lim H(0|0m-1)

m —> oo

L,
=Y P(6o =) H(6:l60 = j) (A19)
=0

IN

where the last step is a result of stationarity. By the definition
of the {6,} sequence, H(#1|6p = j) =0,for1 < j <n-—1,
P(6p = 0) =P(G) < e,and P(fy = L,) = P(F) < 1. Given
6o = 0, 67 can either be zero or one, therefore H(6]0p = 0) <
1. Similarly, conditioned on 6y = L, #; can only be zero or

one, and H(01|fp = n) computes the uncertainty that one has
L

in determining whether a sequence belongs to U T*F or not
i=0
when it is known that X € T—'= F. Since conditioning can
only reduce entropy, and P(G) < e, it follows that H(6:|6y =
L,) < hy(e). Consequently
1
lim —H(™)=

m—0o0 M

P (6 = 0)H (616 = 0)
+P(6y = L,)H (6160 = L)

<e+ lhb(e). (A20)
n

Combining (A15), (A17), and (A20), it follows that

H(Y) < Ry + (1 + log [Y])e + %hb(e) F (o) (A21)

where as defined before

T 2n+[ne))+ 1

Note that (1 + log |V|)e + Lhy(€) + hy(0) goes to zero as e
goes to zero. Therefore, there exists € > 0, such that (% +
log |V|)e + Lhy(€) + hy(o) < &, forany € < €. By definition
R; = R—6.Consequently, by choosing e < min{¢’, ¢’ }, where
o T and e = ¢ > 0, we get a SB encoder f®)
and SB decoder g generating FB and reconstruction sequences
satisfying
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1) E[AXo,X0)] < D+ e,
2) H(Y)<R-e.

APPENDIX B
PROOF OF THEOREM 5.1

First, we prove that for any given € > 0, there exists N. > 0,
such that for n > N,

Elpn (X", 85(Z", £(X™))] < Dx.a(R) +e.

By definition, Dx »(R) denotes the infimum of all distortions
achievable by WZ coding of source X at rate R when the DMC
is described by 7. Therefore, for any € > 0, (D4 %, R) would be
an interior point of the rate-distortion region. Hence, by theorem
4.1 for e = i > 0, there exist some €2 > 0, and a sliding-
block WZ code with mappings f and g, each one having a finite
window length, such that
D EMX, g(Z7H, Y]
FX5),
2) H(Y) =
ea > 0.
On the other hand, the FB process {Y;} generated by sliding
windowing a stationary ergodic process {X;} with a time in-
variant mapping f, is also a stationary ergodic process. Con-
sequently, since for any stationary ergodic process Lempel-Ziv
coding algorithm is an asymptotically optimal lossless compres-
sion scheme [37], for any given o > 0, there exists N, > 0,
such that for n > N,,

(B1)

< D+ 5, where ¥V; =

lim L1H(Y:,....Y,) < R — e, for some
n—o0

1
—LZ(Y1,...,.Y) < H(Y) +o. (B2)
n
Letting o = <, and choosing n greater than the corre-
sponding N,, yields

~LZ(Yi,....Y,) < R—e + o, <R—5 <R.
n

Therefore, for any given ¢ > 0, and any source output se-
quence, by choosing the block length n sufficiently large, the
mapping f would belong to S(z", k,, R). On the other hand,
since for any individual source sequence =", f* is the mapping
in S that defines the FB sequence minimizing the expected dis-
tortion, it follows that

V(f*,l,m) < V(f1,m). (B3)
Moreover, since V(f*,1,m) is the minimum accumulated loss
attainable by the mappings in S(n, [, m), when the decoder is
constrained to be a sliding window decoder with parameters [
and m, it is in turns less than the expected distortion obtained
by the specific mapping g given by Theorem 4.1, i.e.

n—k
E| > Maig® (24, ﬁm))]
i=k+1
n—k
<E| Y A(miyq(Z:ﬂ’,u:*:))] (B4)
i=k+1

where y; = f(x}%) and §i = f*(x}7F).
The final step is applying Theorem 3.1 which is the asymp-
totic optimality of WZ DUDE algorithm in the semistochastic
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setting. From this result, when the parameter [ and m are such
that t,, = max{l, m} = o(n/logn), the difference between the
performance of the WZ DUDE decoding algorithm and the op-
timal sliding-window decoder of the same order goes to zero as
the block length goes to infinity. In other words, for any given
€ > 0, there exists N/ > 0, such that for n > N/

Zxxzle

n — 2k
i=k+1
n—k ¢
< E A (wi g"(ZH gt — (BS
< LB S Ao+ @9
i=k+1
where " = gk (Z"™,f}(X™)). Note that the only uncertainty in

(BS5) is due to the channel noise, and the source and FB sequence
are assumed to be individual sequences. Combining (B4) and
(B5), it follows that with probability one

"o (2", g5 (27, 1 (X™)))]

n — 2k
Z )\xL

i=k+1

On the other hand, since {(X;, Y;)}>°, is also a stationary er-
godic process with super-alphabet X x ), by the ergodic theory,
with probability one

ZL+[ /yL—I—m))

—m

€
t+ BY

n—k
dim B\ (zi,9(Z2,vit)]
1=k+1
:E [)\ (X07g(Z1—17Y1nm)7 )]
€
<Dxx+ 3

This means that with probability one, there exists N!' > 0, such
that for n > N”

1 )]
1=k+1

€ €
<D -+ —.
< X,‘Il'+2+4

Finally, combining (B6) and (B7), and taking n > N, where
N. = max{N,, N/, N}, yields the desired result as follows:

Bl (X" g1 (2" FL (X)), < Dxar(R)+e. (BY)

(B7)
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