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Abstract—The famous max-flow min-cut theorem states that a
source node can send information through a network ( ) to
a sink node at a rate determined by the min-cut separating and
. Recently, it has been shown that this rate can also be achieved for

multicasting to several sinks provided that the intermediate nodes
are allowed to re-encode the information they receive. We demon-
strate examples of networks where the achievable rates obtained by
coding at intermediate nodes are arbitrarily larger than if coding
is not allowed. We give deterministic polynomial time algorithms
and even faster randomized algorithms for designing linear codes
for directed acyclic graphs with edges of unit capacity. We extend
these algorithms to integer capacities and to codes that are tolerant
to edge failures.

Index Terms—Communication networks, efficient algorithms,
linear coding, multicasting rate maximization.

I. INTRODUCTION

I N this paper, we study the problem of multicasting: Consider
a directed acyclic graph , a source node ,

and a set of sink nodes . The task is to send the same
information from the source to all sinks at maximum data rate
(bandwidth). Edges can reliably transport a single symbol of
some alphabet per channel use. Typically, this symbol will be
a vector of bits viewed as an element of the finite field
with elements, with a single channel use being defined as
the block transmission of an element of .

If there is only one sink , we have the well-known
max-flow problem. The maximum data rate corresponds to the
magnitude of the maximum flow from to , which equals the
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Fig. 1. An example where coding helps (see [1]).

capacity across the minimum cut separating from . Maximum
flows can be found in polynomial time. (See, for example, [2]
and [7].) Furthermore, a flow of magnitude symbols per unit
time can be decomposed into edge disjoint paths so that mul-
ticasting can simply take place by sending one input symbol per
unit time along each of these paths.

The situation is more complicated for multiple sinks. For ex-
ample, consider the graph in Fig. 1 [1]. There are flows of mag-
nitude two from to each sink in . Yet there is no
way to assign input symbols to flow paths such that each sink
gets both symbols. Ahlswede et al. [1] have shown that coding
within the network can solve this problem. In their example, as-
sume we want to multicast the bits and . Node forwards
the exclusive-or of the bits it receives. Now, sink can
find by computing and sink can get from

. It turns out that this works for all multicast net-
works, i.e., the upper bound on the obtainable data rate imposed
by the smallest maximum flow from to some sink can
be achieved using coding [1], [19]. This area of network coding
is conceptually interesting because it brings together the seem-
ingly unrelated concepts of coding and network flows.

A classical result of Edmonds [9] shows that network coding
does not increase the achievable rate in the special case where
one node is the source and all other nodes in the network are
sinks . However, in networks that include nodes
that are neither sources nor sinks, the rate achievable with
coding can far exceed the rate achievable without coding (i.e.,
the rate achievable when nodes can only replicate and forward
received symbols). In Section II, we give simple examples
where the multicast rate achievable without coding must be
a factor smaller than that achievable with coding.
When coding is not allowed, even calculating the capacity is a
computationally expensive problem: Maximizing the multicast
rate without coding is at least as hard as the minimum directed
Steiner tree problem [4], [15]. This implies that it is NP-hard
to even approximate the maximum rate. Our main result is that
although coding allows higher data rates than routing, finding
optimal multicast coding schemes is possible in polynomial
time.
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A. Overview

We continue the introduction with a short review of related
work in Section I-B. Section II establishes that there can be large
gaps between the multicast rates obtainable with and without
coding. As our main results, Sections III and IV develop polyno-
mial time algorithms for the centralized design of network mul-
ticast codes on unit capacity directed acyclic graphs. We then
generalize our results to non-unit capacity edges and to central-
ized and distributed designs of robust codes that are tolerant to
edge failures. We end with a discussion of the obtained results
and possible future work. The Appendix summarizes the nota-
tion used in the paper, most of which is introduced in Section III.

B. Related Work

Ahlswede et al. [1] show that the source can multicast in-
formation to all sinks at a rate approaching as the alphabet
size approaches infinity. They also give the simple example from
Fig. 1, which shows that without coding this rate is not always
achievable.

Li et al. [19] show that linear coding can be used for multi-
casting with rate and finite alphabet size. Our algorithms can
be viewed as fast implementations of the approach by Li et al.
The main difference is that Li et al. have to check a number
of edge sets that is exponential in to verify that the coding
coefficients chosen for a particular edge are correct. We reduce
this to a single edge set per sink node by making explicit use of
precomputed flows to each sink.

Koetter and Médard [16], [17] give an elegant algebraic
characterization of the linear coding schemes that achieve the
max-flow min-cut bound. They show that finite fields of size

are sufficient and give a polynomial time algorithm
to verify a given linear network coding scheme. However, their
algorithm for constructing coding schemes involves checking
a multivariate polynomial identity with an exponential number
of coefficients.

Ho et al. [12] present a polynomial expected time construc-
tion to the same problem, using a randomized approach. They
give a tight lower bound on the probability that independent,
random linear code design at every node achieves the max-flow
min-cut bound. It turns out that the probability approaches one
as tends to zero, where denotes the size of the finite
field. They further note that this algorithm can be implemented
in a distributed fashion, with a corresponding expected runtime
which is logarithmic in . In another paper, Ho et al. [11] use
algebraic techniques to bound the size of the finite field required
by . In contrast, we use a centralized design of linear
codes with field size and construct a code scheme
guaranteed to achieve the max-flow min-cut bound. Earlier ver-
sions of this algorithm were presented in [14], [22]. In our re-
sults on robust network codes, we also examine both central-
ized and distributed random design for codes with arbitrarily
low probability of error.

Rasala-Lehman and Lehman [18] give a natural classification
scheme for a large class of linear network coding problems. In
this classification, a problem is either NP-hard or can be reduced
to multicasting. This further underlines that a polynomial time
algorithm for multicasting is a central result. They also obtain

Fig. 2. An example where three symbols per time step can be delivered.
Without coding, the best we can do is to send three symbols over every two
time steps.

lower bounds on the minimum alphabet size required to do net-
work coding, and show that finding the smallest alphabet size is
NP-hard.

II. THE GAP TO MULTICASTING WITHOUT CODING

The following family of three-layer graphs gives exam-
ples where coding greatly increases the achievable rate:

with vertices where
, , and edges

That is, the source constitutes the first layer, the nodes in
constitute the second layer, and the nodes described by

constitute the third; each node in is connected by unit capacity
links to a distinct -element subset of . Figs. 2 and 3 show

and , respectively.

Lemma 1: For any , rate is achievable on network
.
Proof: A -ary, , maximum distance separable

(MDS) code [20] is used to achieve this rate. The code has
codewords of block length . The source maps the input

symbols to a unique codeword from the given codebook,
sending each symbol of that codeword to a distinct node in .
The intermediate nodes do not code at all.

Note: While in this example encoding operations only need to
be carried out at the source node, in general, coding only at the
source is not sufficient to guarantee capacity-achieving codes.
Fig. 1 gives an example of a network where an interior node
needs to perform a coding operation.

Theorem 2: There are unit capacity, directed, acyclic
networks where multicasting with coding allows a factor

larger rate than multicasting without coding.
Proof: Consider the network . As stated before, the

rate with coding is . Without coding, the rate is less than .
To see this, suppose that the source attempts to send sym-
bols to each of the sinks in using consecutive
uncoded transmissions. Since each edge has unit capacity and

, the source can send at most symbols in total to
the intermediate nodes. Thus, if is the subset of interme-
diate nodes receiving , then . This implies
that there is an for which . Since and

, there is at least one node that receives
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all of its information from . Sink fails to get
symbol . Finally, is strictly greater than the number of sink
nodes, which equals , and we can bound as

thus, .

III. POLYNOMIAL TIME CODING

We now describe a polynomial time algorithm for centralized
design of optimal network multicast codes. The codes are linear
with symbols from a finite field . In practice, we will use a field
of size so that the edges actually carry bits. Coding
is done by forming linear combinations of the field elements
reaching a node.

Since the detailed description of this key algorithm requires
a lot of notation describing graphs, flows, symbols, and their
interrelations, we begin with an informal outline that describes
in words the underlying principles.

Our algorithm consists of two stages. In the first stage, a flow
algorithm is run to find, for each sink , a set of
edge-disjoint paths from the source to . Only the edges in
the union of these flows are considered in the second stage of
the algorithm.

The second stage is a greedy algorithm that visits each edge
in turn and designs the linear coding employed for that edge.
The order for visiting the edges is chosen so that the encoding
for edge is designed after the encodings for all edges leading
to . The goal in designing the encoding for is to
choose a linear combination of the inputs to node that ensures
that all sinks that lie downstream from obtain linearly inde-
pendent combinations of the original source symbols .
For each sink , the algorithm maintains a set and an

matrix . The set describes the most recently pro-
cessed edge in each of the edge-disjoint paths in . The
columns of correspond to the edges in , and the column
for edge describes the linear combination of
that traverses edge . That is, if carries ,
then the corresponding column is . The algo-
rithm maintains the invariant that is at every step invertible,
thereby ensuring that the copy of intended for sink
remains retrievable with every new code choice.

Theorem 3 summarizes the properties of the resulting algo-
rithm. A formal algorithm description follows. (Recall that the
notation is summarized in the Appendix.)

Theorem 3: Consider a unit capacity, directed, acyclic
multigraph , and let denote the minimum cut between
the source and any sink . The linear information flow
(LIF) algorithms construct linear multicast codes over a finite
field . In particular, the randomized LIF (RLIF) algorithm has
expected running time . Any finite field of size

can be used1 to represent symbols sent along edges.

1A simple upper bound, not necessarily tight, for the failure probability of
a single stage of the RLIF algorithm will be shown to be jT j=j j. We choose
j j=jT j as a constant greater than 1, thus making the expected number of trials
independent of jT j. For convenience, we choose j j=jT j � 2.

The deterministic LIF (DLIF) algorithm has running time
. Any finite field of size

can be used to represent symbols sent along edges. The linear
codes resulting from either of the LIF algorithms have the
following properties.

• The source gets information symbols as its input.
• A node needs time to compute

the symbol to be sent along a leaving edge, where
denotes the set of edges feeding into . The source needs
time for each edge.

• Each sink can reconstruct all information symbols in
time .

To describe the algorithm, we need the following notation.
denotes the set of edges leaving node ; denotes

the node at which edge starts. For each edge we define the
-length local coding vector

as the vector which determines the linear combination of the
symbols on the edges in to produce the symbol on
edge . That is, if is the symbol carried by edge , we have

Our task is to determine the coefficients such that all
sinks can reconstruct the original information from the symbols
reaching them. We introduce parallel edges from
some new node to ; these edges carry the input symbols for
the source .

We can characterize the effect of all the local coding vec-
tors on edge independently of a concrete input using global
coding vectors . The -length vector represents
the linear combination of the input symbols that generate .
Thus, (an -length vector with a in the
th location) and

for

The vectors are well defined because the network is acyclic.
Using elementary linear algebra, it can be seen that a linear
coding scheme can be used for multicasting from to if and
only if for all , the vectors span the
vector space . Reconstructing the original information can
then be achieved by solving a linear system of equations over
variables. The intuition is that a linear code mixes the informa-
tion received from different edges but it does not lose essential
information as long as there is a bijective mapping between the
input and the data reaching the sink.

The challenge now is to find the local coding vectors effi-
ciently, ideally using a small finite field that allows fast arith-
metic. Our algorithm achieves this goal by making explicit use
of a maximum flow algorithm. Initially, it computes - flows

of magnitude for each and decomposes these flows
into edge disjoint paths from to . If there were only a single
sink node, our task would be simple now. We could route the
th input symbol along the th edge disjoint path. If an edge is
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on some flow path from to , let denote the prede-
cessor edge of edge on path . In our single-sink example,
we could choose a nonzero coefficient for and zero
for all other coefficients.

With multiple sinks, our approach is to superimpose multiple
- flows. The algorithm steps through the nodes in topo-

logical order. This ensures that the global coding vectors of all
edges reaching are known when the local coding vectors of
the edges leaving are being determined. The algorithm com-
putes the coefficients of for edges in , one edge
at a time. There might be multiple flow paths to different sinks
through edge . Let denote the set of sinks using in some
flow and let denote the set of
predecessor edges of in the corresponding flow paths. Nonzero
coefficients for are only chosen for edges in . To ensure
that all sinks can reconstruct the input, the algorithm of Li et al.
[19] verifies that the global coding vector is linearly inde-
pendent of an exponential number of sets of other global coding
vectors. Our algorithm can simplify this task by exploiting the
flows. It turns out that only edge sets need to be checked
for each .

We maintain the invariant that for each sink there is a
set of edges such that the set of global coding vectors ,
defined as , forms a basis of , i.e., the
original input can be reconstructed from the information carried
by the edges in . The set contains one edge from each
path in , namely, the edge whose global coding vector was
defined most recently. Thus, when the computation completes,

, and the invariant ensures that sink gets all the
information.

We initially establish the invariant by assigning the artificial
input edges with to .
When the linear combination for a new edge has been
defined, we replace by in all the with .
Hence, to maintain the invariant, it is only necessary to check for
all whether still spans . Fig. 3 gives an example
for the algorithm and its notation.

It remains to explain how to find coefficients for that
maintain the invariant. We argue that random coefficients for
edges in do the job if . Indeed, Lemma 4
below shows that for a fixed sink, the failure probability is only

. Summing over all sinks, we see that the failure proba-
bility is at most .

Lemma 4: For any and , assume that ,
which contains , is a basis of . Then with probability

, a random choice of the coefficients in with support in
fails to fulfill the property that

is a basis of , where is the corresponding global coding
vector .

Proof: If we fix the coefficients for
then there is exactly one choice of for

which is linearly dependent on . To see
this, observe that since is a basis of

Fig. 3. An example for multicasting with linear coding from s to
T = ft ; t ; t ; t ; t ; t g. We have h = 2. Assume that all the flows
are decomposed into a topmost path and a bottommost path. The thin lines
within s give nonzero coefficients for local coding vectors. The bbb vectors give
the resulting global coding vectors. Let us assume that = GF(3) and that the
edges leaving s are considered from top to bottom. If the global coding vectors
for all other edges are fixed, then the only feasible linear combinations when
we design m are [m (e )=1;m (e )= 2]; or [m (e )=2;m (e )=1].
As further examples for our notation we have � (t ) = f(v; t ); (w; t )g,
start(e) = s, T (e) = ft ; t ; t g, P (e) = fe ; e g, f (e) = e , and
f (e) = e . Before m is fixed, C = fp; e g and correspondingly
B = ; .

can be written in the form such
that and only depend on the fixed coefficients and is lin-
early dependent on . Therefore, will be
linearly dependent if and only if .

Hence, there are exactly local coding vectors that
violate the property for sink . Since there are choices
for local coding vectors, the probability that a random choice
violates the property is

Lemma 4 yields a simple randomized algorithm for finding a
single local coding vector. However, the construction fails with
probability at most , which is not sufficient to quickly find
all coding vectors using a small field. Given the knowledge of
the flows encoded in the ’s and the invariant, we convert the
preceding algorithm into one with a constant expected number
of trials followed by independence tests. This suffices to
find a feasible local coding vector.2

What we have said so far already yields a LIF algorithm, run-
ning in polynomial expected time. In what follows, we further
refine the algorithm to obtain a fast and more concrete imple-
mentation (Fig. 4) and a deterministic way of choosing the linear
combinations .

A. Testing Linear Independence Quickly

The mathematical basis for our refinement of the LIF algo-
rithm is the following lemma, which uses the idea that testing

2This modification converts a “Monte Carlo-type” randomized algo-
rithm—one that can fail—into a “Las Vegas-type” algorithm—one that always
returns a correct answer but whose execution time is a random variable.



JAGGI et al.: POLYNOMIAL TIME ALGORITHMS FOR MULTICAST NETWORK CODE CONSTRUCTION 1977

Fig. 4. LIF code design with fast testing of linear independence. Given a network (V;E), a source s and a set of sinks T , the algorithm constructs linear codes
for intermediate nodes such that the rate from s to T is maximal.

whether a vector is linearly dependent on an -dimensional
subspace can be done by testing the dot-product of the vector
with the vector representing the orthogonal complement of the
subspace. Thus, testing linear dependence on an -dimen-
sional subspace can be reduced to a single scalar product of time
complexity . Here and in the sequel, if and

otherwise.

Lemma 5: Consider a basis of and vectors ,
such that . Then, any vector

is linearly dependent on if and only if .
Proof: Let be the unique representa-

tion of in the basis . We get

Now, is linearly dependent on if and only if
i.e., if and only if .

The LIF algorithm given in Fig. 4 maintains vectors
for each sink and edge that can be used to test linear
dependence on . The invariant now becomes

and (1)

This invariant implies both the linear independence of and
the desired property of .

The algorithm in Fig. 4 implements the outline of the LIF
algorithm given above. To prove correctness we have to verify
the loop invariant.

Lemma 6: The loop invariant (1) holds for .
Proof: Proof by induction. Before the loop over the ver-

tices, the loop invariant (1) is trivially satisfied. Now assume
as the inductive hypothesis that loop invariant (1) holds for

. We show that it holds for .

In , we replace edge by edge , hence, the size of
is the same as the size of . According to the algorithm,

is chosen such that is linearly
independent. Hence, by Lemma 5, and

is well defined. Finally, we verify for
all by a short calculation

for

for

for

Remark: If the vectors in are arranged as the rows of a
matrix and the columns are correspondingly arranged as
a matrix , then the invariant is equivalent to . This
relation is also useful as it leads to a low-complexity decoding
algorithm, as will be explained at the end of this section. In
this notation, the method of updating the inverse vectors in
the LIF algorithm is a special case of the Sherman–Morrison
formula [21, Sec.2.7].

What we have said so far suffices to establish the complexity
of the randomized variant of LIF:

Lemma 7: If line (*) in Fig. 4 is implemented by choosing
random with support in until the condition “

is linearly independent”
is satisfied, then the algorithm can be implemented to run in ex-
pected time and the returned information al-
lows decoding in time at each sink.
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Proof: Using a single graph traversal, we can find a flow-
augmenting path from to in time [2]. We apply
this routine cycling through the sinks until, for some sink, no
augmenting paths are left. We can find augmenting paths for
all sinks in time .3

The algorithm works correctly over any finite field of size
. In order to perform finite-field operations effi-

ciently, we can create a lookup table of entries for successors
of elements (Conway’s “Zech-logarithm” [8], [13]). Using this
table, any arithmetic operation in can be computed in constant
time.4

Initializing , , and takes time . The two
main loops collectively iterate over all edges so that there is
a total number of iterations. Computing takes time

if the flows maintain pointers to the predecessors of
edges in the path decomposition of .

Finding a random local coding vector takes time
. Computing and testing linear inde-

pendence using the vectors takes time . Since
the success probability is constant, the expected cost for finding
a linearly independent is .
Computing for all and all takes time .

Combining all the parts, we get the claimed expected time
bound of . Sink can reconstruct the vector
of input symbols at by computing ,
where denotes the symbol received over edge .
This decoding algorithm works since can be
written as a matrix product between and the vector . But
by our invariant , and as shown earlier equals

. This decoding operation takes time .

B. Deterministic Implementation

We now explain how the LIF algorithm in Fig. 4 can be
implemented deterministically. We develop a deterministic
method for choosing the local coding vectors in step (*) using
the following lemma which is formulated as a pure linear
algebra problem without using graph-theoretic concepts.

Lemma 8: Let . Consider pairs
with for . There exists a linear combination

of such that for . Such a
vector can be found in time .

Proof: We inductively construct such that
for all with , we have that . We
choose . Now, let .

If , we set . Otherwise, note that for
each , . For each ,
we have that if and only if

Now, let be a set of distinct field elements. As ,
the set is nonempty. We choose

3We can also use Dinitz’ algorithm [7] to find many paths in time O(jEj).
For large h this also yields improved asymptotic time bounds for the flow com-
putation part [10].

4If the table is considered too large, one can resort to the polynomial represen-
tation of field elements. In this case, no table is needed at the cost of additional
factors in running time that are polylogarithmic in jT j.

some element and define . By
construction, for .

Computation of an inner product takes times . Each
can be computed in time . Since , can be rep-
resented in such a way that initialization and finding an element
can be done in time and removing an element can be done
in constant time. Hence, finding a single coefficient takes time

and finding takes time .

Lemma 8 can be used to find the linear combination in
the LIF algorithm: Apply Lemma 8 to

i.e., let denote a vector with .
The deterministic part of Theorem 3 can now be proven anal-

ogously to the proof of Lemma 7. We just replace the expected
time needed by the randomized routine for choosing

by the time needed to apply
Lemma 8. We obtain a total execution time of

Note that the restriction in Lemma 8 is the reason that
in Theorem 3.

IV. FASTER CONSTRUCTION

We now outline an alternative algorithm for constructing
linear network coding schemes. The algorithm is faster at
the cost of using larger finite fields and hence possibly more
expensive coding and decoding. Perhaps more importantly, this
approach illustrates interesting connections between previous
results and the present paper.

Theorem 9: Linear network coding schemes using finite
fields of size and achieving rate can be
found in expected time , where

denotes the time required for performing
matrix multiplications.

Proof: (Outline) First find flows decomposed into
paths as before (time ). Then pick indepen-
dent random local coding vectors for all edges simul-
taneously. Compute all global coding vectors (time

). For each sink ,
let denote the set of global coding vectors corresponding
to edges ending a path in . Check whether all the span

(time using matrix inversion based on fast
matrix multiplication [6]). If any of the tests fails, repeat.

Using Lemma 4 and the analysis of the algorithm presented
in Fig. 4 in Section III it can be seen that the success proba-
bility is at least : The algorithm of Fig. 4 would perform

independence tests, each of which would go
wrong with probability . Hence, if we omit the tests, the
failure probability is at most . The
expected number of repetitions will be constant.

This algorithm is quite similar to the one by Ahlswede et al.
[1], who choose arbitrary (possibly nonlinear) functions over a
fixed block length for the local encoding operations. The main
difference is that we choose random linear local coding func-
tions, which leads to a practical design of low-complexity codes.
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Even the analysis of Ahlswede et al. could be adapted. Their
analysis goes through if the arbitrary random functions are re-
placed by a random choice from a universal family of hash
functions.5 It is well known that random linear mappings form
such a universal family. Exploiting the special structure of linear
functions, this idea can be further developed into a polynomial
time randomized algorithm achieving rate for any con-
stant . However, the analysis given here yields stronger
results (rate , exponentially smaller finite fields) because we
can reduce the exponential number of cuts considered in [1]
to a polynomial number of edge sets that need to carry all the
information.

Another interesting observation is that Koetter and Médard
[16], [17] arrive at a similar requirement for as Theorem 9
using quite different algebraic arguments.

V. HANDLING INTEGER EDGE CAPACITIES

We now generalize from acyclic graphs with unit edge capac-
ities to arbitrary integer edge capacities. We can compute in a
time polynomial in and and subsequently replace each
capacitated edge by parallel edges of unit ca-
pacity. Section III immediately yields algorithms with running
times polynomial in , , and .

In the unit capacity case, since each unit capacity link has to
be defined separately, can only grow linearly in the number
of bits needed to define the network. However, if the edge ca-
pacities are large integers, can be exponential in the input size
of the graph. From a complexity point of view, this is not sat-
isfactory. Hence, the question arises how to handle graphs with
very large . Again, Section III (almost) suffices to solve this
problem:

Theorem 10: Let denote the maximum flow in a network
with edge capacities . For any

such that ,6 linear network coding schemes can be found
in time polynomial in , , and so that symbols
per time step can be communicated.

Proof: In a preprocessing step, find the maximum flow
from to each sink . Let denote the number of sym-
bols transported per time unit by flow over edge . Reduce

to . Note that no edge capacity exceeds
now. Let denote the maximum number of edge dis-
joint paths needed to realize any of the flows . Now build a
unit capacity network , where each edge
corresponds to parallel unit capacity
edges in . Then find a multicast coding scheme for . This
is possible in polynomial time since there are at most
edges in the unit capacity problem.

For coding and decoding in the capacitated instance, edge is
split into edges each with capacity . Each such edge
transmits symbols every time steps using the encoding
prescribed for the corresponding unit capacity edge. Thus, on
each — path in any flow , the unused capacity is at most

(due to the rounding-off caused by the function) or

5A family H � A of functions from B to A is called universal if 8x; y 2
B : PPPr[f(x) = f(y)] = 1=jAj for randomly chosen f 2 H.

6The requirement �h 2 avoids trivial rounding issues. By appropriately
choosing our unit of time, we are quite flexible in choosing �.

on all paths on one flow. Hence, the total used capacity is at least
.

VI. TOLERATING EDGE FAILURES

From a practical point of view, the importance of network
coding may come as much from an ability to increase the
robustness of network communication as from an ability to
increase throughput. In this section, we address the problem of
constructing robust network codes. There are many possible
models of robust network coding (e.g., [3]). We consider a
model similar to that of Koetter and Médard [16], [17]. Koetter
and Médard define a link failure pattern, in essence, as a subset

such that every edge fails sometime after code
design. A failed edge transmits only the zero symbol, and
such zero symbols are processed identically to zero symbols
transmitted by functioning edges. (In practice, a node con-
nected to a failed edge would detect the failure and ignore the
symbols from that edge in forming its linear combinations.
The coefficients for the functioning edges would not change as
a result of the failure.) Koetter and Médard demonstrate that
for any set of failure patterns not reducing the network
capacity below some desired transmission rate , there
exists a single linear code where the source and interior node
encoding schemes remain unchanged for all , but each
sink node can decode all symbols if it knows the failure
pattern, provided the field size exceeds . Knowledge of
the failure pattern allows the sink to compute the appropriate
decoding matrix.7 In [5], [12] it is shown that the appropriate
decoding matrix can be directly communicated to each sink
node by transmitting over each functioning edge the global
coding vector for edge computed under failure pattern .
This is a one-time transmission, and as such has low overhead.
In this paper, we improve on the field size bound slightly and
provide complexity bounds. The following theorem generalizes
Theorem 3.

Theorem 11: Let be a desired source transmission rate,
and let be a set of edge failure patterns that do not reduce
the network capacity below . A robust linear network code
achieving rate under every edge failure pattern in using a
finite field of size can be found in expected time

, where denotes
the maximum in-degree of a node.

Proof: For each failure pattern , we find a flow of
magnitude from to each sink . We reduce the graph
by considering only the edges that occur in a flow for at least
one failure pattern. For each failure pattern, an edge may be on
at most paths from to a sink; therefore, in total, an edge
may be on at most paths from to a sink. Alternately,
the number of paths from to a sink passing through an edge
equals at most . As a result, the symbol on an edge may be
a linear combination of as many as symbols.
We employ the algorithm of Fig. 5, which in essence runs the
RLIF algorithm in parallel for each failure pattern. (A version
based on the DLIF algorithm could also be constructed with

7Note the similarity with error-correcting codes: with an [n; k] MDS code,
n � k errors can be corrected if their locations are known (erasure decoding);
without this knowledge, only b(n� k)=2c errors can be corrected.
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Fig. 5. Robust linear information flow. Given a network (V;E), a source s, a set of sinks T , a transmission rate k, and a set of failure patterns F not reducing
the capacity below k, the algorithm constructs linear codes for intermediate nodes robust to all failure patterns in F .

corresponding results.) The algorithm maintains the invariant
that the sets of vectors are linearly independent for each
failure pattern and sink . Hence, every sink node
can decode under every failure pattern. The linear independence
test in the algorithm fails with probability by Lemma 4.
Hence, by the union bound, the linear independence test fails
for some failure pattern and some sink with
probability at most . Therefore, the expected
number of times a local encoding vector is chosen for each edge

is at most , which in turn is at
most if . The complexity of the initialization is

while the complexity of the main loop is

Combining terms, the overall complexity is

Using the fast linear independence test techniques of
Section III-B, the factor can be replaced by .

We can avoid most of the complexity if we are only interested
in network codes that are robust with high probability (rather
than with certainty), as the following theorem shows.

Theorem 12: Let be a desired source transmission rate, and
let be a set of edge failure patterns not reducing the network
capacity below . A linear network code whose local encoding
vector coefficients are generated at random independently and
uniformly over a finite field will tolerate all edge failure pat-
terns in (i.e., will achieve rate ) with probability at least
if , and will tolerate any particular failure pat-

tern in (and hence will tolerate a random failure pattern drawn
from ) with probability at least if .

Proof: First pick independent random local coding vec-
tors for all edges in the graph simultaneously. Then pick a failure
pattern in . For this failure pattern, compute the global coding
vectors for all edges in the graph, find a flow of magnitude

from the source to each sink in , and test that the global
coding vectors for the edges in the flow in any cut to any sink
are linearly independent. This test fails with probability at most

by the proof of Theorem 9. But for each sink to be able
to decode the message, one needs to consider linear indepen-
dence only on at most such cuts. By the union bound, the
probability that the independence test fails for any of sinks
in any of the cuts in any of the failure patterns is at most

if .

As pointed out in [5], [12], the local coding vectors can be
chosen in a distributed manner and knowledge of the global
coding vectors can be passed downstream with asymptotically
negligible rate overhead.

VII. DISCUSSION

In this paper, we present polynomial time algorithms for
the design of maximum rate linear multicast network codes
by combining techniques from linear algebra, network flows,
and (de)randomization. The existence of such an algorithm is
remarkable because the maximal rate without coding can be
much smaller and finding the routing solution that achieves
that maximum is NP-hard. The resulting codes operate over
finite fields that are much smaller than those of previous con-
structions. We also obtain results for fault-tolerant multicast
network coding.



JAGGI et al.: POLYNOMIAL TIME ALGORITHMS FOR MULTICAST NETWORK CODE CONSTRUCTION 1981

Linear network codes are designed to work over finite fields
of size . Any symbol from such a field can be represented as
an -bit binary string. Rasala-Lehman and Lehman [18] show
that there exist networks with nodes for which the minimum
required alphabet size for any capacity-achieving network mul-
ticast code is . Hence, in general, finite fields of ar-
bitrarily large sizes are required for network coding, and for
these worst case networks, the symbol size of our linear mul-
ticast codes (measured in bits) is at most twice the minimum re-
quired symbol size. Rasala-Lehman and Lehman [18] also show
that finding the minimal alphabet size for network coding on a
given graph is NP-hard.

Many interesting problems still remain open. For example,
from a complexity point of view it would be interesting to re-
place the approximation scheme for capacitated edges in Sec-
tion V by a fully polynomial time8 exact algorithm perhaps using
some kind of “scaling” approach.

Perhaps the most challenging open questions involve the
more general network coding problem where multiple senders
send different messages to multiple sets of receivers. Although
no further tractable problem classes exist within the classifica-
tion scheme by Rasala-Lehman and Lehman [18], it might still
be possible to find polynomial time approximation algorithms
for NP-hard cases that outperform the best tractable algorithms
without coding.

APPENDIX

NOTATION

: a length- vector with a in the th location
and otherwise.

: a vector with the property that
if and only if is linearly independent of

for some .
: global coding vector for edge .

: the set of global coding vectors for sink ,
.

: edges on edge-disjoint paths from to .
: the capacity of edge .

: if and otherwise.
: the set of edges.

: an edge.
: input edges connecting with .

: a small constant.
: the finite field used
: a flow of magnitude from to represented

by edge disjoint paths.
: predecessor edge of on a path from to

.
: the graph.

: the set of edges entering node .
: the set of edges leaving node .

: the smallest maximum flow from to some
sink .

: the block length of the linear codes.

8A fully polynomial time algorithm runs in time polynomial in the number of
bits needed to encode the input.

: the local coding vector for edge , i.e.,
is the coefficient multiplied with

to contribute to .
: the predecessor edges of in some flow path

.
: source node.
: dummy source node.

: the node where edge departs.
: the set of sink nodes.

: the sinks supplied through edge , i.e.,
.

: a sink node.
: the set of nodes.

: a node.
: the symbol carried by edge .
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