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Abstract—Several physical effects that limit the reliability and
performance of multilevel flash memories induce errors that have
low magnitudes and are dominantly asymmetric. This paper
studies block codes for asymmetric limited-magnitude errors over
�-ary channels. We propose code constructions and bounds for
such channels when the number of errors is bounded by � and
the error magnitudes are bounded by �. The constructions utilize
known codes for symmetric errors, over small alphabets, to pro-
tect large-alphabet symbols from asymmetric limited-magnitude
errors. The encoding and decoding of these codes are performed
over the small alphabet whose size depends only on the maximum
error magnitude and is independent of the alphabet size of the
outer code. Moreover, the size of the codes is shown to exceed the
sizes of known codes (for related error models), and asymptotic
rate-optimality results are proved. Extensions of the construction
are proposed to accommodate variations on the error model and to
include systematic codes as a benefit to practical implementation.

Index Terms—Asymmetric limited-magnitude errors, error-cor-
recting codes, flash memory codes, �-ary codes, systematic codes.

I. INTRODUCTION

T HE most well-studied model for error-correcting codes is
the model of symmetric errors. According to this model,

a symbol, taken from the code alphabet, is changed to another
symbol from the same alphabet, and all such transitions are
equally likely. The popularity of this model stems from both its
applicability to a broad set of applications, and from the pow-
erful construction techniques that were found to address it. In
addition to the symmetric model, many other models, variations
and generalizations were studied, each motivated by a behavior
of practical systems or applications.
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In this paper, we study block codes that correct Asymmetric
Limited-Magnitude errors. This model is parameterized by two
integer parameters: is the maximum number of symbol errors
within a codeword, and is the maximal magnitude of an error.
This model is motivated by error mechanisms that affect multi-
level flash memory reliability and access speed.

Flash memory is a nonvolatile memory (NVM) technology
that is both electrically programmable and electrically erasable.
To scale the storage density of flash memories, the multilevel
flash cell concept is used to increase the number of stored bits
in a cell [5]. Thus each multilevel flash cell stores one of levels
and can be regarded as a symbol over a discrete alphabet of
size . Flash devices exhibit a multitude of complex error types
and behaviors, but common to all flavors of flash storage is the
inherent asymmetry between cell programming (charge place-
ment) and cell erasing (charge removal). This asymmetry causes
significant error sources to change cell levels in one dominant
direction. Moreover, many reported common flash error mech-
anisms induce errors whose magnitudes (the number of level
changes) are small, and independent of the alphabet size, which
may be significantly larger than the typical error magnitude. Al-
together, flash errors strongly motivate the model of asymmetric
limited-magnitude errors studied in this paper. In addition to
the (uncontrolled) errors that challenge flash memory design
and operation, codes for asymmetric limited-magnitude errors
can be used to speed-up memory access by allowing less-pre-
cise programming schemes that introduce errors in a controlled
way. While not a panacea for all flash issues, the potential error
mitigation and performance boost by asymmetric limited-mag-
nitude codes, justify their addition, alongside other coding in-
novations, to the menu of flash coding solutions.

Asymmetric limited-magnitude error-correcting codes were
proposed in [1] for the special case of correcting all such errors
within a codeword. These codes turn out to be a special case of
the general construction method provided here. Previous works
that treated related error models include [2], [15] and [9].

The following example illustrates the coding problem and in-
troduces the main idea of the code construction. Suppose we
have a set of five cells, each in one of possible levels,
marked by the integers . The design goal is now
chosen to be protecting this set of cells against errors of
magnitude in the upward direction. As illustrated by the
sample words in Fig. 1 below, if the stored levels are restricted to
have either all symbols with even parity or all symbols with odd
parity, the required protection is achieved. For each of the two
sample codewords in row (a) of Fig. 1, the channel introduces
two upward errors of magnitude 1 (b). By even/odd majority, the
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Fig. 1. Example of correcting asymmetric limited-magnitude errors.

locations of the errors are detected (c), in bold, and the original
symbols are recovered by decrementing the erroneous symbols
(d).

The example above is one instantiation of a general con-
struction method that provides codes for all possible code
parameters. The main strength of this method is that for any
target alphabet size (determined by the number of levels), asym-
metric limited-magnitude error-correctability is inherited from
symmetric error correctability of codes over alphabets of size

(in the case of the example above, it is the binary repetition
code). Thus a rich selection of known symmetric-error-cor-
recting codes becomes handy to offer codes that are optimized
for the asymmetric limited-magnitude channel. As a favorable
by-product of the construction method, encoding and decoding
of the resulting codes are performed on alphabets whose sizes
depend only on , irrespective of the code alphabet (which may
be much larger than ). Working with both the -ary and
-ary alphabets provides advantage in both redundancy and

complexity, compared to earlier works on codes for multilevel
flash memories [7] that employ pure -ary constructions.

After discussing the asymmetric -limited-magnitude error
model in Section II, the main code construction is presented in
Section III, together with encoding and decoding procedures.
Evaluation of the resulting codes is performed in Section IV,
where asymptotic optimality is shown for and for a gen-
eral when grows “slowly” relative to the code length . A
more conclusive optimality is shown by constructing codes that
are perfect in the asymmetric -limited-magnitude error model.
In addition, Section IV compares the code sizes to sizes of codes
for a related error model. Sections V and VI discuss extensions
of the code construction with motivations from practical ap-
plications. Those include the construction of systematic codes
(V), and codes for simultaneous asymmetric and symmetric lim-
ited-magnitude errors (VI). Finally, Section VII discusses the
usage of asymmetric limited-magnitude codes in flash devices,
by showing their effectiveness in speeding up the memory write
access.

II. ASYMMETRIC -LIMITED-MAGNITUDE

ERROR-CORRECTING CODES

An alphabet of size is defined as the set of integers
modulo : . For a codeword and
a channel output , the definition of asymmetric lim-
ited-magnitude errors now follows.

Definition 1: A vector of integers is
called a asymmetric -limited-magnitude error word if

, and for all , . Given a codeword
, a asymmetric -limited-magnitude channel outputs

a vector , such that , and is a asymmetric
-limited-magnitude error word. The symbol denotes addi-

tion over the reals.

Note that some asymmetric -limited-magnitude error
words make overshoot beyond the upper alphabet symbol,
for which reason the restriction was added. A gener-
alization of the above definition is when we allow asymmetric
errors to wrap around (from back to 0), whereby we
interpret the symbol above as addition modulo .

The -ary asymmetric -limited-magnitude error model
studied in this paper is a generalization of the binary asym-
metric-error model studied by numerous authors (see [10] for
a detailed treatment of this channel). Another generalization,
proposed by Varshamov [15], studies -ary asymmetric errors
that have no magnitude limit for individual coordinates, but the
sum of the error-vector elements is bounded by some integer

. When , codes for the Varshamov channel trivially
correct asymmetric -limited-magnitude errors. However,
for many applications, such as mulitlevel flash memories,
the Varshamov channel may be too strong an error model.
These applications can greatly benefit from the constructions
presented here, which give better codes in terms of size, and
also enjoy simple encoding and decoding algorithms.

The discussion of codes for the asymmetric -limited-mag-
nitude channel-model is commenced with the definition of a
distance that captures the correctability of asymmetric -lim-
ited-magnitude errors.

Definition 2: For and
, define . The

distance between the words is defined

if
otherwise.

The distance defined above allows to determine the number
of -limited-magnitude errors, correctable by a code .

Proposition 3: A code can correct asymmetric
-limited-magnitude errors if and only if for

all distinct .
Proof: A code fails to correct a asymmetric -limited-

magnitude error word if and only if there exist two distinct
codewords , and two asymmetric -limited-magnitude error
words , , such that , or equivalently,

.
Assume that for a pair , , . Then at

least one of the following holds:
1) or
2) for at least one index .
Case 1 implies that has either more than positive

elements or more than negative elements, none of which is
possible by the definition of the error vectors , .
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Case 2 implies that for some , either or , both
impossible by the definition of , .

Since the same arguments apply to any , in the code, it
necessarily corrects all possible asymmetric -limited-magni-
tude errors.

Assume there exist a pair of codewords , , for which
. Then both and

are true, and at all positions . In that case we
can set at all positions such that and

at all positions such that . With zeros at all
other positions, such , satisfy without violating
the conditions of asymmetric -limited-magnitude errors.

The following Corollary states that the same distance cap-
tures the error detection capability of the code, unless no code-
word is greater than or equal to another codeword on every co-
ordinate, in which case the code detects all asymmetric -lim-
ited-magnitude errors. Detailed treatment of joint correction/de-
tection is beyond the scope of this paper, but these properties can
be analyzed using similar methods to binary asymmetric codes
[2].

Corollary 4: Unless

(1)

a code can detect asymmetric -limited-magnitude
errors if and only if for all distinct .
If (1) is met, then the code detects all asymmetric -limited-
magnitude errors.

Proof: The proof is essentially the same as of Proposition
3, only with . If (1) is not met, then for a codeword pair
with the equality provides the same
necessary and sufficient conditions as the former .
If, on the other hand, (1) is met, i.e., all codeword pairs have both

and , then no all-positive can equal
, and the code detects all asymmetric -limited-magnitude

errors.

Although the asymmetric -limited-magnitude distance-mea-
sure is not a metric (since the triangle inequality does not
hold), it still provides a necessary and sufficient condition for
the correctability of asymmetric -limited-magnitude errors. In
subsequent sections, it will be used both to prove the correction
capability of code constructions, and to obtain upper bounds on
the size of codes.

III. CONSTRUCTION OF ASYMMETRIC -LIMITED-MAGNITUDE

ERROR-CORRECTING CODES

We now provide the main construction of the paper. We note
that the general idea of the basic code construction below, re-
stricted to binary codes , has appeared in Construction
A of [11], for a different application (sphere packings in Eu-
clidean spaces). The same work also considered the encoding
and decoding of Construction A codes, which appear here in
Sections III-B and III-C for the general case of . For
notational convenience, given , the vector

will be denoted by
. To obtain a code over alphabet that corrects or less

asymmetric errors of -limited-magnitude, one can use codes for
symmetric errors over small alphabets as follows.

Construction 1: Let be a code over the alphabet of size
. The code over the alphabet of size

is defined as

(2)

In other words, the codewords of are the subset of the words
of that are mapped to codewords of , when their symbols
are reduced modulo .

Codes obtained by Construction 1 have the following error-
correction capability.

Theorem 5: corrects asymmetric -limited-magnitude er-
rors if corrects symmetric errors. If ,1 the converse is
true as well.

Proof: The proof proceeds by showing that any pair of dis-
tinct codewords is at distance of at least apart.
By Proposition 3, this would conclude that corrects all asym-
metric -limited-magnitude errors. We distinguish between two
cases.

In the first case . Since , this
implies that for at least one index , ,
settling their distance to be .

In the other case, . The fact that has
minimum Hamming distance of at least implies that
and differ in at least locations and thus, in particular,

.
For the converse, if does not correct all symmetric errors,

then there exists a quadruple , such that
, and are asymmetric -limited-

magnitude error vectors. Therefore, the vectors
and , (where

is a vector with ones where and zeros elsewhere), are
codewords of and they satisfy . Since , the
last sum is a valid channel output. We conclude that there exists
an uncorrectable error word for , and the converse follows.

Construction 1 is clearly useful as it leverages the compre-
hensively studied theory of codes for symmetric errors, to ob-
tain codes for asymmetric limited-magnitude errors. However,
Construction 1 is a special case of the following construction.

Construction 1A: Let be a code over the alphabet of
size . The code over the alphabet of size
is defined as

(3)

The relationship between and in the general case are
summarized below. The proof is almost identical to that of
Theorem 5.

Theorem 6: corrects asymmetric -limited-magnitude er-
rors if corrects asymmetric -limited-magnitude errors with
wrap-around. If , the converse is true as well.

1The biggest motivation to use asymmetric limited-magnitude codes is when
� � �, so � � �� is a reasonable condition.
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Remark: If then corrects asymmetric -limited-
magnitude errors with wrap-around for with the same prop-
erties as above.

It is easy to see how Construction 1 is a special case of Con-
struction 1A. When , an asymmetric -limited-magni-
tude error with wrap-around is equivalent to a symmetric error
(with no magnitude limit).

A. Discussion and Analysis of Code Constructions

The size of the code is bounded from below and from above
by the following theorem.

Theorem 7: The number of codewords in the code is
bounded by the following inequalities,

(4)

Proof: Let be a codeword of . A valid
codeword of can be obtained by replacing each by any
element of the set . The size of this
set is if and otherwise. Thus for
any code , the lower and upper bounds above follow.

In the special case when , the size of can be obtained
exactly from the weight enumerator of .

Theorem 8: Let and be a code over .
Then the size of the code , as defined in (3), is given by

where is the number of codewords of with Hamming
weight .

Proof: When , the right hand side equals ,
as the matching lower and upper bounds of (4) predict. When

, a 0 in can be replaced by different symbols of
and a 1 in can be replaced by different symbols. Using
the weight enumerator of we obtain the exact value for the
size of above.

This theorem can be extended to , but in such cases
knowing the weight distribution of does not suffice, and more
detailed enumeration of the code is needed for an exact count.

The -AEC codes suggested in [1], that correct all asymmetric
-limited-magnitude errors, can also be regarded as a special

case of this construction method. To show that, let be the trivial
length code over the alphabet of size , that
contains only the all-zero codeword. Define

Since can correct symmetric errors, can correct
asymmetric -limited-magnitude errors.

B. Decoding

The main construction of this paper (Construction 1) reduces
the problem of constructing asymmetric -limited-magnitude

Fig. 2. Decoding asymmetric �-limited-magnitude error-correcting codes.

error-correcting codes, to the problem of constructing codes for
symmetric errors. The correction capability of the code con-
structions was proved earlier in the section using arguments
on their minimum distance, arguments that have a nonalgo-
rithmic character. We next show that a similar reduction applies
also to the algorithmic problem of efficiently decoding asym-
metric -limited-magnitude error-correcting codes.

In the following, we describe how, given a decoding algo-
rithm for the code , one can obtain a decoder for the code ,
that has essentially the same decoding complexity, with only a
few additional simple arithmetic operations. The decoding pro-
cedure herein refers to the more general Construction 1A, and it
clearly applies to the special case of Construction 1 .

Let be a codeword and
be the channel output when up

to asymmetric -limited-magnitude errors have occurred.
Denote the corresponding codeword by ,
and also define and .
First we observe that since , if then

. Using the simple modular identity

we get that , and in particular, if ,
then . In other words, if the codeword over
suffered an asymmetric -limited-magnitude error at location ,
then the codeword over suffered an asymmetric -limited-
magnitude error with wrap-around at the same location , and
with the same magnitude. Given at most asymmetric -limited-
magnitude errors with wrap-around, a decoder for can recover

from . Thus, the equality allows the same
decoder to recover from .

A schematic decoder of an asymmetric -limited-magnitude
error-correcting code that uses a decoder for a symmetric
error-correcting code is given in Fig. 2. Given a channel
output , the decoder takes the symbol-wise modulo

of to obtain . Then a decoder for is invoked
with the input and an error estimate is obtained such that

, and is a codeword of within the
correction radius of the decoder for . Note that the codeword
estimate is discarded and not used for the decoding of .
Finally, is subtracted from to obtain the codeword estimate

.

C. Encoding

Construction 1 (and 1A) define the code as a subset of
, without specifying how information symbols are mapped to

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 09,2010 at 22:55:54 UTC from IEEE Xplore.  Restrictions apply. 



1586 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

Fig. 3. Encoding Procedure for � .

codewords. There are many ways to map information to code-
words of , and the simplest one, that applies to any such
that , is detailed below. For an alphabet of size ,
where and are integers, information is mapped to a length

codeword of as follows: symbols, , over the
alphabet of size are set as pure information symbols. Addi-
tionally, information symbols over the alphabet of size are
input to an encoder of to obtain symbols, , over
the same alphabet. Finally, each code symbol over is cal-
culated by .

Other encoding functions can map information symbols to
codewords of in a different way than the simple encoding
function above. Different mappings with good properties are
discussed in Sections V and VI.

Example 1 now attempts to convey the main ideas of the en-
coding and decoding of asymmetric -limited-magnitude error-
correcting codes.

Example 1: Let be the binary2 Hamming code of length
, for some integer . First we define the code

in the way of Construction 1.

By the properties of , the code corrects a single asym-
metric limited-magnitude error. When the code alphabet
size is , for some integer , the code , whose size
equals by
(4), admits a simple function from information bits to
codewords of over , as illustrated in Fig. 3. In Fig. 3(a),

information bits are input to the encoder. The encoder
then uses a binary Hamming encoder to encode of the
information bits into a length Hamming codeword (Fig. 3(b)).
Finally, in Fig. 3(c), each q-ary symbol of the codeword
is constructed from bits using the usual binary-to-integer con-
version, the top row being the least-significant bits of .

Decoding is carried out by using a Hamming decoder on the
top row to find the limited-magnitude error location and mag-
nitude (for binary Hamming codes the magnitude is always 1).
The top row word is not corrected by the Hamming decoder, but
rather the error magnitude is subtracted from the -ary word
to obtain a decoded codeword. To recover the information bits

2Non-binary Hamming codes can be used as well when � � �.

after decoding, the symbols are converted back to bits in the
usual way, and the parity bits are discarded.

IV. OPTIMALITY OF THE CODE CONSTRUCTION AND

COMPARISON TO RELATED CODES

A. Perfect Codes

For some parameters, the codes constructed in the previous
section are the best conceivable ones for the asymmetric -lim-
ited-magnitude error model. These codes are perfect codes
in the sense that they attain the sphere-packing bound for
asymmetric -limited-magnitude errors. The -ary symmetric
sphere-packing bound is first generalized to asymmetric -lim-
ited-magnitude errors (with wrap-around), and then it is shown
that asymmetric -limited-magnitude error-correcting codes
that meet this bound with equality can be obtained by using
other known perfect codes, e.g., perfect codes in the Hamming
metric.

Theorem 9: If is a asymmetric -limited-magnitude
(with wrap-around) error-correcting code, of length over an
alphabet of size , then

(5)

Proof: The proof is essentially the same as the proof of
the -ary sphere-packing bound for symmetric errors [8, Ch.1],
with replacing in the sum.

Perfect asymmetric -limited-magnitude error-correcting
codes are obtained through the following proposition.

Proposition 10: If there exists a perfect asymmetric -lim-
ited-magnitude code over an alphabet of size , then there exists
a perfect asymmetric -limited-magnitude code with the same
length, over an alphabet of any size , such that , that cor-
rects the same number of errors.

Proof: Let and be as in Construction 1A. We first sub-
stitute the expression for the code size from (4) into the left side
of the sphere packing bound

If the code over the alphabet of size is perfect, then its size
satisfies

Substituting the latter into the former we get

which completes the proof.

Alternatively, perfect codes are codes which induce a parti-
tion of the space into error spheres. As was already noted, when

, the asymmetric -limited-magnitude error sphere
coincides with the Hamming metric symmetric error sphere.
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Fig. 4. In Example 2, the tilings induced by (a) the code�, and (b) the code �.

Thus, taking to be a perfect code in the Hamming metric (e.g.,
Hamming or Golay codes), produces perfect asymmetric -lim-
ited-magnitude error-correcting codes over an alphabet of size
, where .

Other perfect codes may exist even when . For ex-
ample, when , the asymmetric -limited-magnitude error
sphere is the semi-cross examined by Stein in [14].

One may wonder if any inherently new perfect code is pro-
duced by Construction 1A. The answer, unfortunately, is no:
Construction 1A simply takes translations of the tiling provided
by the base code to accommodate for the larger alphabet. This
is depicted in the following example.

Example 2: Let be the perfect ternary length code
capable of correcting one asymmetric 1-limited-magnitude
error, . The code induces a tiling of with
the error sphere, and is shown in Fig. 4. Since this tiling is with
wrap-around, it also induces a natural tiling with wrap-around
of for every . Specifically, for , the code over an
alphabet of size 6 produced from by Construction 1A, the
resulting tiling is also shown in Fig. 4.

B. Asymptotic Optimality of Construction 1

The implication of Construction 1 is that “large” codes for
symmetric errors over an alphabet of size imply “large”
codes for asymmetric -limited-magnitude errors over any
larger alphabet. Showing the reverse implication, namely, that
“large” codes for asymmetric -limited-magnitude errors imply
“large” codes for symmetric errors, would conclude that Con-
struction 1 is optimal. Optimality is achieved in this case since
given the “large” code for symmetric errors implied by the
reverse direction, Construction 1 can be invoked to yield code
of the same size as the original “large” code for asymmetric
-limited-magnitude errors. The purpose of this subsection is

to show that asymptotically, Construction 1 gives the largest
possible codes for asymmetric -limited-magnitude errors.

Definition 11: Define the rate of a code of length over
an alphabet of size as

where is the number of codewords in .

Theorem 12: If is a asymmetric -limited-magnitude
error-correcting code with rate and block-length that tends
to infinity, then

1) When and for arbitrary , there exists a code ,
constructed by Construction 1, with rate of at least .

2) For general and for (i.e.,
, or in words, has a slower

asymptotic growth compared to ), there exists a
code , constructed by Construction 1, with rate of at
least .
Proof: We first introduce the following notation. Let

be the size of the largest length code that corrects
asymmetric -limited-magnitude errors over an alphabet

of size . Let be the size of the largest length
code that corrects asymmetric errors (symbols change

only in the upward direction, with no magnitude limit), over
an alphabet of size . Finally, let be the size of the
largest length code that corrects symmetric errors, over
an alphabet of size . used here is a replacement of
the more commonly used [8, Ch.2], whereby the
parameter stands for the minimum Hamming distance of the
code instead of the number of correctable symmetric errors
(therefore ).

To avoid the excessive use of the operator, assume that
. The set of all words over the alphabet of size

is partitioned by the quotient group into
subsets, each of size . In other words, each subset

contains a single word whose symbol-wise modulo equals
the all zero vector. In addition to this vector, the subset contains
the sum of that vector with all non-zero vectors
over the alphabet of size . Each subset has the property that
no two words within it differ in any coordinate by more than .
A sample such partition for , and is given
below.

This property is equivalent to having for
every in the subset.

Suppose there is a code that corrects asymmetric -lim-
ited-magnitude errors. Then there exists at least one subset, with
at least codewords of . Since any two code-

words in that subset satisfy , each such
pair has to satisfy . In other words,
the codewords of that belong to the same subset, form a code
that corrects asymmetric errors with no magnitude limit of size
at least . Without loss of generality, assume the
subset with the most codewords is the one that contains the all
zero codeword. Generality is maintained since neither
nor are changed when a constant vector is subtracted
from both and . Consequently, the codewords of this subset

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 09,2010 at 22:55:54 UTC from IEEE Xplore.  Restrictions apply. 



1588 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

imply the existence of a code over an alphabet of size that
corrects asymmetric errors with no magnitude limit. Formally

On the other hand, Construction 1 and Theorem 7 provide the
following lower bound on :

Combining the lower and upper bounds we obtain

(6)

which is consistent with the trivial inequality
(any code for symmetric errors is also a code

for asymmetric errors). The proof of the theorem is achieved by
bounding the gap between and using
the following lemmas.

Lemma 13 [4]:
Proof: See [10].

Lemma 14: .
Proof: We will show that a code for symmetric errors can

be obtained from a code for asymmetric errors by expurgating
all but at least a fraction of codewords of the asym-
metric-error-correcting code.

Any two codewords in a asymmetric-error-correcting code
have Hamming distance of at least . Any two codewords in
a symmetric-error-correcting code have Hamming distance of
at least . The number of words (and in particular, an upper
bound on the number of codewords) that are at distance between

and from a codeword of a asymmetric-error-correcting
code is

Since ,

and thus expurgating all but at least of the codewords,
yields a code for symmetric errors:

Combining Lemma 13 with (6), for we obtain

While Lemma 14 end (6) imply, for general ,

Taking the logarithm, dividing by and taking the limit ,
the upper and lower bounds of are identical for both

and for general (under the restrictions on of part 2
of the theorem). Hence, asymmetric -limited-magnitude codes
obtained from symmetric codes by Construction 1 are asymp-
totically optimal.

C. Comparison to Varshamov Codes

Prior to this paper’s introduction of the asymmetric
-limited-magnitude error model, the closest error model that

achieves this correction capability is the q-ary asymmetric-error
model proposed by Varshamov [15]. In particular, the known
codes for the Varshamov channel are better than known
codes for symmetric channels. According to the Varshamov
model, parameterized by an integer parameter , if a vector

over is transmitted, the channel output
is a vector over , such that and
(the addition and summation are over the reals). When ,
a error-correcting code for the Varshamov channel is also
a asymmetric -limited-magnitude error-correcting code.
Since the Varshamov channel allows errors that are not
allowed by the asymmetric -limited-magnitude channel (i.e.,
errors with high magnitudes, which are unlikely in the target
application), we expect the code constructions of this paper
to yield better codes compared to the best known Varshamov
codes. This section thus compares between sizes of codes that
are obtained using Construction 1, and lower bounds, provided
in [13], on the sizes of various Varshamov codes. This compar-
ison is incomplete since it only discusses the sizes of the codes.
Evidently, our asymmetric -limited-magnitude codes enjoy
efficient encoding and decoding procedures, a property which
Varshamov codes are not known to have in general. We also
do not discuss the restrictions on the block sizes of the code
constructions, in order to avoid overloading the discussion with
secondary details.

Comparison for : When the asymmetric errors have a
magnitude limit of , we compare the codes of Construction
1 to Varshamov codes with . When , the two error
models are identical and both constructions yield (different)
codes that are perfect in that metric, whose sizes are .
When Varshamov codes are known to have

codewords, while using the (punctured) Preparata codes [12,
Ch. 15] in Construction 1 gives , roughly twice as
many codewords. For a general , there exist Varshamov codes
with sizes . If we apply Construction 1 with BCH
codes with designed distance , we get the same code size.
However, using the Goppa codes [12, Ch. 12] instead, is pos-
sibly superior to Varshamov codes with codewords.

Comparison for a General : While for the advan-
tage of the codes for asymmetric -limited-magnitude errors, in
terms of the code sizes is small, for larger values these codes
are significantly larger than Varshamov codes. Even if we only
use -ary BCH codes in Construction 1, codes of sizes

are obtained, where . Comparing
to of Varshamov codes shows a significant advan-
tage to the favor of Construction 1.
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V. SYSTEMATIC ASYMMETRIC LIMITED-MAGNITUDE

ERROR-CORRECTING CODES

All its advantages notwithstanding, Construction 1 suffers the
shortcoming of not admitting a systematic representation over

. A code over an alphabet is said to be in systematic form if
its coordinates can be partitioned into an informa-
tion set and a parity set ,
such that each symbol in is independent of other symbols in ,
and each symbol in is (non-trivially) a function of symbols in

only. As seen in Fig. 3 (b), code symbols contain parity con-
tribution. Each of these symbols also has a pure-information
component, so it can neither belong to the set, nor to the set
of a systematic-code coordinate set. This non-systematic struc-
ture implies that “many” code symbols contain some parity con-
tribution: a bad property in practice as it dictates accessing many
flash cells for each information update. In this section we pro-
pose systematic asymmetric limited-magnitude error-correcting
codes that have few parity symbols.

A. Systematic Codes for Limited-Magnitude Errors

When the error magnitude is bounded by 1, the code in
Construction 1 is a binary code. As we show next for this case,
a modification of any code can be carried out, that yields a
systematic code with the same correction capability. The con-
struction method of systematic codes for is first presented
in the following example.

Example 3: In this example we propose a systematic variant
to the code , given in Example 1. The encoding function
given below generates a code that has the same correction ca-
pabilities as , namely any single asymmetric error is
correctable, though the resulting code is different. Specifically,
the dimensions of the systematic code are different. For this ex-
ample we assume that the alphabet size of the code is ( –
the number of parity bits in the binary code), compared to
for arbitrary in . This assumption can be lifted with a small
increase in redundancy that depends on the actual code param-
eters. For an binary Hamming code , the
length of the systematic code is , compared to in
the non-systematic case. The systematic code is encoded as fol-
lows. In Fig. 5(a), information bits are input to the encoder.
The encoder then uses a binary Hamming encoder to encode
the information bits of the top row into a length
Hamming codeword (Fig. 5(b)). The parity bits of the Hamming
codeword are now placed as a separate column. The mapping of
bits to symbols, shown in Fig. 5(c), is the usual (positional)
mapping for the information symbols, and the Gray mapping
for the parity symbol.

To decode, a word from is converted back to bits using
the same mappings, and a binary Hamming decoder is invoked
for the coded bits. By construction, a single asymmetric
error over translates to a single bit error in the Hamming code-
word: in the information symbols, an error flips the
least-significant bit that is part of the Hamming codeword, and
in the parity symbol, an error flips exactly one parity bit
in the column, thanks to the Gray code used in the mapping.

The code proposed in Example 3, together with its encoding/
decoding, can be generalized to any limited-magnitude

Fig. 5. Encoding procedure for a systematic code.

asymmetric error-correcting code as stated by the following
proposition.

Proposition 15: Let be a binary systematic code of length
and parity bits, for any two integers and . If
corrects symmetric errors, then it can be used to construct

a systematic asymmetric limited-magnitude error-cor-
recting code over an alphabet of size . This code has
length , of which symbols are parity symbols.

Proof: The general construction follows closely the one
in Example 3. The information bits are used to encode
a codeword of . The parity bits are grouped into
columns of bits each. Then these columns are mapped to

symbols using the Gray mapping and information bits are
mapped to symbols using the positional mapping. The prop-
erty that each asymmetric limited-magnitude error results in one
symmetric error in the codeword of is preserved for this gen-
eral case.

B. Systematic Codes for Limited-Magnitude Errors

If we try to extend the construction of the previous subsec-
tion to codes for limited-magnitude errors, we immedi-
ately face a stumbling block. Although generalized Gray codes
exist for non-binary alphabets, their properties do not suffice to
guarantee a similar general construction. The crucial property,
that a single asymmetric limited-magnitude error translates to
a single symmetric error in the -ary code, is lost for the
general case. For example, if for a symbol represents the
ternary reflected Gray codeword , then an error of magni-
tude 2 will result in the Gray codeword , whose Hamming
distance to is 2 and not 1 as required. Thus, a limited-mag-
nitude error at this symbol may induce 2 errors for the ternary
code . Evidently, this effect is not unique to the -ary re-
flected Gray code, and there is no mapping between -ary sym-
bols and -ary -tuples with this
property. This subsection proposes a construction for system-
atic asymmetric -limited-magnitude error-correcting codes, for
arbitrary .

The construction builds on the non-systematic Construc-
tion 1. Two modifications of Construction 1 need to be instituted
to yield a systematic code. The first is using a code that has
different correction properties than used before. The second
is a special mapping between parity symbols of and code
symbols of over .

Let and be the alphabet sizes of the codes
and , respectively. Assume for simplicity that ,
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for some integer . If this is not the case, the same construction
can still be used, only the mappings between and will be
slightly more complicated.

The Code : Let be a linear systematic code over an al-
phabet of size . The number of information sym-
bols of is denoted , and the number of parity symbols is

. The parity-check matrix of is denoted by . Columns
of correspond to the parity symbols of

the code . Let be the parity-check matrix that is obtained
from by replicating all columns in such
that , and appending them to . is the
parity-check matrix of the linear code that has parity sym-
bols and information symbols.

The Mapping for Parity Symbols: From the
parity symbols of , each set of parity symbols, denoted

, is mapped to a single parity symbol of using
the following formula

(7)

The systematic code is now specified using its encoding
function.

Construction 2: Let be a linear code over the
alphabet of size . The systematic code over the
alphabet of size has infor-
mation symbols and parity symbols. The parity symbols
are computed by taking the modulo of the information
symbols, encoding them using a systematic encoder for , and
mapping the resulting parity symbols over to sym-
bols over , as described in (7).

Note that the length of the code is
, the length of the non-systematic code . Codes

obtained by Construction 2 have the following error-correction
capability.

Theorem 16: corrects asymmetric -limited-magnitude
errors if corrects symmetric errors.

Proof: The key point in the proof is that an asymmetric
-limited-magnitude error in a parity symbol of may only

change out of the parity symbols of ,
mapped to this symbol. The way was extended from allows
correcting errors in the added information symbols, as long as
the parity symbols whose columns were replicated are guar-
anteed to be error free. This fact can be verified by using a de-
coder for that first computes the syndrome using and then
inputs this syndrome to a decoder for . Thus or less asym-
metric -limited-magnitude errors in any combination of infor-
mation and parity symbols will result in a correctable error for
the code .

To clarify Construction 2 an example is now provided.
Example 4: Suppose we want to protect 20 information bits

with a systematic code that corrects asymmetric
limited-magnitude error, over an alphabet of size . Since

and , we take to be the quaternary Hamming code.
More specifically, we choose to be the Hamming code

Fig. 6. Encoding of a systematic code with � � � and � � �.

over the alphabet of size whose parity-check matrix is
given below.

The left columns of correspond to the parity symbols
of . Note that and .

Replicating the right parity column we obtain , the parity-
check matrix of .

The encoding of 20 bits of information into a codeword of
a systematic code with the specified parameters is described
in Fig. 6. Shaded cells represent parity symbols and unshaded
cells represent information symbols. In Fig. 6(a), the top two
bit rows are used to encode a word of over the Finite Field of
size 4. In the right part of Fig. 6(b), information bits are mapped
to symbols of using the usual binary to integer conversion. In
the left part, the parity symbols of are mapped to a symbol
of using the mapping defined in (7). Fig. 6(c) shows the final
codeword of .

As implied by the constant 2 in (7), only half of the alphabet
is used in the parity symbols. That is equivalent to 1 extra re-

dundant bit for each parity symbol of . Note that the half factor
is true for arbitrary . Whenever , that amount of additional
redundancy compares favorably to restricting the parity symbols
to be 0 modulo , (akin to the Ahlswede et al. “all error-cor-
recting” scheme [1]), which allows using only a frac-
tion of the alphabet in parity symbols. It is interesting to note
however, that restricting the parity symbols to be 0 modulo
turns out to be optimal for the case , as proved in [6].

To better understand Construction 2, it may be beneficial
to view it as a concatenated coding scheme. The code is
a concatenation of the outer code and an inner code for
each symbol (the mapping ) that partially corrects an
asymmetric -limited-magnitude error, to have the outer code

observe at most one symmetric error. Fig. 7 illustrates this
view of the systematic code construction.
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Fig. 7. Concatenated Code view of Construction 2.

VI. CODES FOR ASYMMETRIC AND SYMMETRIC

LIMITED-MAGNITUDE ERRORS

In flash memory applications, the dominant error sources may
cause most of the errors to be in one known direction. How-
ever, other, more secondary error sources can inject errors that
are more symmetrical in nature, but still have low magnitudes.
To answer such plausible scenarios, we address a variation of
the asymmetric -limited-magnitude error model to include a
(small) number of symmetric -limited-magnitude errors.

Definition 17: A asymmetric/symmetric -limited-
magnitude error is a vector such that .
In addition, of the indices of satisfy , and the
remaining indices satisfy .

In the following, we present a construction method for codes
that correct asymmetric/symmetric -limited-mag-

nitude errors. This enhanced error correctability is achieved by
modifying Construction 1 with the addition of an auxiliary bi-
nary code and a special mapping from information bits to -ary
symbols. We assume for simplicity that , for some
integer .

Construction 3: Let be a codeword of a
code , over an alphabet of size , that corrects
symmetric errors. Let be a two-dimensional
binary array of size , taken from an array code that
corrects a single bit error in each of at most columns3. Each
symbol of is composed from a symbol of the codeword

and a bit vector of the codeword as follows. For any ,

Gray

where Gray is the sequential number of the vector in a
binary Gray code on bits. The code contains all
compositions of the codewords of and .

Proposition 18: The code is a asymmetric/sym-
metric -limited-magnitude error-correcting code.

Proof: Decoding of is performed in two steps. Firstly,
is decoded as if it were a plain asymmetric -limited-mag-

nitude error-correcting code (of Construction 1). For the coor-
dinates that possibly suffered errors in the downward direction,
the first decoding step miscorrects these errors to exactly
levels below their correct levels. Thus, for each of these mis-
corrections, the Gray mapping of the upper bits of the symbol
guarantees that the resulting error observed by the code is a
single bit error.

Example 5 below illustrates the encoding and decoding of a
code originating from Construction 3.

3Such codes can be obtained by length ��, binary � error-correcting codes,
or more cleverly, using J.K. Wolf’s Tensor-Product code construction method
[16].

Fig. 8. Example of a code for asymmetric and symmetric limited-magnitude
errors. From top to bottom: a codeword��� of the ternary repetition code; a binary
Hamming codeword arranged into a 2� 7 array and its Gray mapping; the final
codeword ��� obtained by combining ��� and � .

Fig. 9. Example of decoding asymmetric and symmetric limited-magnitude
errors. (a) Codeword. (b) Codeword corrupted by asymmetric and symmetric
limited-magnitude errors. (c) First decoding step: correction of asymmetric lim-
ited-magnitude � � � errors. (d) Resulting corrected codeword �� is decoded
using a Hamming decoder. (e) Adjusting the miscorrection of the symmetric
error found in the previous step.

Example 5: In this example we protect 7 symbols over an
alphabet of size against asymmetric errors plus

symmetric error. Both the asymmetric and symmetric
errors have magnitude limit of . In Fig. 8, is a codeword
of the ternary repetition code that corrects symmetric
errors. The bits of , placed in two rows, are a codeword of the
(shortened) binary Hamming code of length 14. Each column
of is mapped to an integer in using the Gray code,
and the final codeword combines and through the formula

Gray

Decoding of the sample code above is illustrated in Fig. 9. The
codeword in (a) is corrupted by 2 asymmetric (upward) errors
and 1 downward error; the resulting word is given in (b). In (c)
the result of correcting 3 asymmetric limited-magnitude errors
is given. The “corrected” array is shown in (d), and the top
bit of the third column from right (marked with a bold-face )
is found to be in error. Finally, in (e) the third symbol from right
(in bold face) is adjusted 3 levels upward after a miscorrection
was detected at the previous step.

Note that the amount of redundancy (of both and ) re-
quired in the example to correct asymmetric/symmetric
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errors is smaller than if is not restricted and the repetition
code is taken over an alphabet of size (that scheme
would correct 3 symmetric limited magnitude errors).

The counterintuitive part of Construction 3 is that binary Gray
mappings are used regardless of the error-magnitude . This fact
implies that the codes and cooperate with each other to
achieve the prescribed correction capability, otherwise would
need to operate over a larger alphabet for .

VII. SPEEDING UP FLASH ACCESS WITH ASYMMETRIC

LIMITED-MAGNITUDE ERROR-CORRECTING CODES

Error-correcting codes are usually used for Forward Error
Correction (FEC), namely to protect the data integrity against
uncontrolled errors. In this section we show that asymmetric
limited-magnitude error-correcting codes, in addition to the
standard FEC capabilities shown earlier in the paper, can be
used to speed up the writing4 process to flash devices. This
is done by relaxing the programming accuracy requirements,
and using the codes to correct the resulting programming
errors. Since the flash programming mechanism is inherently
probabilistic, the introduction of “intentional” programming
errors in a controlled way can significantly reduce the average
programming time and improve the write performance. Such
an outcome would be highly desirable given the inferiority of
flash devices in write performance compared to their read per-
formance, and to the sequential write performance of hard-disk
drives. The programming speedup is next analyzed quantita-
tively by calculating the savings in programming time as a
function of (the correctable error magnitude of the employed
codes).

The behavior of a typical optimized flash programming
sequence is shown in the graphs of Fig. 10, which is taken
from [3]. The integers of the horizontal axis represent the pro-
gram-pulse sequential numbers and the vertical axis represents
electric-current levels to which flash cells are programmed.
A circle on the a graph represents a current level achieved
by a pulse at some point along the programming sequence.
The different graphs in Fig. 10 represent program sequences
with different target current values. As can be clearly seen,
most of the progress toward the target value is achieved by
the early pulses, and the numerous later pulses are used for
a fine asymptotic convergence to a value very close to the
target. Therefore, having even a small error resiliency against
asymmetric limited-magnitude errors can allow the program-
ming sequence to terminate long before hitting the target value
(due to the asymptotic nature of the programming curves) thus
significantly speeding up memory access. Increasing the error
resiliency beyond the flat part of the curve does not add sig-
nificant benefits, as at the steeper part of the curve the vertical
concentration of programming points becomes sparser.

To supplement the experimental evidence above, that toler-
ance to asymmetric limited-magnitude errors can speed-up the
programming sequence, a quantitative analysis of the time sav-
ings is now carried out. The inputs to a flash programming al-
gorithm are the initial and target current levels; its output is a

4Memory write is referred to as programming in the flash literature

Fig. 10. Performance of a flash adaptive program sequence [3]. The circles on
each curve describe the results of an iterative programming algorithm for a given
target value.

programming pulse of some width and amplitude, that attempts
to move closer to the target level, under some constraints. To
have an analytic description of the programming sequence, we
need to model the programming algorithm in a way that cap-
tures its main design constraints in practice. In flash devices,
preventing overprogramming, whereby the programming result
exceeds the target level, is a crucial consideration taken by the
programming algorithm. The reason for that being that flash de-
vices do not support single-cell erases, and an overprogramming
instance requires erasing a full flash block, an operation that is
very costly in terms of time and device wear. The analysis that
follows, strongly builds on that property of flash devices.

Suppose a flash cell is to be programmed from a lower level
to a higher target level . Since the change in the current level
is a random variable whose distribution depends on the chosen
programming pulse, we model it as an exponentially distributed
random variable with mean . will be determined by the
programming algorithm as a function of , and subject to
a constraint of fixing a low probability of overprogramming.
Specifically, will be taken such that

is a global parameter that specifies the allowable probability
of overprogramming. Substituting the exponential distribution
of , we get the integral equation

(8)

(See Fig. 11 for illustration.)
Solving (8) and rearranging we get

Hence we have the following relationship between the lower
level and the final (higher) level :

Exponential (9)
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Fig. 11. Choice of a programming distribution based on the specified proba-
bility of overprogramming. For starting level � and target level � the param-
eter � of the exponential distribution is chosen such that the marked area under
the probability density function graph equals � (the specified probability of over-
programming).

Fig. 12. A pictorial illustration of the modeled programming sequence. On the
left side are the initial level � , the target level � and the tolerance parameter
�. In the middle is a sequence of exponentially distributed level increments
� � � � � � � � � resulting from the programming algorithm. On the right side are
the instantaneous levels � until the process terminates at � .

Note that the parameter of the exponential distribution of at
each step depends on the starting level that is itself a random
variable.

Starting from an initial level , the programming algorithm
recursively updates the cell level according to (9), and stops after
the step if , where is the maximum allowed
deviation from the target level . Discussed in detail later, the
parameter specifies the device tolerance to programming er-
rors in the downward direction. A pictorial illustration of the
modeled programming sequence is given in Fig. 12.

To analyze the performance of the programming algorithm,
we need to find the expected number of steps , such that

However, given the complex5 structure of the random process ,
finding the mean of is hard. Instead, we will approximate ’s
mean crossing time by the (deterministic) crossing time of the
mean of . This latter calculation is significantly easier since

5� is a Markov process with an uncountable number of states

we can use the linearity of expectation to obtain a recursive for-
mula for the mean of . The accuracy of that approximation
can be established using concentration bounds (e.g., Chebyshev
inequality), however for the discussion here a first order approx-
imation should suffice.

Now taking the mean of (9) we write

(10)

where . Rewriting (10) provides a recurrence
relation on the expected programmed levels

Solving the recurrence for initial level we get the expression

which after simplification becomes

(11)

Now, by equating (11) to we can calculate the time
when the sequence of means crosses :

that gives

(12)

The importance of (12) is that it describes how the number of
required pulses depends on the error margin . To compare
the programming speed of flash devices with and without an
asymmetric limited-magnitude error-correcting code, we define
two different error margins, and , respectively (the sub-
script stands for coded and the subscript stands for uncoded,
and obviously ). The difference between the corre-
sponding numbers of pulses and is then

A conservative assumption is to set , where is
the parameter of the asymmetric -limited-magnitude error-cor-
recting code. This assumption corresponds to allowing the un-
coded device a tolerance of one level (over the discrete alphabet

), and the coded device a tolerance of additional levels for
the total of levels. Under that assumption, the savings in
the number of programming pulses equals

(13)

For an overprogramming probability the above equals

Values of savings for different values of are given in Table I.
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Fig. 13. Percentage of program-time savings as a function of the code’s mag-
nitude limit parameter �. Significant savings are suggested even for small � and
returns are diminishing for growing �.

TABLE I
APPROXIMATE AVERAGE SAVINGS IN PROGRAMMING PULSES

FOR SAMPLE VALUES OF �.

Another quantity of interest is the percentage of savings
, which depends on the particular dif-

ference . For a programming window of ,
is an integer specifying the target increase in discrete levels,

the part of the programming duration saved by the code equals

as long as . The median6 percentage savings is obtained
by taking and is equal to

For a sample number of levels , the median savings in
programming time suggested by the model is plotted in Fig. 13.

As seen in both Fig. 13 and Table I, while even small values
suggest significant savings, increasing beyond some point ex-
hibits diminishing returns and does not significantly contribute
to increased savings in programming time. Note that this last
qualitative observation is one we have already made when dis-
cussing Fig. 10 earlier in the sub-section. Thus both analytical
and experimental evidence motivate the application of asym-
metric limited-magnitude error-correcting codes (with small ),
as clearly codes for symmetric errors will not be an efficient so-
lution for programming speed-up.

6The median savings is a simple approximation to the average savings, which
has an unwieldy expression. For small � (compared to �) it is a relatively good
approximation.

VIII. CONCLUSIONS AND FUTURE RESEARCH

This paper proposes a new coding technique that is moti-
vated by multilevel flash memories. Defining a natural new error
model has opened the way to a simple but powerful construction
method that enjoys good storage and implementation efficien-
cies. By an interplay between symbol mappings and constraints
on the full code block, several useful extensions to the basic code
construction are achieved. An attractive property of the codes
herein, is that the coding parameters , , need not be fixed for
a flash memory device family. After implementing the simple
circuitry to support this coding method in general (modulo and
other arithmetic operations), different code parameters can be
chosen, depending on the application, by using varying external
coding modules for the symmetric error-correcting code. Many
of the strengths of this construction method were not explored in
the current paper. When the reading resolution is larger than the
code alphabet size (e.g., readers that give a real number rather
than an integer), improved decoding techniques can be readily
applied using “limited-magnitude erasures” or other soft inter-
pretations of the read symbols. Better systematic codes may be
obtained by observing the relation between the limited-magni-
tude errors and the errors they impose on the low-alphabet code,
and then replacing the symmetric error-correction properties we
required (which are too strong) with various Unequal Error Pro-
tection properties. An interesting open problem is showing (if
true) the asymptotic optimality of Construction 1 for all values
of and . This fact lies upon the existence of a proof to the fol-
lowing conjecture.

Conjecture 1: For any and , (size of largest
-ary code for symmetric errors) and (size of

largest -ary code for asymmetric errors) satisfy the following
equality.

(This was proved here for and for restricted if ).
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