Epstein, Michael and Waydo, Stephen and Fuller, Sawyer B. and Dickson, Will and Straw, Andrew D. and Dickinson, Michael H. and Murray, Richard M. (2007) Biologically Inspired Feedback Design for Drosophila Flight. In: American Control Conference, 2007. ACC '07. IEEE , New York, NY, pp. 3395-3401. ISBN 1-4244-0988-8. https://resolver.caltech.edu/CaltechAUTHORS:20100506-100128102
![]()
|
PDF
- Published Version
See Usage Policy. 1MB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20100506-100128102
Abstract
We use a biologically motivated model of the Drosophila's flight mechanics and sensor processing to design a feedback control scheme to regulate forward flight. The model used for insect flight is the grand unified fly (GUF) [3] simulation consisting of rigid body kinematics, aerodynamic forces and moments, sensory systems, and a 3D environment model. We seek to design a control algorithm that will convert the sensory signals into proper wing beat commands to regulate forward flight. Modulating the wing beat frequency and mean stroke angle produces changes in the flight envelope. The sensory signals consist of estimates of rotational velocity from the haltere organs and translational velocity estimates from visual elementary motion detectors (EMD's) and matched retinal velocity filters. The controller is designed based on a longitudinal model of the flight dynamics. Feedforward commands are generated based on a desired forward velocity. The dynamics are linearized around this operating point and a feedback controller designed to correct deviations from the operating point. The control algorithm is implemented in the GUF simulator and achieves the desired tracking of the forward reference velocities and exhibits biologically realistic responses.
Item Type: | Book Section | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| |||||||||
ORCID: |
| |||||||||
Additional Information: | © 2007 IEEE. Issue Date : 9-13 July 2007; date of Current Version : 30 July 2007. Support for this work was partially provided by AFOSR Grant FA9550-06-1-0079 as well as a Fannie and John Hertz Foundation Fellowship for S. Waydo and a National Science Foundation Graduate Fellowship for S. Fuller. | |||||||||
Funders: |
| |||||||||
Subject Keywords: | aerodynamics; aerospace control; biomimetics; control system synthesis; feedback; feedforward; linearisation techniques | |||||||||
DOI: | 10.1109/ACC.2007.4282971 | |||||||||
Record Number: | CaltechAUTHORS:20100506-100128102 | |||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20100506-100128102 | |||||||||
Official Citation: | Epstein, M.; Waydo, S.; Fuller, S.B.; Dickson, W.; Straw, A.; Dickinson, M.H.; Murray, R.M.; , "Biologically Inspired Feedback Design for Drosophila Flight," American Control Conference, 2007. ACC '07 , vol., no., pp.3395-3401, 9-13 July 2007 doi: 10.1109/ACC.2007.4282971 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4282971&isnumber=4282135 | |||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | |||||||||
ID Code: | 18159 | |||||||||
Collection: | CaltechAUTHORS | |||||||||
Deposited By: | Jason Perez | |||||||||
Deposited On: | 24 Jun 2010 18:20 | |||||||||
Last Modified: | 08 Nov 2021 23:41 |
Repository Staff Only: item control page