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Abstract.  The thermal fluctuation spectrum of the signal received on a patch electrode is
examined and it is shown that the spectrum shows both the modes of the plasma and a continuous
spectrum related to the independent-particle motions of plasma electrons. Modes whose axial
phase velocity are more than 3-4 times the electron thermal speed are lightly Landau-damped and
are clearly separated from the continuum.  Long wavelength modes are "acoustic" in nature. If
the axial phase velocity of a mode becomes less than 1-2 times the electron thermal speed, then
the mode becomes strongly Landau-damped and it merges into the continuum.  The mode
velocities are of the order of  , where  is the plasma radius, so that the plasma radius must be=p+ +
at least several deBye lengths in order to have lightly damped modes.  In general, the spectrum is
a mixture of a continuous spectrum together with a finite number of modes which are Landau-
damped by varying amounts, depending on their phase velocity relative to the electron thermal
speed.  Only in the extreme limit,  <<   does the continuous spectrum tend to a Gaussian of=p+ @>2
width , characteristic of independent particles. The effect of the "load impedance" on the5 @>2
measurements is also discussed.

INTRODUCTION

   Two procedures have been described recently for determining the temperature of pure
electron plasmas at or near thermal equilibrium by measuring the spectrum of the
fluctuating charge on a patch electrode. The first [1] method employs the narrow
resonant peaks associated with the modes of the plasma, and the second [2] makes use
of the broad continuous spectrum associated with the independent particle motion.  A
simple model of the plasma column, using the warm plasma dielectric function, is used
to calculate the input admittance  of a patch electrode.  gives the patch] Ð Ñ ] Ð Ñ: := =
current when a voltage is applied, and it reflects the dynamical processes within the
plasma.  For example, when the frequency of the voltage applied to the electrode is
close to one of the mode frequencies of the plasma, the patch current can be very large
if the modes are lightly damped.
  Since many non-neutral plasmas are at, or close to, thermal equilibrium, a
thermodynamic argument can be used to obtain the fluctuation spectrum from .] Ð Ñ: =
The plasma can be treated as an electrical circuit and Nyquist's theorem [3] for electric
circuits can be used to obtain the fluctuation spectrum. Alternatively, one could use the
fluctuation-dissipation theorem [4] to obtain the same result.  According to Nyquist's
theorem, the fluctuation spectrum of the patch current is related to the dissipative part
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FIGURE 1.  Schematic of nonneutral plasma with cylindrical patch electrode and coaxial cable
connection to the measurement instrumentation, represented by ] Ð ÑÞ6 =

of the plasma admittance,  Fig.1. shows schematically a typicalV/Ö] Ð Ñ×Þ: =
experimental geometry.  The patch electrode is connected  to the measuring apparatus
with a coaxial cable.  The input to the measuring apparatus represents a "load" on] Ð Ñ6 =
the plasma and is assumed to consist of a resistance  and a capacitance in parallel.V G6 6

G6 also includes the capacitance of the coaxial cable.  The fluctuation spectrum can be
obtained by measuring either the voltage at the coax terminals, or the currentZ Ð Ñ=
MÐ Ñ= which flows to the load.  Nyquist's theorem gives either the fluctuating open-
circuit voltage which appears across the terminals, or the fluctuating short-circuit
current which flows. The latter is

          (1)M Ð Ñ œ % X V/Ö] Ð Ñ×ß=-
#

: := , =

where  is Boltzmann's constant and is the plasma temperature.  In general, the load, X:

is neither a short-circuit, nor a open-circuit, so the effect of the load admittance must be
taken into account. At the end of the paper  various load effects are discussed.
However, to simplify the present discussion, it is assumed that  the load is simply the
capacitance  and that  Then the spectral density of the potential whichG ] ¥ ] ÞP : 6¸ ¸ ¸ ¸
appears across  is / , with being  the fluctuatingG Z Ð Ñ œ M Ð Ñ G œ ; ÎG ;P =-

# # # # # #
=- =-P P= = =

charge on the sector electrode. First the calculation of  is outlined, and then some] Ð Ñ: =
illustrative results are given.

ADMITTANCE CALCULATION

      In this section the calculation of the input admittance  is outlined To simplify] Ð Ñ Þ: =
the calculation, a number of reasonable assumptions and approximations are made: a)
the patch electrode extends over a length, at one end of the plasma, b) the plasma has6ß
constant density up to radius , and the density is zero outside this radius, c) the plasma+
length is , and  periodic boundary conditions are used which are appropriate toP
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specular reflection of electrons at each end, d) the plasma is described by its dielectric
tensor, .   is solved for the potential, .  and  are the theO O † f † f œ ! O ßO ß O9 9

" # $

perpendicular  Hall, and parallel components of , respectively.  Assumption (c)ß O
allows us to write the potential and radial electric field, with as5 œ 8 ÎPß8 1

       (2a)9 9  œ -9=Ð5 DÑ/!
78

78 8
37 3 >) =

       (2b)I œ I -9=Ð5 DÑ/  
< <78

78
8

37 3 >! ) =

Solving the potential equation leads to for978 7 8 7 8Ð<Ñ µ EM Ð5 <Ñ  FO Ð5 <Ñ
+ Ÿ < Ÿ ,ß Ð<Ñ µ N ÐX<Ñ <  + X œ  5 O ÎO Þ Xand for with is the radial978 7 "

# #
8 3

wave number.  Assuming that the potential the potential of one Fourier978Ð,Ñß
component at the wall, is known these solutions can be fitted together so as to give
I Ð,Ñ<78 , the radial electric field at the wall. We define the quantity
; = 978 <78 78Ð Ñ œ  ,I Ð,ÑÎ ß which is the logarithmic derivative of the potential at the
wall. gives the response of the plasma to an applied potential on the wall.   is; ;78 78

a function of the frequency, , and is useful in calculating the current flowing to the=
sector probe ( )  This current is a displacement current at the surface of the patchß M Þ=
electrode, whose area is W ß:

M œ  3 Ð  I Ñ .Wß Ð Ñ( )      3   = =%9 <W
'

:

which can be evaluated in terms of using Eq. ( b).  If the patch electrode is atI Ð,Ñ #<78

potential ( )  the coefficients can be evaluated  and the input admittanceZ / ß Ð,Ñ= 93 >
78

=

of the patch electrode can be shown to be

   )    (4)] Ð Ñ œ œ Q Ð: 78
M
Z

78

#
78= ; =( )

( )
=
=

#3 W

W ,

=%9
#
:

>9>
!¸ ¸

where is a sector factor, Q œ -9=Ð5 DÑ/ .W Ÿ "ß W œ # ,Pß78 8 >9>
"
W W

37
: :
' ) 1

    ,    (5); =78 $
JÐ ÑK
JÐ ÑKÐ Ñ œ K =
=

"

#

J Ð Ñ œ O X+Ò Ó  7O ß K œ 5+ ß= " # "
N ÐX+Ñ M Ð5,ÑO Ð5+ÑO Ð5,ÑM Ð5+Ñ
N ÐX+Ñ O Ð5,ÑM Ð5+ÑM Ð5,ÑO Ð5+Ñ

w w w w w
7 7 7 7 7

7
w w
7 77 7

K œ 5+ ß K œ 5,# $
M Ð5,ÑO Ð5+ÑO Ð5,ÑM Ð5+Ñ O Ð5,ÑM Ð5+ÑM Ð5,ÑO Ð5+Ñ
O Ð5,ÑM Ð5+ÑM Ð5,ÑO Ð5+Ñ O Ð5,ÑM Ð5+ÑM 5,ÑO Ð5+Ñ
7 7 7 7

w w w w
7 7 7 7

7 7 7 7 7 7 7 7( ,

and  Thus is a weighted sum over the various . NoteX œ  5 ÐO ÎO ÑÞ ] Ð Ñ# #
$ " : 78= ;

that , and are just functions of the geometry and the axial wave numberK K ß K" # $

5 œ 5 Þ ß8 78 For a frequency corresponding to a mode  the plasma response;
becomes very large. The mode frequencies are thus determined by the vanishing of the
denominator of Eq. 5.
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RESULTS

  In the remainder of this paper axisymmetry , and a strong magnetic field soÐ7 œ !Ñ
that and , will be assumed   In addition, it will be assumed that electronO ¸ "ß O ¸ ! Þ" #

parallel motion obeys the kinetic equation so that ) ,O œ "  Ð Î5 @ ^ Ð Î5@ Ñ$ >2:
# # #

>2= =
w

where is the derivative of the plasma dispersion function and  In the^ @ œ # X Î7Þw #
>2 :,

cold plasma limit and for this leads to the undamped coldO œ "  Î ,Î+ œ #ß$ :
# #= =

plasma modes shown in Fig. 2. For low frequencies and long wavelengths, the
dispersion is acoustic in nature, with the lowest radial mode having the highest= µ 5ß
axial phase velocity, shown by the dashed line Higher order radial modes@ œ Î5ß Þ:2 =
have lower axial phase velocities and in Fig. 2. lie below the lowest mode. If the phase
velocity of a mode is less than 2-3 times  that mode will be strongly Landau-@>2
damped.
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FIGURE 2.  Radial mode frequencies, / versus , for   and   The dashed= =: :5+ 7 œ ! ß ,Î+ œ #ß X œ !Þ
line indicates low frequency asymptote for the lowest 1  radial mode.Ð6 œ Ñ

Furthermore, for , 1 (long wavelengths)  5+ 5, ¥ ß K Ä !ß K ¸ K ¸ "Î68Ð,Î+ÑÞ" # $

In this limit,
          (6);!8 ¸

1
  68Ð,Î+ÑN ÐX+Ñ9

X+ N ÐX+Ñ"

with .  The plasma response, , becomes very large when theX œ O 5# #
$ 788 ;

excitation frequency corresponds to a mode so the denominator of Eq. 6 must vanish.
Thus, for a given mode,  determines , irrespective of  and  for long,Î+ X+ 5=
wavelengths. For a cold plasma, and for frequencies well below the plasma frequency,
O ¸ œ  Î ß @ œ Î5 œ +ÎX+Þ$ :2 ::

# #= = = =and the low frequency phase velocity is 
X+ X+ ¸ ,Î+ œ #Þis less than 2.405 for the lowest mode, with  1.45 for   Thus the ratio
of velocity of the lowest mode to thermal velocity is 0.7 i.e of the order ofµ +Î@ ß=: >2

the plasma radius divided by the deBye length.
  If the plasma radius is less than a deBye length, all modes will be strongly Landau-
damped. As the deBye length becomes smaller, for example if the plasma temperature
is reduced, the modes become less damped.  In Fig. 3 we illustrate this by focusing on
the contribution to the charge fluctuation spectrum, from a single wave number, .; ß 5=-

#
8
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FIGURE 3.  Semilog plot of the charge fluctuation spectrum on a sector probe for values of  5 + œ.

"ß #ß %ß )ß "'ß 0 œ Î Þand 32.  The ordinate is the normalized frequency  Parameters for this example= =:

are .  When a mode becomes too narrow to resolve, it is shown as a vertical,Î+ œ #Þ& ß PÎ, œ ""Þ%
line.

We plot, on a semilogarithmic scale, the charge fluctuation spectrum on a patch
electrode for values of and 32.  The ordinate is the5 + œ +Î@ œ "ß #ß %ß )ß "'ß. : >2=
normalized frequency The dimensional factors in front of Eq. 4. have been0 œ Î Þ= =:

omitted for this illustration and we have plotted } for V/ÖQ Ð0ÑÎ0 ß ,Î+ œ #Þ&78
#

78;
and As  increases due to decreasing plasma temperature, modesPÎ, œ ""Þ%Þ 5 +.
become less damped and emerge, one at a time, from the continuous spectrum.  The
continuous spectrum due to non-resonant particles has a width  whichµ 5 @ ß>2

decreases with decreasing temperature.
   When  < 1, the single wave-number spectrum is nearly Gaussian (a parabola on5 +.
the semi-log plot) with width  (upper left panel of Fig 3 ). This is the single wave5 @ Þ8 >2

number charge fluctuation spectrum for an uncorrelated Maxwellian velocity
distribution of non-resonant particles.  As  increases due to decreasing temperature,5 +.
the lowest radial mode begins to emerge from the Gaussian continuum, at first strongly
damped, because the mode velocity is the same order as the thermal velocity.  With
further increase of , the continuous spectrum narrows and the lowest mode becomes5 +.
less damped (peak is narrower and higher).  Once can also notice a slight downward
shift of the mode frequency, due to a smaller "thermal shift". Still further increase in
5 +.  causes a further narrowing of the continuum, and higher radial modes (of lower
phase velocity) emerge from the continuum.  Fig. 3 is for a single wave number, , but5"
the results for the higher order axial modes, are very similar except for5 œ 5 ß 5 ß 5 ÞÞÞ# $ %

a change in the frequency scale.
  In Fig. 4. the various wave-number contributions ( have been added5 5 5 5 Ñ" # $ %

together as required in Eq. 4, for .  Also shown in Fig. 4. by the dashed curve5 + œ #Þ$.

is an approximate fit to the mode peaks using 4 simple poles.  At frequencies below the
lowest mode, one can still see the non-resonant particle contribution (labeled NRP in
Fig. 4).
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FIGURE 4. Semilog Plot (left) and linear plot (right) of the charge fluctuation spectrum versus
0 œ Î 5 + œ #Þ$= =: . for .  Solid curve: calculation using plasma dispersion function, Dashed curve: 4
pole approximation to calculated result.

DISCUSSION

   It has been shown that the thermal fluctuation spectrum of a nonneutral plasma has
both a broad continuous spectrum at low frequencies, due to non-resonant particles,
together with peaks at the resonant modes of the plasma.  A paper at this workshop [6]
presents experimental results which shows this.
   Modes whose axial phase velocity are more than 3-4 times the electron thermal speed
are lightly damped and are clearly separated from the continuum. If the axial phase
velocity of a mode becomes less than 1-2 times the electron thermal speed, then the
mode becomes strongly Landau-damped and it merges into the continuum. Since mode
velocities are of the order of  , where  is the plasma radius, the plasma radius must=p + +
be at least several deBye lengths in order to have lightly damped modes.  In general,
the spectrum is a mixture of a continuous spectrum together with a finite number of
modes which are Landau-damped by varying amounts, depending on their phase
velocity relative to the electron thermal speed.  Only in the extreme limit,  << =: >2+ @
does the continuous spectrum tend to a Gaussian of width  , characteristic of5 @>2
independent particles.
  In order for the resonant modes to emerge from the non-resonant continuous
spectrum, the modes must not be too strongly damped by Landau damping and this
generally requires that the plasma be at least a few deBye lengths across. Only if
5 + ¥ "ß. can one neglect collective effects (screening).
   In order to simplify the presentation, it has been assumed that  in the¸ ¸ ¸ ¸] ¥ ]: 6

results above. This is often the case, except when the mode damping becomes very
small, and  can become relatively large, and comparable with  near a mode¸ ¸ ¸ ¸] ]: 6

resonance. Then the following "load effects" must be accounted for when interpreting
experimental data [1]: a) the load affects the magnitude of the signal observed, b) the
capacitance of the load can shift the mode frequency slightly, c) the resistance of the
load can increase the damping of the mode, d) the load resistance can be an additional
source of thermal noise.
    While the analysis here has been for cylindrical plasmas, similar results apply for
spheroidal plasmas. Although the analysis of mixed cylindrical electrode geometry and
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spheroidal plasma geometry can complicate an analysis, nevertheless the patch
fluctuation spectra is still related to the input admittance of the plasma.
    In the  section of this paper examples were given only for the axisymmetricRESULTS
7 œ ! modes.  Some non-axisymmetric modes are negative energy modes and can be
resistively destabilized.  However, when they are not destabilized, the fluctuation
spectrum is still related to the plasma admittance, but in a more subtle way [5].
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