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Abstract—Single-FPGA spatial implementations can provide
an order of magnitude speedup over sequential microprocessor
implementations for data-parallel, floating-point computation in
SPICE model-evaluation. Model-evaluation is a key component
of the SPICE circuit simulator and it is characterized by
large irregular floating-point compute graphs. We show how to
exploit the parallelism available in these graphs on single-FPGA
designs with a low-overhead VLIW-scheduled architecture. Our
architecture uses spatial floating-point operators coupled to local
high-bandwidth memories and interconnected by a time-shared
network. We retime operation inputs in the model-evaluation to
allow independent scheduling of computation and communica-
tion. With this approach, we demonstrate speedups of 2–18×
over a dual-core 3GHz Intel Xeon 5160 when using a Xilinx
Virtex 5 LX330T for a variety of SPICE device models.

Index Terms—Spice, Analog Circuit Simulator, Spatial Com-
putation, VLIW Scheduling, Loop Unrolling, Floating-Point

I. INTRODUCTION

SPICE (Simulation Program with Integrated Circuit Empha-

sis) [1] is a circuit-simulator used to model static and dynamic

analog behavior of electronic circuits. SPICE is part of the

SPEC92 Floating-Point benchmarks [2] which is a collection

of challenge problems for processors. Even today, accurate

SPICE simulations of large sub-micron circuits can often take

days or weeks (see Table I) of runtime on modern processors.

Various other attempts at reducing these runtimes by paralleliz-

ing SPICE have met with mixed success (see Section II-D)

SPICE does not parallelize easily on conventional processors

due to the irregular structure of the computation, limited peak

floating-point capacities and constraints due to scarce memory

bandwidth.

Modern FPGAs contain thousands of configurable logic

elements, hundreds of high-bandwidth, distributed on-chip

memories and a rich interconnect. FPGAs are now large

enough to support double-precision floating-point computation

on a single-chip and can be customized to implement irregular

floating-point datapaths. As a result, they are an attractive

architectural candidate for accelerating SPICE.

When parallelizing SPICE, we must consider two phases of

its operation: Matrix-Solve and Model-Evaluation. In this pa-

per, we demonstrate how to parallelize the Model-Evaluation

phase of SPICE using FPGAs; in future work we intend to

parallelize the Matrix-Solve phase and integrate a complete

SPICE simulator. The SPICE Model-Evaluation phase has

high data parallelism consisting of thousands of independent
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Fig. 1: Flowchart of a SPICE Simulator

device evaluations each requiring hundreds of floating-point

operations. A completely unrolled spatial representation of the

Model-Evaluation compute graph is too large to fit entirely on

a single FPGA today (Table III) forcing us to either partition

processing across several chips or virtualize it over the single

chip. In this paper we estimate multi-chip implementations

(Section III) and investigate architectures that virtualize com-

putation over limited single-FPGA resources efficiently to

provide speedups over a sequential implementation.

The key contributions of this paper include:

• Design and demonstration of single-FPGA implementa-

tions that accelerate model-evaluation for a variety of SPICE

device models using IEEE double-precision floating-point

arithmetic.

• A Verilog-AMS compiler for optimizing high-level device

model descriptions with an extensible backend for targeting

various computing architectures (e.g. FPGAs, GPUs).

• Quantitative comparison of two strategies for programming

the FPGA using a VLIW architecture: Loop Unrolling and

Software Pipelining with GraphStep Scheduling.

• Quantitative empirical comparison of SPICE model eval-

uation on the Intel Xeon processor and Virtex-5 FPGA.

II. BACKGROUND

A. Structure of SPICE Model Evaluation

SPICE simulates the dynamic analog behavior of a circuit

described by non-linear differential equations. SPICE circuit
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equations model the linear (e.g. resistors, capacitors, inductors)

and non-linear (e.g. diodes, transistors) behavior of devices

and the conservation constraints (i.e. Kirchoff’s conservation

laws—KCL) at the different nodes and branches of the circuit.

SPICE solves the non-linear circuit equations by alternately

computing small-signal linear operating-point approximations

for the non-linear elements and solving the resulting system of

linear equations until it reaches a fixed point. The linearized

system of equations is represented as a solution of A~x = ~b,

where A is the matrix of circuit conductances, ~b is the

vector of known currents and voltage quantities and ~x is

the vector of unknown voltages and branch currents. The

simulator calculates entries in A and ~b from the device model

equations that describe device transconductance (e.g., Ohm’s

law for resistors, transistor I-V characteristics) in the Model-

Evaluation phase. It then solves for ~x using a sparse-direct

linear matrix solver in the Matrix-Solve phase. We illustrate

the steps in the SPICE algorithm in Figure 1. The inner

loop iteration supports the operating-point calculation for the

non-linear circuit elements, while the outer loop models the

dynamics of time-varying devices such as capacitors.

We make the following observations about the requirements

and characteristics of the Model-Evaluation phase.

• At the start of the simulation, the simulator processes all

the devices in the circuit to build A and ~b. At subsequent

timesteps, only the entries associated with the non-linear and

time-varying elements change and must be recalculated.

• Each device in the circuit updates a constant number of

entries in the matrix corresponding to its node terminals.

• For non-linear elements, the simulator must search for an

operating-point using Newton-Raphson iterations. This re-

quires repeated evaluation of the non-linear model equations

multiple times per time-step.

• For time-varying components, the simulator must recalcu-

late their contributions at each timestep based on voltages at

several previous timesteps. This also requires a re-evaluation

of the device-model in each timestep.

For circuits dominated by non-linear transistor devices, the

simulator can spend almost half its time evaluating the device

models (see “no parasitics” case in Table I; we generated

datapoints in this table by running spice3f5 on an Intel Xeon

5160 using Simucad memory benchmarks [22]). For circuits

dominated by linear parasitics (e.g. parasitic capacitances),

simulation time may be dominated by the Matrix-Solve.

Since we are ultimately interested in accelerating both Model-

Evaluation and Matrix-Solve (See Section VIII), it is important

to understand how far we can improve Model-Evaluation

runtimes even in these cases where it is currently not the

dominant percentage of runtime.

Furthermore, note that as transistor devices shrink in

feature-size, the complexity of the device models required to

simulate them correctly grows over time. Newer device models

often have complexity 4–5× that of the classic bsim3 model

[10] (e.g. compare psp [11] and bsim3 models in Table IV).

This further motivates the need to accelerate device model

evaluation to avoid paying a large modeling cost for future sub-

TABLE I: spice3f5 runtime distribution (Intel Xeon 5160)
Benchmark Model Matrix Model

Circuits Eval. Solve Eval.
(bsim3) (seconds) (seconds) (Percent)

no parasitics

ram2k 55 10 84

ram8k 237 87 73

ram64k 2005 1082 64

with parasitics

ram2k 69 149 31

ram8k 300 2395 11

ram64k 2597 99487 3

micron circuit netlists. For example, when model evaluation

time increases by 5×, the no parasitic ram8k will spend 80%

of its time in model evaluation, and the parasitic case will

spend 36%.

B. Parallelism Potential

We enumerate the potential of parallelizing Model-

Evaluation here:

• Data Parallelism: Each individual Model-Evaluation

(e.g. for each transistor) within a timestep is completely

independent.

• Pipeline Parallelism: Model-Evaluation operations can

be represented as an acyclic feed-forward dataflow graph

(DAG) with nodes representing operations and edges repre-

senting dependencies between the operations.

• Specialization Potential

• Static Workload: The Model-Evaluation phase process

all devices in the circuit in each timestep.

• Early Bound Graph: The Model-Evaluation compute

graphs are known entirely in advance and do not change

during the simulation.

• Limited Diversity of Graphs: Within a simulation,

there may be very few unique device models active.

(e.g. typically all transistors in a circuit will use same

bsim3 model).

• Parameterized Reuse of Graphs: Individual device

instances are customized using parameters. Typically the

CMOS process determines most of these parameters

leaving a handful of parameters which vary from device

to device (e.g. W, L of a transistor).

C. Architecture Potential

There are several competitive architectural choices for ac-

celerating floating-point applications (See Table II). These

architectures exploit different forms of parallelism, support

various programming models and require differing amount

of programming effort. A full comparison between all archi-

tectures in Table II is beyond the scope of this paper (see

Section VIII).

D. Related Work

Previous attempts [4], [5] to accelerate Model-Evaluation

using FPGAs used a VLIW approach and required table-

lookup model evaluation, trading off accuracy for capacity,
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TABLE II: Peak Floating-Point Throughputs
Family Intel Xeon Xilinx Virtex-5 IBM Cell NVIDIA GPU AMD GPU Clearspeed

Chip 5160 LX330T PowerXCell8i GTX-280 AMD 9270 CSX700

Technology 65 nm 65 nm 65 nm 65 nm 55 nm 90 nm

Clock 3 GHz 200 MHz 3.2 GHz 1.3 GHz 750 MHz 250 MHz

Double-Precision 12 11.4 102.4 74 240 96
(GFLOPS)

Single-Precision 24 33 204.8 624 1200 96
(GFLOPS)

Power 100 Watts 20–30 Watts 92 Watts 236 Watts 220 Watts 9 Watts

TABLE III: Estimated Speedup on Multi-FPGA Designs
Device FPGAs Total

Models Required Speedup
Fully Virtual No IO Fully Virtual

Spatial Wires Limits Spatial Wires

bjt 6 4 2 25 25

diode 1 1 1 26 26

hbt 41 9 6 264 132

jfet 1 1 1 21 21

mos1 7 4 2 10 10

vbic 14 4 3 67 67

mos3 28 4 3 53 53

mextram 850 64 52 602 120

bsim3 319 25 18 199 49

bsim4 107 16 12 223 111

psp 1250 64 61 664 110

in order to make implementation feasible. This FPGA im-

plementation called Tina [5] used the Marc-1 reconfigurable

board with 9 XC4005 FPGAs coupled to a discrete FPU

to implement Model-Evaluation (speedup figures are unpub-

lished). Our single-FPGA implementation exploits a different

parallelization approach that exploits the significantly larger

FPGA densities available today to provide speedups when

compared to the latest generation processors without any

lookup-table approximations.

[9] tries to parallelize existing SPICE Model-Evaluation

code using OpenMP pragmas (no code modification) and

shows limited speedups and scaling (saturates at 2× with

4 processors). [8] uses a multi-threaded implementation and

demonstrates moderate speedups (5× with 8 processors) and

decent scaling trends without sacrificing quality. [7] paral-

lelizes transient simulations by optimistically evaluating mul-

tiple timesteps in parallel (3× with 8 processors) without

specifically accelerating individual Model-Evaluations. Xyce

is a highly-parallel simulator engineered for supercomputers

that demonstrates good speedups (24× on 40 processors)

only on sufficiently large circuits [6]. Recently, GPUs have

been used to accelerate SPICE Model-Evaluation by an im-

pressive 10×–50× (Double-Precision evaluation in [12]) and

32×–40× (Single-Precision evaluation in [13]). Our FPGA

implementation exploits a different parallelization approach

and high on-chip communication and memory bandwidth

to deliver an order of magnitude or greater acceleration of

full, double-precision floating-point Model-Evaluation using a

single FPGA without sacrificing accuracy.

III. MULTI-FPGA DESIGNS

A fully spatial FPGA implementation of Model-Evaluation

maps every operation in the computation to dedicated FPGA

logic and uses FPGA interconnect to physically implement

communication between the operations. With suitable pipelin-

ing of communication between the operations, we can start a

new evaluation of the compute graph in each cycle. If cost

is not a concern, this approach provides two to three orders

of magnitude speedup over sequential implementations on an

Intel Xeon 5160 3 GHz microprocessor as can be seen in

Table III when compared to a Xilinx Virtex5 LX330T.

However, a fully-spatial implementation of the SPICE

Model-Evaluation must be partitioned across multiple FPGAs.

Since external FPGA IO is limited, we have to choose a multi-

FPGA configuration that can accommodate communication

over external IO without any serialization. We use VPR [14] to

route inter-FPGA communication and estimate the minimum

FPGAs required for an IO-limited mapping in Table III

(Column Fully-Spatial). We can reduce cost at the expense

of performance by serializing communication over external

IO [15] (see Column Virtual-Wires in Table III). Both cases

still require multiple FPGAs for the large Model-Evaluation

graphs. Performance and design cost are dictated purely by

our ability (or inability) to move data across external pins.

Hence, we are motivated to consider affordable single-FPGA

designs for the problem and avoid external IO entirely.

IV. ORGANIZING PRINCIPLES

We highlight the principles used to design an efficient

single-FPGA architecture for Model-Evaluation.

1) Virtualization: We must virtualize the computation and

the communication on finite hardware. The virtualized ar-

chitecture consists of heterogeneous floating-point operators

coupled to local, high-bandwidth memories and interconnected

to other operators through a communication network (See

Figure 2). This virtualization must be managed with minimum

overhead to allow most of the resources to service the actual

application.

2) Balanced Provision of Resources: Model-evaluation

graphs contain a diverse set of floating-point operators such

as adds, multiplies, divides, square-roots, exponentials and

logarithms. Not all operators are used equally. We must choose

an operator mix proportional to the frequency of their use since

spatial implementations of floating-point operators can be

quite expensive. We must also tune the interconnect richness to
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Fig. 2: An Example Parallel Architecture for SPICE Model-Evaluation

properly support communication traffic between the operators.

For example, in Figure 2 we provision multiple adders and

multipliers and just one each of the remaining operators within

a Processing Element (PE). The FPGA consists of multiple

PEs. Different device models will have different operator

distributions and will require suitable operator mixes.

3) Static Scheduling: When we virtualize operation over

finite hardware, we must co-ordinate access to the virtualized

resources. The logic to mediate access to shared resources at

runtime costs area and introduces additional latency into the

execution. We minimize this overhead by statically scheduling

the resources offline in VLIW (Very-Large Instruction Word

[16]) fashion, thus avoiding runtime decisions entirely. The

VLIW instruction for the shared operator consists of read/write

address and control signals for the input and output memories

along with multiplexer control signals for the datapath (See

Figure 2). The time-multiplexed switch also contains configu-

ration instructions that provide routing information to schedule

communication between the input and output ports.

4) Scheduling to Maximize Resource Usage: An offline

VLIW scheduler has access to the entire program graph and

has a global view of available resources. In our virtualized

architecture, we expose both the scheduling of floating-point

instructions and communication between these instructions

to the scheduler. A good scheduler will attempt to schedule

the critical path in the program graph first and then try to

fit the remaining operations into the idle slots left behind.

However, model-evaluation graphs are irregular and do not

have sufficient work to fill these slots. A key challenge is to

expose work to use these slots productively.

V. VLIW ARCHITECTURES ON FPGAS

We consider two strategies for scheduling our VLIW archi-

tecture.

A. Conventional Loop Unrolling

When scheduling single loop iterations on fully-pipelined

hardware, the total number of active pipeline stages doing

useful work may be limited. We can create additional work

for the scheduler to fill these empty pipeline slots by unrolling

multiple iterations of the loop. Loop Unrolling on Model-

Evaluation graphs is possible with no increase in the critical

path since iterations are independent of each other. This

allows the scheduler to get better utilization of provisioned

hardware resources. The per-iteration efficiency gains more

than compensates for the slight increase in scheduling latency.

For example, in Figure 3, the latency to get the output of

a single iteration is 8 cycles. After unrolling 3 iterations,

the total latency increases to 12 cycles, but the average per-

iteration latency drops to 4 cycles. However, these efficiency

gains come at the expense of increased memory cost for

storing intermediate state and instruction context. We now

need to store 12 VLIW configuration instructions instead of

just 6 for the single-iteration case. Also, the intermediate state

requirements increase from 3 registers to 9 registers. For 100

total iterations of example graph, this unrolled design will

require 100 × 4 = 400 cycles. For 100 total iterations of

example graph, this unrolled design will require 100×4 = 400
cycles. We empirically determine the extent of the unroll that

provides the most judicious use of resources (Section VII).

B. Software Pipelining with GraphStep Scheduling

Software pipelining with Modulo Scheduling [17], [18]

improves the per-iteration performance by initiating execution

of successive loop iterations at a rate faster than their indi-

vidual execution latencies (which in our case is the resource-

constrained initiation interval) without requiring any unrolling.

It overlaps execution of different portions of the loop in

a single repetitive macro-cycle. The benefit of a software-

pipelined schedule is that a single schedule is valid for all

iterations thereby saving instruction storage costs. It does

increase the amount of intermediate state for instructions com-

municating across macro-cycle boundaries. For example, in

Figure 3 we need only 2 cycles to schedule all the instructions

and communication between instructions in a macro-cycle

(throughput is 1 result every 2 cycles) while the result of the

first iteration is available after 5 macro-cycles (latency is 10

cycles). For 100 iterations of the example graph, our software

pipelined design will require (100+4)×2 = 208 cycles which

is a speedup of almost 2× over loop unrolling example (note

that the +4 accounts for the initial macro-cycles required to

fill the scheduled pipeline).

For our scheduling problem:

• We must typically evaluate a large number of devices

compared to depth of the graph (number of instructions

along the critical path).
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Fig. 3: Comparison of the two VLIW Scheduling Approaches

• We have access to several on-chip distributed FPGA mem-

ories to store intermediate state.

• We have to generate a schedule for the switching network

in addition to compute scheduling.

• We are able to provision interconnect resources as neces-

sary to meet the demands of the application.

For data-independent loop-iterations, conventional modulo-

scheduling will generate a schedule while obeying intra-

iteration dependencies. Based on our observations, we propose

a simplified scheduler described here:

• We distribute instructions to different operators with load-

balancing and schedule all instructions on an operator

without precedence constraints.

• Within a macro-cycle, all instructions are processed on the

operators and all instruction dependencies are routed on the

communication network in parallel with each other.

• We schedule data movement between operators concur-

rently but independently from the computation. This adds

an extra macro-cycle of latency before the dependent in-

structions can see their inputs.

• We levelize the instructions in the compute graph based on

an ASAP ordering of the instructions within an iteration. We

retime the inputs to each instruction based on these levels

and ensure they receive inputs from the correct iteration.

These simplifications allow us to densely pack both the

floating-point operators and the communication network be-

tween these operators with high efficiency. We call this Graph-

Step scheduling since it is inspired by the GraphStep system

architecture [19].

VI. FRAMEWORK

We now explain the experimental framework we use in our

experiments.

A. Verilog-AMS

Modern SPICE simulators accept a wide-variety of device

models that cater to different designer requirements. Rather

than manually rewrite each device model for each unique

simulator interface, models are now released as simulator-

independent Verilog-AMS code [20], [21]. We use open-source

Verilog-AMS descriptions of a variety of devices available

TABLE IV: Optimized Instruction Counts
Device Models Instruction Distribution

Add Multiply Divide Sqrt Exp Log

bjt 22 30 17 0 2 0

diode 7 5 4 0 1 2

hbt 112 57 51 0 23 18

jfet 13 31 2 0 2 0

mos1 24 36 7 1 0 0

vbic 36 43 18 1 10 4

mos3 46 82 20 4 3 0

mextram 675 1626 397 22 52 37

bsim3 v3.2 283 634 122 9 8 1

bsim4 v3.0 222 286 85 16 24 9

psp 1345 2319 247 30 19 10

from Silvaco [22]. We developed a Verilog-AMS compiler

that supports a subset of the Verilog-AMS language for device

models [20]. We compile the device model equations into a

flexible intermediate representation that allows us to perform

analysis, optimization and code generation for different archi-

tectures easily. Our compiler currently performs simple dead-

code elimination, mux-conversion, constant-folding, and iden-

tity simplification optimizations. It generates a generic feed-

forward dataflow graph of the computation that is processed

by architecture-specific backend tools.

B. Tool Flow

The different FPGA organizations considered in this paper

require a variety of mapping tools to implement the dataflow

graphs on the system.

• For the fully-spatial implementations spanning multiple-

FPGAs, we use a packing algorithm that assigns nodes of

the graph onto FPGAs with user-supplied area and IO con-

straints. We use VPR [14] to place the packed instructions

on the different FPGAs and calculate the minimum channel-

width required to route the fully-spatial design. We then find

the minimum system size necessary to permit a feasible

fully-spatial design (See Table III).

• For the two VLIW designs, we share part of the mapping

flow. We start by first deciding system size (i.e. number of

floating-point operators) and partitioning the nodes based on

locality using a high-quality partitioner MLPart [23]. We
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TABLE V: FPGA Cost Model
Area Latency Speed Ref.

(Slices) (clocks) (MHz)

Add 296 8 280 [26]

Multiply 611 9 237 [26]

Divide 1499 57 258 [26]

Square Root 822 57 282 [26]

Exponential 1022 30 200 [27]

Logarithm 1561 30 200 [27]

PE support logic 82 - 300 -

BFT T-Switchbox 48 2 300 -

BFT Pi-Switchbox 64 2 300 -

Switch-Switch Wire 32 2 300 -

then provision the number of hardware operators of each

type according to instruction frequency and allocate them

to partitions using need-proportional distribution [24], [25].

Each partition can process operations of a single operator

type. We then reassign nodes paired with invalid operators

to the nearest valid operator that is least occupied.

• For loop unrolling, we provide an unrolled graph to the

partitioner/placer. Once instructions have been placed on

proper operators, we then use a greedy list scheduler to

assign those instruction to schedule slots on the operator.

We use a priority function that prefers nodes along the

circuit critical path. We schedule communication between

the nodes using a greedy time-multiplexed router that uses

A* routing. We developed this scheduler and router as part

of the Graph Machine project [19], [28], [32].

• For the GraphStep scheduler, we separately schedule com-

putation and communication. The compute scheduler simply

assigns all instructions to consecutive scheduling slots on

the fully-pipelined hardware operator. The communication

scheduler routes every edge with A* routing without any

precedence constraints.

C. FPGA Implementation

We use spatial implementations of individual floating-point

add, multiply, divide and square-root operators from the

Xilinx Floating-Point library in CoreGen [26]. For the exp

and log operators we use FPLibrary from Arénaire [27]

group. Neither of these implementations support denormalized

(subnormal) numbers. We use the Xilinx Virtex 5 LX330T

for our experiments. We limit our implementations to fit on

a single-chip and use only on-chip memory resources for

storing intermediate results. The time-multiplexed switches are

a collection of multiplexers whose select bits are generated by

a configuration context memory on each cycle. We pipeline

the wires between the switches and between the floating-point

operator and the coupled-memories for high-performance. You

can find additional details of our time-multiplexed switches in

[28]. We synthesize and implement a sample double-precision

8-operator design for the bsim3 model on a Xilinx Virtex-5

device [29] using Synplify Pro 9.6.1 and Xilinx ISE 10.1. We

provide placement and timing constraints to the backend tools

and attain a frequency of 200 MHz (See Table V). Aggressive

pipelining of exp and log operators should enable higher rates.

D. Sequential Baseline

We compile Verilog-AMS models into loop-unrolled, multi-

threaded C-code for our sequential baseline comparison. We

measure sequential performance on a dual-core 3 GHz Intel

Xeon 5160 processor with a 4MB shared L2 cache and

16GB main memory running 64-bit Debian Linux. We use

gcc-4.3.3 (-O3) with either the GNU libm math library

or the Intel MKL vector math library (with accelerated vector

implementations of math functions) to compile device models.

We use PAPI 3.6.2 [30] performance counters to measure

runtimes and report runtime averaged across the 16384 device

evaluations.

VII. EVALUATION

In this section, we discuss the tradeoffs between the two

VLIW FPGA architectures and compare their performance to

a sequential mapping (Section VI-D).

We define a Processing Element (PE) as a configuration of

floating-point operators interconnected by a shared network

(See Figure 2). A PE can have a variable number of floating-

point operators and an FPGA can have multiple PEs. The

smallest PE has one floating-point operator of each type

(minimum 6 operators). There is no network between PEs.

Both schedulers map the compute graphs to a PE. We measure

cycles required per device evaluation as the average number

of cycles required to run a single iteration on one PE divided

by the number of PEs that can fit on that single-FPGA. We

use a Butterfly Fat-Tree (BFT) topology for our mapping

experiments, and we tune the bisection bandwidth available

in the BFT by increasing the Rent parameter p (Bisection

Bandwidth IO = c × Np). A network with a p = 0 has

as much bandwidth as a ring while a network with a p = 1 is

equivalent to a crossbar. The smallest BFT PE has 8 operators.

For the two scheduling strategies, we must pick the best

design configuration for comparison with the sequential base-

line. For Loop Unrolling, this requires choosing three param-

eters: extent of unroll (unroll factor), number of floating-point

operators per PE and the Rent parameter (p) of the shared

network. For GraphStep Scheduling, we must pick the number

of floating-point operators per PE and the Rent parameter of

the shared network.

A. Loop Unrolling

1) Extent of Unroll: In Figure 4, we show the impact of

unroll factor on performance per-iteration for bsim3 graphs

when using 16 floating-point operators per PE and a network

with a p = 0.5. As expected, we initially see an improvement

in performance per iteration as we increase the unroll factor.

After 20 unrolls, performance improvements start to diminish.

By 35 unrolls, we exceed on-chip BlockRAMs capacity of a

single FPGA (XC5VLX330T).

2) Number of Floating-Point Operators: In Figure 5, we

see marginal improvement in performance per-PE when using

larger PEs. When considering per-FPGA speedups, we find

that it is best to use the smallest sized PE design (i.e. 8 oper-

ators per PE) and populate the FPGA with several instances
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of this 8-operator PE instead of using the larger PEs. The

scheduler is able to efficiently utilize available resources even

at small operator counts.

3) Interconnect Richness: In Figure 6, we illustrate the

impact of varying interconnect richness for an unroll factor of

15. We see that increasing interconnect richness results in no

significant improvement in performance. The runtime is dom-

inated by computation from the unrolling and dependencies

within loops while communication requirements are limited.

B. Software Pipelining with GraphStep Scheduling

1) Number of Floating-Point Operators: In Figure 5, we

see a significant improvement in performance per-PE as we

scale to larger PEs. This is because the GraphStep scheduler

separately schedules computation and communication and is

able to generate a compact schedule. When considering per-

FPGA performance, the 16-operator PE is the most efficient

design and marginally beats the 8-operator design by a few

cycles. Both these designs can fit multiple PEs per FPGA and

lower the average number of cycles required.

Note that we do not count the prologue and epilogue costs of

a software-pipelined schedule as circuit netlists are sufficiently

large compared to depth of the compute graphs and on-chip

memories are large enough to hold the dataflow graph IO

(e.g. ram2k from Table I has 17000 transistors while the

GraphStep Scheduling
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bsim3 model has only 100 levels. The 46K non-zeros in ~A

and 4K rows in ~b and ~x can fit in ≈ 30% of the BRAMs on

the XC5VLX330T).

2) Interconnect Richness: In Figure 6, we observe that

as we increase the Rent parameter of the network, we can

improve performance by as much as a factor of 3 (this

increases interconnect area from 3% to 8% since the floating-

point datapaths account for most of the system area). A

GraphStep scheduled design exposes all communication to an

independent phase that increases the bandwidth requirements

on the network. A richer network is better able to support this

increased traffic demand.

C. Speedup Comparison

We compare the performance achieved on an Intel Xeon

(with loop-unrolling and multi-threading) with that achieved

on the best single-FPGA configuration using the two schedul-

ing strategies applied independently as well as simultaneously.

In Figure 7 we observe that Loop-Unrolling and GraphStep

scheduling together provide the best speedup over a sequen-

tial implementation that either of them can provide inde-

pendently. For most small designs (bjt, diode, jfet,

mos1), Loop Unrolling offers better speedups than GraphStep

scheduling since a larger degree of unrolling is possible and

performance gets amortized across the unrolled iterations. For

the larger device models, Loop-Unrolling can actually slow

down evaluation (mextram, psp) as these large designs are

harder to unroll and fit within a single-FPGA. The GraphStep

design is better able to exploit limited hardware resources with

efficient scheduling.

VIII. FUTURE WORK

We identify the following broad areas for additional research

that can improve upon our current parallel design or extend

its applicability.

• A parallel solution to the sparse Matrix-Solve phase is

essential for achieving balanced total speedup for the SPICE

application. [31] demonstrates a potential for at least 10×

speedup for sparse-direct LU factorization.
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• Reduced-precision floating-point datapaths provide the po-

tential to deliver even higher acceleration per FPGA. Ad-

ditional work is needed to determine the precision required

to achieve a given accuracy requirement.

• Table II suggests the latest NVIDIA GPU and IBM Cell

processors have impressive raw double-precision perfor-

mance. It will be useful to characterize the performance

they can actually deliver for SPICE Model-Evaluation.

IX. CONCLUSIONS

A single FPGA can accelerate SPICE Model-Evaluation

computation by 2–18× over sequential single-core micro-

processor implementations. Fully-Spatial implementations of

Model-Evaluation graphs can deliver two to three orders

of magnitude speedups but require 10s–100s of FPGAs to

provide that speedup. With limited on-chip FPGA memory

capacities, Loop Unrolling of independent iterations is ef-

fective at exploiting parallelism only for small loop bodies.

Software Pipelining with GraphStep scheduling can offer

better speedups for larger loop bodies. Efficient single-FPGA

schedules are possible when performing both Loop-Unrolling

and GraphStep scheduling because we can separate the com-

putation and communication phases of a loop-iteration and

schedule multiple-iterations simultaneously.
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