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y = 2TL bn2-n - T.
n=l

Here, we consider the N -bit uniform quantization, which is
widely used in energy-constrained sensor networks. Denote y
as the N -bit quantized version of y, where

N

y = 2TL bn2-n - T.
n=l

Due to the constrained power, only the quantization bits
{bn };;=l will be transmitted to the FC. We model the wireless
link between the sensor and the FC as an AWGN channel.
Here, the uncoded transmission strategy is used. Denote the to­
tal transmission energy as eand the channel noise variance as
O'~. At the FC, the total receiving signal-to-noise ratio (SNR) is
defined by 1 := e/O'~. We assume the transmission energy for
bn is a fraction X n of the total energy efor n = 1, ... , N, and
the quantization bits experience independent channels. Denote
b~ as the demodulated version of bn at the FC. Then the SNR
of b~ is X n1. Denote Pn as the bit error rate of bn, that is
Pn := P(b~ =1= bn ).

At the FC, y can be reconstructed as

N

y' = 2TLb~2-n -T.
n=l

quantization bits is formulated as a convex problem and the op­
timal solution is derived analytically in both cases. Simulation
results show that the proposed quantization schemes achieve
significant reduction in reconstruction MSE compared with the
MBE quantization scheme and the quantization scheme with
uniform energy allocation for either BPSK signal or binary
orthogonal signal with envelope detection .

II. PROBLEM FORMULATION

We consider that each sensor in the network makes a local
observation y and wishes to transmit it to FC. Suppose that the
observation y is bounded to [-T, T] with variance 0'2, where
T is known and decided by the sensor's dynamic range. We
can express y as

Abstract-This paper addresses the optimization of quan­
tization at local sensors under strict energy constraint and
imperfect transmission to improve the reconstruction perfor­
mance at the fusion center in the wireless sensor networks
(WSNs). We present optimized quantization scheme including
the optimal quantization bit rate and the optimal transmission
power allocation among quantization bits for BPSK signal and
binary orthogonal signal with envelope detection, respectively.
The optimization of the quantization is formulated as a convex
problem and the optimal solution is derived analytically in both
cases. Simulation results demonstrate the effectiveness of our
proposed quantization schemes.

I. INTRODUCTION

Parameter estimation by a set of distributed sensors and a
fusion center (FC) is frequently encountered in the wireless
sensor network (WSN) applications [1]. Constrained by lim­
ited power and bandwidth resources, sensors should perform
local quantization to their observations before transmission [2].
At the FC, sensor observations are reconstructed and combined
to produce a final estimate of the unknown parameter.

Some previous works [3]-[5] assume error-free transmission
between sensors and the FC. [6]-[ 10] model the wireless links
between sensors and the FC as additive white Gaussian noise
(AWGN) channels. [6] derives an estimate scheme based on
I-bit quantized observation. The optimal power scheduling
problems among sensors are investigated in [7] [8] with differ­
ent assumptions about the sensor observation noise. Training
sequence is used in [9] to estimate the unknown channel.

Different from these works, this paper addresses the opti­
mization of the quantization scheme per sensor including the
quantization bit rate and the transmission energy allocation
among quantization bits under strict energy constraint and
imperfect transmission. A quantization scheme is proposed in
[10], which minimizes the upper bound of the reconstruction
mean-absolute error (MBE), which is called the MBE quanti­
zation scheme below.

In contrast, we propose a quantization scheme which min­
imizes an upper bound of the reconstruction MSE for BPSK
signal and binary orthogonal signal with envelope detection,
respectively. The optimal transmission power allocation among

This work was supported in part by the Major Program of the National
Natural Science Foundation of China under Grant 60675002 and Caltech's
Lee Center for Advanced Networking.

Our goal in this paper is to optimize the quantization scheme
under the total energy constraint e in order to minimize
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the reconstruction MSE at the FC. The quantization scheme
includes the quantization bit rate N and the transmission
energy allocation among bits x = [Xl, ... ,XN].

III. OPTIMAL QUANTIZATION SCHEMES

Firstly, we obtain an upper bound of the reconstruction
MSE. At the FC, the reconstruction error can be expressed
as

t PnPmTn-
m

::; t PnTn (pn I: T
m + t T

m
)

n#m n=l m=l m=n+l
N

= L [Pn 2- n(2-n - 2- N ) + p~2-n(1 - 21- n )J .
n=l

(11)

y-y' =(y-y)+(y-y'), (4) Substituting (11) into (9), we have

where the first part is the quantization error and the second part
is the demodulation error. Using (4) and the Cauchy-Schwartz
inequality, we can bound the reconstruction MSE as

It has been shown in [5] that the quantization error satisfies

The power scheduling among quantization bits is con­
structed as follows:

(14)

(13)

(12)

2 N

Ely - y' I ::; 4T2 L [Pn 21- 2n(1- 2n- N
-

1)
n=l

+p~2-n(1 - 21- n )J

2 T2 N

E Iy - y'l ::; 2a2 + 3 21- 2N + 8T2 L [Pn 21- 2n

n=l

.(1 - 2n- N - I ) + p~2-n(1 - 21- n )J
:= f(N;x),

T2

Ely - Yl2 ::; a 2 + 3 2- 2N
.

According to (12) and (13), we can finally bound the
reconstruction MSE as [c.f. (5)]

(8)

(7)

(5)

(6)Ely - yr = 4T2E It,(bn - b~)TnI2

::; 4T2E (t, Ibn _ b~12-n) 2

1

' 1

2

2 1 ' 1

2
E y - y ::; 2E Iy - yl + 2E y - y .

According to (2) and (3), we obtain

The optimal solution of (15) and the minimum of the
objective function f (N; x) are functions of the quantization
bit rate N. We denote the optimal solution of x as xiv =
[xiv I' Xiv 2' ... ,xiv N] and the minimum of the objective
fun~tion ~s f(N; x~). The optimal quantization bit rate which
minimizes the upper bound of the reconstruction MSE can then
be obtained by

where the last step is due to the assumption that the quanti­
zation bits experience independent channels.

Recalling that Ibn - b~1 is a {O, I} Bernoulli random
, 2 'variable, we have Elbn - bnl = Elbn - bnl = Pn. Thus

(8) can be expressed as

2 (N N )Ely - y'l ::; 4T
2

LPnT2n + L PnPmTn-
m

·
n=l n#m

(9)
From (6) we find that the demodulation MSE is more

dependent on the demodulation accuracy of the leading bits
of y, and less dependent on the accuracy of its trailing
bits. Intuitively, it is reasonable to assume that the optimal
quantization scheme allocates more transmission energy to the
leading bits of y, and less energy for its trailing bits, that is
X m 2:: X n if m ::; n. Then we have

min f(N; x),

s.t. X n 2:: 0, n = 1, ... , N
N

LXn =l
n=l

Nopt = argminf(N; xiv).
N

(15)

(16)

When N is fixed, to solve the convex problem (15), we can
(10) write the Lagrangian function G asPm ::; Pn, if m::; n,

which can be easily shown by contradiction.
Using (10) and the fact Pm ::; 1, we can further bound the

second part of (9) as

G(xiv, A, JL) = f(N; xiv )+A (t, xN,n - 1) -t, ILnXN,n·

(17)
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A. BPSK over AWGN Channels

The bit error rate Pn for BPSK signal over AWGN channels
is given by [11] as

It is easy to show 8~(xNn)/8xNn < 0, which implies
that ~(XN,n) is strictly decre~sing with respect to xN,n. Due
to (19), we can express the optimal solution as

(26)

(25)

8
2
f(N; x N) _ T2~24-2n _ xiv,n"Y {1 (1 )

---~2~- e 2 - --+1
8xN,n 21rxN,n 2 xN,n

. [1 - 2n- N- 1+ Q (VXn1) (2n - 2)J

+ !+(2n _ 2)e- xN2n'"Y}y21rxN,n

> o.

where Q(.) is Gaussian tail function.
We then have

XN,n = ~-1(22n-4(A - JLn)).

Since the domain of ~(xN n) defined in (24) is (0, +(0),
we must have JLn = 0 for all 'n to satisfy the complementary
slackness conditions in (22). Therefore, we obtain the final

T2 N [ ( solution of (15) as
f(N; x'N) = 20"2 + 3 21- 2N + 8T2L Q JX'N,n 'Y) 21- 2n

n=l 2 ] XN,n = ~-1(22n-lA),

.(1-2n- N- 1)+Q(JXN,n'Y) 2-n(1-21- n) . wh~re: is a constant chosen to enforce the constraint

2::n=l xN,n = 1.
In this case, the second derivative of f(N; x N) with respect Since ~(xN n) is monotonically decreasing with respect to

to xN,n is XN,n' 2:::=1 X~,n is a monotonically decreasing function with
respect to A. Thus, we can use some efficient search algorithms
to find the proper A which makes the constraint satisfied, such
as the bisearch algorithm.

The optimal energy allocation in (26) intuitively shows that
more energy should be allocated to the leading bits, while less
should be allocated to the trailing ones, which indicates our
original assumption in (10) is reasonable.

Finally, the optimal solution {NoPt ' x Nopt } can be obtained
based on (16).

B. Binary Orthogonal Signal with Envelope Detection

Consider the binary orthogonal signals such as binary
frequency-shift keying (FSK) or pulse-position modulation
(PPM), which can be demodulated using non-coherent enve­
lope detection. The bit error rate is [9, pp. 307-310]

1 xiv,n"Y
Pn = -e--4 -

2
Then we have

T 2 N [ xiv n"Y
f(Njx'N) = 20"2 + 3 21- 2N + 8T2~ e--4-2-2n

x* "Y ].(1 - 2n - N - 1 ) + e- N 2n 2-2- n (1 _ 21- n ) .

In this case, the second derivative of f (N; x N) with respect
to xN,n is

(28)

(27)

x* "Y

- T21e- N4n 21- 2n (1 _ 2n- N- 1) - T21
x* "Y

. e- N 2n 2-n(1 - 21- n ) + A - JLn = 0

82 f(N· x* ) [Xiv "Y
* '2N =T212 e------:P-2- 1- 2n(1- 2n- N- 1)

8xN ,n

+e- XN2n'"Y 2- 1- n(1- 21- n)]

> O.

Thus the optimal problem (15) is also convex with respect to
xN n for the binary orthogonal signals with envelope detection.

The associated set of KKT conditions are

(19)

(18)

Thus the optimal problem (15) is convex with respect to
xN,n for BPSK signal over AWGN channels.

The associated set of KKT conditions then read [12]

A(t, xN,n - 1) = 0 (20)

N

L XN,n = 1 (21)
n=l

JLnXN,n = 0, n = 1, , N (22)

A 2: 0 JLn 2: 0 XN,n 2: 0 n = 1, ,N (23)

We notice that if A = 0, from (19) it follows that JLn < 0
for all n. Then using (22), we have xNn = 0 for all n, which
violates the condition (21). Thus, it m~st holds that A > O.

Now we proceed to solve the KKT systems. Define function
~(XN,n) as

~(x* ):= T2~e-~XN,n'"Y[1 - 2n- N- 1
N,n 21rx*

N,n (24)

+Q ( JX'N,n 'Y) (2n - 2)] ·
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where if n > 1, 1](-X, n) is defined as

* { 0, -X 2: T212-n(1 - 2-N );
xN,n= -~In(1](-X,n)), -X <T212-n(1-2-N).

(35)

1](-X,n):= [T121 - n(1- 21- n )]-1 [-T121 - 2n(1- 2n- N- 1)

+VT2"(222-4n(1- 2n- N - 1 )2 + 4A"(2-n(1- 21- n )] ,

(36)

(40)

(41)¢(-X) = 1.

( tXN,n -1) = O.
n=l

4 i .
Zl = -- LIn (ry(T2"(T(%+1)(1 - TN), n)) ,

1 n=l

If Zo ::; 1 and Zl 2: 1, then go to 4), else i = i + 1 and
go to 3).

3) Search -X at [T21 2-(i+l)(1 - 2-N ), T212-i(1 - 2-N )]
using the bisearch algorithm to satisfy

4 i

-- LIn (1](-X, n)) = 1.
1 n=l

4) Calculate {xlvopt} as follows:

* { 0, n > i;
xN,n = _~ In (ry(A, n)), n:S; i. (42)

The algorithm leads to the global optimum since the optimal
-X is unique. Finally, the optimal solution {Nopt , x lvopt } can be
obtained based on (16). In Section IV, we will find the optimal
solution for specific system setups and show the simulation
results.

and

Finally we show that -X > O. If -X = 0, then from (28) we
have J-Ln < 0 which contradicts (32). Therefore -X = 0, then
(29) becomes

IV. SIMULATION RESULTS

This section presents some simulation results to demonstrate
the effectiveness of the proposed quantization schemes. In all
simulation runs, the observed signal is chosen as Gaussian
truncated to the range [-5,5], i.e., T = 5 with mean 1.
The channel noise is zero-mean Gaussian distributed. All
simulation results are averaged from 50,000 independent runs.

Fig. 1 depicts the reconstruction MSE of different quanti­
zation schemes with the total receiving SNR 1 = 20 at the
FC for BPSK signal over AWGN channels. With different
quantization bit rate N, the optimal energy allocation {xlv}
is obtained by solving (26), and the optimal quantization bit
rate N is also found to be Nopt = 5. We plot the simulated

From (39), we know that ¢(-X) is a piecewise-linear nonin­
creasing function of -X with a breakpoint at T212-n(1- 2-N ),
thus the equation has a unique solution. The unique -X can be
found by the following algorithm.

Algorithm:

1) Set i = 1.
2) Calculate

Taking (38) into (40), we have

(34)

(37)

(33)

(38)

(39)

2-X
ry(A, 1) := T2"((1 _ 2-N)'

More concisely, we have

xN,n = max { 0, -~ In (ry(A, n)) } .

Define ¢(-X) as

¢(A):= tmax{o,_iIn(ry(A,n))}.
n=l 1

A(t, xN,n - 1) = ° (29)

N

L XN,n = 1 (30)
n=l

J-LnXN,n=O, n=l, ,N (31)

-X 2: 0 J-Ln 2: 0 XN,n 2: 0 n = 1, , N. (32)

Next we proceed to solve the KKT systems. Multiplying
both side of (28) by x N n eliminates J-Ln, and we obtain the
following equation '

x* '"Y

- T21 e- N4n 21- 2n (1 _ 2n- N - 1 )

X'N n'"Y

- T21e--2-2-n(1 - 21- n )+-X = 0

Then xlv,n is calculated as

else

[
X'N n'"Y

XN,n -T21e--4-21-2n(1 - 2n- N- 1)

X'N n'"Y ]-T21e--2-2-n(1 - 21- n ) + -X = O.

If -X 2: T212-n(1 - 2-N ), x N n > 0 is impossible since if
xlv n > 0 then -T212-n(1 - 2-'N) + -X > 0 and (33) cannot
hold. Thus xlv n = 0 if -X 2: T212-n(1 - 2-N ).

Now we sho~ that when -X < T212-n(1-2-N), J-Ln should
be zero. When -X < T212-n(1 - 2-N ), we have J-Ln < 0 if
xlv n = 0 using (28), which contradicts (32). Thus if -X <
T212-n(1-2-N), xlv n should not be zero. Then to get (31),
we have J-Ln = 0 if -X '< T212-n(1 - 2-N ). Therefore (28)
becomes

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 616

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:56:43 UTC from IEEE Xplore.  Restrictions apply. 



........: : .

. . . . . . . . . .:. . . . . . . . . . . . ~ . . . . . . . . . . .. .....

. : : : : : > .

............: : : : .

-vr- Optimal quantization
~ MBE quantization
~ Uniform quantization

10-
1

::::::::::: .:............ . , :::: ::::::::::::::;::::::::::: :::::::.

..................: : .

.......... : : : .
. ...... : : .. .

10-2
:::::~::::::::::::~::::::::::: . :::::::::: ~ : : : : : : : : : : :~: : : : : : : : : :: . :::::::::: ~ : : : : .

-vr- Optimal quantization
~ MBE quantization
~ Uniform quantization

2 4 6 8
N

10 12 14 2 4 6 8
N

10 12 14

Fig. 1. Reconstruction MSE versus the quantization bit rate per sensor with
different energy allocation schemes among bits for BPSK signal.

Fig. 2. Reconstruction MSE versus the quantization bit rate per sensor with
different energy allocation schemes among bits for FSK signal.

reconstruction MSEs with the optimal energy allocation {xiv},
the MBE energy allocation scheme [10], and the uniform
energy allocation scheme, respectively. Fig. 1 shows that the
proposed optimal quantization scheme has lower MSE than
either the MBE or the uniform energy allocation schemes for
BPSK signal over AWGN Channels.

Fig. 2 shows the performance for FSK signal over AWGN
channels with the total receiving SNR '1 = 10 at the FC. With
different quantization bit rate N, the optimal energy allocation
{xiv } is obtained by solving (35), and the optimal quantization
bit rate N is found to be Nopt = 4. Fig. 2 also demonstrates
that the proposed optimal quantization scheme outperforms
either the MBE or the uniform energy allocation schemes for
FSK signal over AWGN channels.

V. CONCLUSION

This paper addressed the optimization of the quantization
scheme under strict energy constraint and imperfect trans­
mission to improve the reconstruction MSE performance at
the FC. Optimal quantization schemes including the optimal
quantization rate as well as the optimal transmission energy
allocation, which minimizes the upper bound of the reconstruc­
tion MSE, have been proposed for BPSK signal and binary
orthogonal signal with envelope detection, respectively. The
optimization problems have been proved to be convex and
closed-from solutions have been derived in both cases. Sim­
ulation results showed that the proposed optimal quantization
schemes perform better than either the MBE or the uniform
quantization schemes.
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