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ABSTRACT 

Numerical techniques for the solution of unsteady free 
surface flows a re  briefly reviewed and consideration 
i s  given to the feasibility of methods involving pararn- 
etric planes where the position and shape of the free 
surface a re  known in advance. A method for inviscid 
flows which uses the Lagrangian description of the 
motion is developed. This exploits the flexibility in 
the choice of Lagrangian reference coordinates and is 
readily adapted to include terms due to inhomogeneity 
of the fluid. Numerical results a re  compared in two 
cases of irrotational flow of a homogeneous fluid for  
which Lagrangian linearized solutions can be con- 
structed. Some examples of wave run-up on a beach 
and a shelf a r e  then computed. 

I. INTRODUCTION 

There a r e  many instances of unsteady flows in which analytic 
solutions, even approximate ones, a r e  not available. This is par- 
ticularly true of f ree surface flows when, for example, non-linear 
waves o r  even slightly complicated boundaries a r e  involved. Though 
analytical methods a r e  progressing, especially through the use of 
variational principles (Whitham [1965]) and, in some cases ,  the 
non-linear shallow water wave equations yield important results 
(Carr ier  and Greenspan [ 19581) there  is sti l l  a need for numerical. 
methods. Indeed, numerical "experiments " can be used to comple- 
ment actual experiments. 

Until very recently numerical solutions in two dimensions 
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invariably seemed to employ the Eulerian description of the motion 
though the Lagrangian concept has been used for some t ime in the 
much s impler  one-dimensional case (e.g. , Heitner [ 19691 , Brode 
[ 19691 ) and to make smal l  t ime  expansions (Pohle [ 19521 ) . Perhaps  
the best  known of these Eulerian methods i s  the Marker-and-Cell 
technique (MAC) begun by F r o m m  and Harlow [ 19631 and fur ther  
refined by Welch, -- et al. [ 19661 , Hirt  [ 19681 , Amsden and Harlow 
[ 19701 , Chan, Street  and Strelkoff [ 19691 and others.  The mos t  
difficult problem a r i s e s  in attempting to  reconcile the initially un- 
known shape and position of a f ree  surface with a finite difference 
scheme ahd the necessity of determining derivatives a t  that surface.  
In the same way, few solutions exist with curved o r  i r regu la r  solid 
boundaries. In steady flows, mapping techniques have been e m -  
ployed to t r ans form the f r e e  surface to a known position (e. g. , 
Brennen [ 19691 ). It would therefore seem useful t o  examine the use 
of parametr ic  planes for  unsteady flows. The Lagrangian description 
in i ts  most general  f o r m  (Lamb [ 19321) involves such a plane and by 
suitable choice of the reference coordinates,  the f ree  surface  can 
be reduced to  a known and fixed straight l ine.  However a discussion 
of other pa ramet r i c  planes and mapping techniques is included in 
Section 3 .  

The major  pa r t  of this paper i s  devoted to the development 
of a numerical  method f o r  the solution of the Lagrangian equations 
of motion in which full use i s  made of the flexibility allowed in the 
choice of reference coordinates. F o r  the moment,  we have res t r i c ted  
ourselves to cases  of inviscid flow. Very recently,  Hir t ,  Cook and 
Butler [ 19701 published details of a method which employs a 
Lagrangian tagging space but i s  otherwise s imi la r  to the MAC tech- 
nique. This i s  fur ther  discussed in Section 4B. 

11. LACRANGIAN EQUATIONS O F  MOTION 

The general  inviscid dynamical equations of motion in 
Lagrangian form a r e  (Lamb [ 19321 ): 

where X,Y.Z a r e  the Ca :esian coordinates of a fluid par t ic le  a t  . . r t  
t ime t ,  F, G ,  H a r e  the components of extraneous fo rce  acting upon 
it, P is the p r e s s u r e ,  p the density and a ,  b ,  c a r e  any th ree  
quantities which s e r v e  to  identify the part icle and which vary con- 
tinuously f r o m  one part icle to the next. F o r  ease  of reference 
(X, Y ,  2) a r e  t e rmed  Eulerian coordinates, ( a ,  b ,c)  Lagrangian co- 
ordinates. Suffices a ,  b ,  c ,  t denote differentiation. 
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If X,, Yo, Z, is  the position of a particle at some reference 
t ime  t o  (when the density i s  p,) then the equation of continuity i s  
simply 

Frequently it is  convenient to define a ,  b ,  c a s  identical to X,, Yo, ZO, 
thus reducing the R.H. S. of (2)  to p,; however it will be seen in the 
following sections that flexibility in the definition of a ,  b ,  c I s  of 
considerable value when designing numerical methods of solution. 

If the extraneous forces ,  F,  G,  H, have apotent ia l  S2 and 
P ,  if not uniform, is  a function only of P then, eliminating S2 + +/p 
f rom (1): 

where,  fo r  convenience, the velocities Xt, Y,, Z a r e  denoted by 
U, V, W. The quantities r,, re, r3 are  related to the Eulerian 
vorticity components , 5 ,  , 5 2, G 3  by 

(Thus, of course ,  vorticity changes with t ime  a r e  due solely t o  
changes in the coefficients of the L.H. S. of (4) which, in turn,  
represents stretching and twisting of the vortex l ine,)  Given the 
vorticity distribution c(X, Y, Z) at  some initial t ime ,  to, r ( a ,  b ,  c) 
(which is independent of time) may be obtained through Eqs. (4) and 
used in the final f o rm  of the dynamical equations of motion, namely 
Eqs. (3) integrated with respect to t ime.  
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For  incompressible, planar flow the equations reduce to 

Continuity: XaYb- YaXb = F(a,b) (5) 

(or differentiated w. r .  t .  t): 

Motion: UbXa - UaXb + VbYQ - VaYb = - r (a ,b) .  (7) 

By introducing the vectors Z = X + iY and W = U - iV, ( 6 )  and (7) 
conveniently combine to: 

Other types of flow have also been investigated. F o r  example, 
in the case ~f a heterogeneous, o r  non-dispersive stratified liquid in 
which p is a function of (a ,b) ,  Eq. (8) becomes: 

The integral t e rm therefore manufactures vorticity. The methods 
developed for a homogeneous fluid in Sections 4A to D a r e  modified 
in Section 4E to include such effects. 

111. OTHER PARAMETRIC PLANES 

It may be of interest to digress at  this point to consider other 
parametric planes (a ,b) ,  which a r e  not necessarily Lagrangian. 
That is to say the restrictions X+(a,b,t) = U, Y+(a,b,t) = V a r e  
abandoned s 6  that U, V a r e  no lohger either ~ u l L r i a n  or  Lagrangian 
velocities. Provided J = 8(~ ,Y) /B(a ,b )  # 0, o r  m, the equation for 
incompressible and irrotational planar flow remains 

To incorporate one of the advantages of the Lagrangian system, it 
is required that the free surface be fixed and known, say on a line 
of constant b. Then the kinematic and dynamic free surface conditions 
a r e  respectively 
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Now a useful choice concerning the (a ,b)  plane would be to 
require the mapping from (X, Y) to be conformal. Then, of course,  
(10) simply reduces to the Cauchy-Riemann conditions U, = - Vb, 
Ub= V, so  that W = U - iV i s  an analytic function of c = a + ib o r  
of Z. 

In this way, John [ 19531 has constructed some special, exact 
analytic solutions. The kinematic condition, (I I), has the particular 
solution W(a,t) = Zt(a,tl on.the free surface, which implies W(c,t) = .= by analytic continuation, If, in addition, 

where K is real on the free surface, then the dynamic condition 
thereon is also satisfied. John discusses several examples for  various 
choices of the function K. 

The potential of such methods may not have been fully realized 
either analytically or  numerically. In the latter case ,  however, the 
conformality of the (X,Y) to (a,b) mapping i s  not necessarily a 
great advantage, whereas a fixed and known free surface position 
most certainly is. 

The digression ends here and the following sections develop 
a Lagrangian numerical method from the equations of Section 2. 

IV, A NUMERICAL METHOD EMPLOYING LAGRANGIAN 
COORDINATES 

A method for  the numerical solution of incompressible, 
planar flows i s  now described. It attempts to take full advantage of 
the flexibility in the choice of Lagrangian coordinates. 

A. Time Variant Par t  

The method uses an implicit scheme with central differencing 
over t ime, t .  Thus zP(a,b) is determined at a ser ies  of stations 
in t ime, distinguished by the intfger , p. Knowledge of velocity values, 
zVtfl ,  at a midway station p + enables zP+'(a ,  b) t o  be found from 
Z through the numerical approximation 

3 zp+' = zP t TZ!+" (e r ror  order  7 Zltt)  (14) 
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where 7 is  the t ime interval. Acceleration values,  z!, , needed in 
the f r e e  surface condition (Section 46) a r e  approximated by 
(z!"~ - ~ : " ~ ) / r  ( e r ro r  o rder  r4Z ++t t ) .  Thus the main part  of the 
solution involves finding P;''~ knowing zP, z : - '~  and their  previous 
values . 

The f i r s t  t ime step (from p = 0 to p = 1) requires a little 
special qttention. Clearly zo(a ,  b) is chosen to fi t  the required 
initial conditions. But further information is required on a f ree  
surface which will enable the accelerations in that condition to be 
found (see  Section 4C).  

B. Spatial Solution 

A method of the present type is  res t r ic ted to a finite body of 
fluid, S. However, S, could be part  of a l a rge r  o r  infinite mass  of 
fluid if an "outer" approximate solution of sufficient accuracy was 
available to provide the necessary matching boundary conditions a t  
the interface. The region, S,  need not be fixed in t ime. It would 
indeed be desirable,  for  example, to "follow" a bore. 

In a great  number of cases  of widely different physical ge- 
ometry including all the examples of Section 6 ,  it i s  convenient to 
choose S to be rectangular in the (a ,b )  plane. This rectangle 
(ABCD, Fig.  i )  i s  then divided into a se t  of elemental rectangles. 
The motion of each of these cells of fluid is  to be followed by deter-  
mining the Z values at  all the nodes. 

Ib NODE NUMBERING IN FREE 
SURFACE CONDITION : 

Fig. i . The Rectangular Lagrangian Space, S , Showing the 
Numbering Conventions Used 

122 
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,, , . 
Making the assumption of straight sides the actual a rea  of a 

cell in the physical plane Is 

Number suffices refer to the four vertices,  numbered anticlockwise; 
other node numbering conventions a r e  shown in Fig. 1, If this a r ea  
is to remain maltered after proceeding in time from station p to 
p + 1 through Eq, (14) then 

where the terms on the L. 1-1. S. , second line a r e  numerical cor- 
rections required to preserve continuLty more exactly and prevent 
accumulation of e r r o r  over a large number of time steps. The nu- 
merical value of the L. H.S. a t  some point In the iterative solution 
is termed the continuity residual, R,. 

Assuming linear variation in velocity along each side of the 
cell, evaluating the circulation around 1234 and setting this equal to 
the known, initial circulation, I?,, yields (in the case of a homo- 
geneous fluid): 

Slight hesitation i s  required here since, for validity, the Z and W 
values in this equation should relate to the same station in time. 
But by choosing to a ply it at  the midway stations and substituting 
zP+@= Z' t (r/Z)Ztpf'the T t e rms  a r e  f und to c ncel and (17) por- 
sists when the values referred to a r e  ZB and W R, la the circu- 
lation residual. The modification of (17) in the case of a hetero- 
geneous fluid is delayed until section 4E. 

Combining ( i  6) and (1 7) produces the cell equation: 

- 2 q  Permanent Cell Circulation Term 
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- (We + W,, - W, - W p ,  - z,)) if required 

= 0 = RI -t iR, = R, the cell residual. (18) 

The higher order correction, included for completeness, allows the 
shaoe of the cell sides and the variations in velocitv alone them to be 
of &bic form. Without it the neglected terms a r e  bf ordzr  ZaWbbbr 
ZabWab, etc., with it they a r e  of order  +gawbbbbb, etc. Values 
referred to a r e  ZP and ,vP . 

Though this derivation of the cell equation is instructive, it 
can be obtained more directly (except for the continuity correction) 
by integration of (8) over the a r e a  of the cell in the (a,b) plane 
(using Taylor expansions about the center of the cell). 

P The cell equations must now be solved for  wp*= (U - iV), 
Z being known, in order  to proceed in time. 

In a recently published paper,  Hirt, Cook and Butler [ 19701 
take a rather different approach in which the (a,b) pl&e is employed 
merely a s  a tagging space. The equations a r e  written in essentially 
Eulerian te rms ,  no derivatives with respect to a ,b  appearing. The 
numerical method (LINC) i s  s imilar  to that of the MAC technique 
( Fromm and Harlow [ 19631 , Welch, s. [ 19661 . Chan, Street 
and Strelkoff [ 19691 , etc.) and involves solving for the pressure a t  
the center of a cell a s  well as  for the vertex velocities. Advantages 
of the method described in the present paper are: the pressure has 
been eliminated (though this may be disadvantageous in compressible 
flows); no special treatment is required for cells adjacent to bound- 
aries;  inhomogeneous density terms a r e  relatively easily included. 
However, since the LINC system is based on the Eulerian equations 
of motion, the inclusion of viscous terms is more easily accomplished 
than in the present method where such an attempt leads to horrendous 
difficulties. 

C. Boundary Conditions 

p + m  To complete the specifications, a condition upon W i s  
required a t  each of the boundar odes. This usually takes the form 
of an expression connecting UPYl'and vpfl . For  example, solid 
boundaries, whether fixed o r  moving in t ime, may be prescribed by 
a function, F ( X , Y ,  t) = 0. Then the required relation is 
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Dynamic free surface conditions a r e  simply constructed from 
Eqs. (1). If, for example, the only extraneous force is that due to 
gravity, g, in the negative Y direction, the condition on a free 
surface such as AB, Fig. 1 ,  is 

T 8 aa a - XaaYa 
XttXa t (ytt f g)ya --(' : 2 3/2 aa (X, + Y o )  

where T is the surface tension if this is required. 

Unlike the field Eqs. (8) o r  (18) these boundary conditions 
may not be homogeneous in all  the variables. In a given problem 
only the boundary conditions a r e  altered by different choices of 
typic 1 length, h (perhaps an initial water depth), and typical time, 
say in the above example. Then, using the same letters for 
the dimensionless variables$ g and ~ / p  in Eq. (20) would be re-  
placed by 1 and S = ~ / p g h  . The numerical form of that condition 
used at a f ree surface node such as 0 (Fig. 1) is: 

p p+1/2 P-1/2 
(XI - X J ~ ( U : + ' ~  - u:-"\ + (YI - Y3) (Vo - vo + 7) 

where P is assessed a t  each node as 

and the accelerations have been replaced b~ She expressions given 
in Section 4A. Again, Eq. (21) relates uo+' to v:+'l2 since all 
other quantities a r e  known. 

If the liquid s ta r t s  f rom res t  a t  t = 0 (as in the examples of 
Section 6 )  then difficulties a t  the singular point t = 0 can be avoided 
by choosing to ? p l y  the condition at t = r/4 rather than t = 0. 
Using Ztt = 2Zt /r and Z = ZO + (r/4)2;I2 at  that station the special 
boundary condition becomes 
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in the case of zero surface tension. 

D. Method of Solution 

It remains to discuss how the equations may be solved to find * P+1/2 at every node. Due to the non-linear terms in (18) and some 
boundary conditions a s  well as to the fact that a good estimate of 
wP+'l2 can be made from values at previous time stations, a simple 
iterative o r  relaxation scheme was employed. Such a method in- 
volves visiting each cell in turn and adjusting the W values at  its 
vertices in such a way that repetition of the process reduces the 
cell residuals, R, to negligible proportions, But, on arrival at  a 
particular cell, there a r e  an infinite number of ways in which its 
four vertex values can be altered in order  to dissipate the single cell 
residual. However, experience demonstrated that a procedure based 
on the following changes (A W,,2, 4 )  was superior in convergence 
and stability to any of the others tested: 

Here w is  an overrelaxation factor and A i s  the area of the cell, 
which is unchanged with time and given by the expression (1 5). These 
incremental changes have a simple and meaningful physical inter- 
pretation. As can be seen from Fig. 2, they a r e  a combination of two 
changes, one representing pure stretching and the other pure rotation, 
which dissipate respectively the continuity and circulation components 
of the residual. 

Having visited each and every cell ,  the boundary conditio s 
were then imposed. Where these were given in the form A.U p+l&+ 

B . v ~ * ' / ~ +  C = 0 = R,, A,B,C being constants and RBthe residual, 
the following changes were made, the choice being based upon experi- 
ence: 

The whole process was then repeated to convergence, 

E. Inhomogeneous Fluid 

In a non-dispersive, inhomogeneous fluid, p(a,b) , which i s  
inodependent of t ime, will be prescribed t h r ~ u g h  the initial choice of 
Z (arb). Indeed in many cases  it will be convenient to choose Z O  in 
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Fig. 2(a). The Cell in the Reference Plane (a,b) 

INCREMENTAL VELOCITY CHANGES 
WHICH DISPERSE THE CONTINUITY 
RESIDUAL, R, (PURE STRETCHING) 

INCREMENTAL VELOCITY CHANGES 
WHICH DISPERSE THE CIRCULATION 
RESIDUAL, R, (PURE ROTATION) 

Fig, 2(b), The Cell in the Physical Plane (X,T) 

such a way that p is some simple analytic function of (a,b), This 
is particularly desirable because by substituting for p ,  pa, p b  in 
Eq. ( 9 ) ,  this can then be integrated over a cell a rea  (as in Section 4B) 
to produce a convenient additional t e r m ,  8p*L/2 on the L. H.S. of the 
cell Eq. (18). Since the expression for 8 P"' will depend upon that 
choice of p(a,b) an example will illustrate this. 

If p is  to be constant along the free surface, AB,  Fig, 1, 
and along the bed, CD, it may be possible to choose Z 0  such that 
p is a linear function of b ,  say p = pco (1 + yb) where 
y = pAB/pCD - 1 and b = 1 on AB, Then, 
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where p = y ~ b / ( i  + yb34), b34 being the b value on side 34 of the 
cell and Ab the difference across  each and every cell. The f i r s t  
term is of order  p, the second order  p2. The boundary conditions 
a re  usually identical to the homogeneous case. 

A. Accuracy 

If the cell equation, (1 8), is  used without the higher order 
spatial correction, an indication of the e r r o r s  due to neglected higher 
order spatial derivatives can be obtained by assessing the value of 
that correction and inferring i ts  effect upon the final values of W. 
Unfortunately, the mesh distribution and mesh size required for  a 
solution of given accuracy will not be known a pr ior i  and can only be 
arrived a t  either by t r ia l  and e r ro r  o r  by using some technique of 
rezoning. The la t ter  method in which cells a r e  subdivided where and 
when thp, violence of the motion demands it ,  can be difficult to pro- 
gram satisfactorily ahd has not been attempted thus fat. 

E r r o r s  due to higher order  temporal derivatives a r e  most 
easily r e  Jated by ensurin that, for  each cell, both 
T W ~ - W Z , - ~  and T ~ W ~ - W ~ ~ / ~ Z ~ - Z ~  arecomfortablyless  
than unity. A workable rule of thumb can be devised in which a 
suitable T for a particular time step i s  determined from the W and 
Z values of the preceding step. 



Lagrangian S o l u t i o n s  o f  Unsteady Free S u r f a c e  Flows 

B. Stability of Cell Relaxation 

Suppose the central member,  cell A ,  of the group of cells 
shown in Fig. 3 contained a residual RA which was then dissipated 
according to the relations (23;. Transfer functions, DAB, DAC, etc., 
will describe the residual changes, ARBS etc. , in the surrounding 
cells where 

Fig. 3, 2-Plane 

For  example 

where AA is  the a r ea  of cell A. For  convergence of the relaxation 
method it is clearly necessary that the w for each cell be chosen 
so that all w (D I a r e  significantly l e s s  than unity. It is  instructive 
to inspect the case in which all the cells a r e  roughly geometrically 
similar in the Z plane. Then 
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where d l ,  d 2  a re  the lengths of the cell diagonals. For square cel ls ,  
y, = yO = 0 and €he situation i s  stable. However difficulties may 
ar ise  when the cells a re  very skewed o r  elongated and it is  in such 
situations, in general, that care  has to be taken with the relaxation 
technique. 

C, Observation on the Cell Equation 

One feature of the basic cell equation, (1 8), itself demands 
attention. Note that without the higher order spatial correction, the 
residuals, R in al l  of the cells (of Fig. 3) remain unaltered when 
the W o r  Z values at alternating points (say the odd numbered 
points of Fig. 3) a r e  changed by the same amount, Such alternating 
"errors"  must be suppressed. Some damping is provided by the 
higher order spatial correction since i t  is  not insensitive to these 
changes. But experience showed this to be insufficient unless all 
the boundary conditions also inhibited such alternating "e rrors." 
Solid boundaries usually provide adquate damping, For instance, 
in Fig. 4(a) fluctuations in U on BC, DA and in V on BC are  
obviously barred, But the free surface provides little o r  no such 
suppression and a s  will be seen in the next section this can lead to 
difficulties. It is of interest to note that some of the solutions of 
Hirt, Cook and Butler [ 19701 exhibit the same kind of alternating 
e r rors .  

In the MAC technique, neglected higher order derivatives of 
the diffusion type and with negative coefficients (a "numerical" 
viscosity) can lead to a numerical instability if not counteracted by 
the introduction of sufficient r e d  viscosity. In the present method, 
as  with that of Hirt, Cook and Butler [ 19701 , the convection terms 
which cause that problem a r e  not present. The higher order spatial 
correction does contain terms of diffusion order ,  but it cannot be 
directly correlated with a viscosity since viscous terms a re  of a 

2 
different form (i. e. , like 1 vVXy r dt) . Also, the higher order spatial 

correction has a beneficial rather than a destabilizing effect. 

The F ree  Surface 

By including previously neglected derivatives, the nurnericd 
free surface condition (without surface tension) is found to correspond 
more precisely to: 
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where Aa i s  the a difference across  a cell and the second w d  
third terms constitute truncation errors .  Inspect this in the light of 
a linearized standing wave solution (see Section 6A), i.e., 

cos sin 

Y = b + M cos A t  cos kaekb 

where the variables a r e  non-dimensionalized as  in Section 4C and 
k i s  the non-dimensional wave number in the a ,b  plane. Then, 
the second and third terms of Eq. (26) will be insignificant provided 

respectively. Or, in te rms  of a wavelength, X = 2rr/k: 

since A a  AX, the X difference between points on the free surface. 
The first  condition states the inevitable; namely, that the solution 
will be hopelessly inaccurate for (a, b) plane wavelengths comparable 
with the mesh-length Aa. Given that the f i rs t  condition holds then 
the second says that r << 8AX. Fo r  a travelling wave system the 
same condition states that r should be l e s s  than the time taken for  
a wave to travel one mesh length. This constitutes a restriction on 

which is usually more stringent than that of Section 5A. If, for 
example, the depth of the fluid is divided into N intervals and the X 
difference across each cell is  of the same order as the Y difference 
then T should be l e s s  than 8/N. 

A more difficult problem ar i ses  when the f i r s t  condition is 
considered alongaide the fact, ascertained in the previous section, 
that the field equation provides little or no resistance to disturbances 
whose wavelength is equal to A a .  The only resor t  would seem to be 
to some artificial damping technique which would eliminate o r  sup- 
press  these small wavelengths. The technique used in the examples 
to follow was to relax the W values on the free surface such that 
W = 8wFSC + (1 - P) W* where wFSC was the value indicated by the 
free surface condition, W* the value which would make the numeri- 
cal equivalent of W,,,, be zero at  that pcpint and was slightly l e s s  
than one half. 
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E. Singularities 

Successful numerical treatments of singularities depend upon 
the availability of analytic solutions to the flow in the neighborhood 
of that point, For  example, at  a corner between solid walls the 
velocity varies as  the (n - P)/P power of distance from that junction 
where fi is the included angle. If this is n/2 (as  a t  points C or  
D, Fig. 4(a)) the variation is linear and thus the numerical estimate 
of the circulation around the cell (see Section 4) i n  such a corner is 
a good one, Where the angle ia not 7r/2 (D, Fig. 4(c)) e r r o r s  will 
occur due to the non-linear variation of velocity, but corrective pro- 
cedures a r e  easily devised. 

A great deal less  is known about the singularities a t  a junction 
of a f ree surface and a solid boundary. If the wall is static and verti- 
cal (A, Fig. 4(a)) s o  that Xt+ = Xb = Xbt = 0, etc., it follows from the 
equation of motion that if Y, = 0 a t  t = 0 then it is always zero for 
irrotational flow; the tangent to the f ree  surface at  the wall is always 
horizontal. Thus the free surface condition without surface tension 
is automatically satisfied a t  such a junction and only weak singular 
behavior is expected. But a similar analysis of the case when the 
wall begins to move at t = 0 (remaining vertical) indicates that Y tt 
must be infinite at the junction (B , Fig. 4(a)) at  t = 0,  the singularity 
being logarithmic in space. An extension to t # 0 has not so far been 
obtained. One approach might be a Fourier analysis of the step in  
Xtt so that the steadily oscillating solutions of Fontanet [ 19611 could 
be used. These suggest that Y++ becomes finite for  t >-0. - 

FIG. 4 ( a )  FIG. 4 ( c )  

A 

; SHELF 

X 

FIG.  4 ( b )  FIG.  4 ( d )  
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In  the examples to follow (see  Figs. 4(a) to  (d)) satisfactory 
numerical  solutions could be  obtained by ignoring a l l  but one of the 
singularities . The exception was the shoreline,  point A, Fig. 4(c). 
If i s  the angle between the tangent t o  the  f ree  surface at A and 
the horizontal then correlating the two boundary conditions yields : 

( z ~ + ) ~  = - eia/(cot cos a + sin a) (28) 

Thus the sign of determines the direction of the acceleration up 
o r  down the beach. If the fluid s t a r t s  f rom r e s t  at t = 0 ,  P = 0, 
then (2 tt)t,o = 0 and successive differentiation of the basic equation 
(8) and the boundary conditions yields (for irrotational motion): 

z t t t t ,  zatt,  zbttf z t t t t t  = 0 o r  co, unless a = 2 (29) 4 

I T  IT 
Ztt l t t t  ,Zatttt , Zbttt t  = 0 o r  m, unless a = - 4 o r  77 

These relations suggest a behavior which is logarithmically singular 
in t ime  a t  t = 0 unless a = r/2n, n integer. Roseau [ 19581 found 
s imi la r  logari thmic singularities in periodic solutions for  the general  
case  which excluded a = n / n  and another s e t  of part icular angles 
(see  also Lewy [ 19461). But a systematic analysis of the singular 
behavior (especially for t # 0; has not a s  yet been completed. Rather,  
since the relations (29) no longer necessar i ly  hold if the condition 
of irrotationality near  that point is relaxed, the problem was circurn- 
vented numerically by replacing the circulation condition on the single 
cell  in that  corner  by the condition (28) a t  the point A and the t ime 
t = 0 was avoided by applying (28) at t = 7/4 just as was done with 
the general f ree  surface condition (Section 4C). 

Note that strong singularities could b e  introduced by unsuitable 
mapping to the (a ,b) plane. 

VI. SOME RESULTS INCLUDING COMPARISONS WITH LINEAR 
SOLUTIONS 

A. Lagrangian Linearized Solutions 

Linearized solutions to the Lagrangian equations a r e  obtained 
by substituting X = a + c ,  Y = B + q into the equations of continuity 
and motion and neglecting all multiples of derivatives of 5 and q. 
F o r  incompressible and irrotational planar flow the Cauchy-Riemann 
conditions f a  = - qb, c b  = qa resul t  so  that  f + iq ,  and therefore 
Z - c (where c = a + ib) is an  analytic function of c. In the absence 
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of surface  tension the f ree  surface condition reduces to 

ttt .t gq, = 0 (g = 1 in  the dimensionless variables) (30) 

only when the additional assumption that  q t t  << g is made. In th is  
way harmonic solutions can be obtained for some simple problems. 

H passing,  i t  may  be of in teres t  to compare Lagrangian 
linearization with the m o r e  common Eulerian type, at l eas t  in some 
simple cases.  F o r  travelling waves on an infinite ocean the f i r s t  
o rder  Lagrangian t e r m s  a r e  precise ly  those of Gerstner's waves. 
The Eulerian solution must  be taken to the third order  to achieve this 
waveform. On the other hand, while the  Eulerian solution i s  always 
irrotational the Lagrangian only approaches it. Thus the comparitive 
accuracy of the two methods depends upon what part icular feature of 
the flow i s  under scrutiny. A comparison of the works of Zen'kovich 
[ 19471 and Penney and P r i c e  [ 19521 for  standing waves on an infinite 
ocean demonstrates the s a m e  features.  

B .  Example One, Figs. 4(a),  5 ,  6 ,  7, 8,  9,  and 10 

In the example of Fig. 4(a),  the liquid is initially a t  r e s t  in 
the rectangular vessel  BCDA; between t = 0 and t = T the side BC 
moves inward according to 

2 
XBdt) = M s in  7 r t / 2 ~  for  0 < t < T 

= M for  t > T 

With a suitable choice of M and T this creates  a wave which 
travels along the box, builds up on and is reflected by the opposite 
wall, AD. The l inearized solution (which requires a Four ier  
analysis of the f ree  surface  boundary condition) i s  

where 

1 - 
2 

vk = [p tanh -?- kr] 
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s l  I I I I I I I I I 
00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 x 

Fig. 5, Linearized solution to example 1:  M=0.53 ,  T= 327, ~ = 0 , 5 3 ,  
showing free  surface position at a selection of t imes ,  t 

+ 
d 

t / Y  = 0.0 8.0 12.0 16.0 20.0 2U.0 26.0 
SYMBOL a a A + x * + 

I I I I I I I I I 

t/r = 0.0 8.0 12.0 16.0 20.0 2u.0 26.0 

SYMBOL Q A + x * + 

MESH 6 5 X  9 POINTS 

00.0 1.0 2.0 3.0 U.0 5.0 6.0 7.0 6.0 9.0 1 O . O X  

Fig, 6 ,  Numerical solutionto example 1: M = 0 , 5 3 , T = 3 2 ~ , 7 = 0 , 5 3 ,  
showing free  surface position at a selection of t imes ,  t 
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t/7 = 0.0 U.O 8.0 12.0 16.0 20.0 23.0 26.0 30.0 
SYMBOL f3 A + X Q 9 X Z 

Fig. 7. Linearized solution to example 1: M = 1.16, T = 167, r = C .  60, 
showing f r e e  surface  position a t  a selection of t imes ,  t  

t / Y  = 0.0 U.0 8.0 12.0 16.0 20.0 23.0 26.0 30.0 

SYMBOL D A + X Q 9 X Z 

V: 4 MESH 6 5  X 9 POINTS 

9 
4 

"? - 
+ 

N. - 
-. 
4 

9 - 

Fig. 8. 'Numerical  solution to example 1: M = 1 . i6 ,  T = 167, r = 0.60,  
showing f ree  surface  position at  a selection of t imes ,  t 
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t / Y  = 0.0 4.0 8.0 12.0 16.0 20.0 22.0 

MESH 65 X 9 POINTS 

'9 

I I 1 I I I I I I 
O0.0 1.0 2.0 3.0 U.O 5.0 6.0 7.0 8.0 9.0 1 0 . 0 X  

Fig. 10. Numerical solution to example I: M = 2.00, T = 167, T = 0.48, 
showing f ree  surface position a t  a selection of t imes ,  t 

I I I I I I I I I I 
0 0 0  1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 x 

Fig. 9. Linearized solution to example i: &I = 2.00, T = 167, r =O.48, 
showing f ree  surface position at a selection of t imes ,  t 
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and 1 i s  the a difference between the walls AD and BC. In 
Figs. 5 and 6, 7 and 8 ,  9 and 10 the numerical  and l inearized f r e e  
surface shapes a r e  compared for three  cases  of increasing wave 
amplitude. As the amplitude increases the s imilar i ty  between the 
two diverges; both the wave velocity and the build up on the wall 
become progressively g rea te r  in the numerical solution. Note a lso  
that, especially in Fig. 10, the peak of the  wave is much sharper  than 
in the l inearized solution. F o r  amplitudes l e s s  than that of Figs. 5 
and 6 the resul ts  were  almost identical. 

C. Example Two, Figs. 4(b),  1 1 , and 1 2  

The second example, Fig. 4(b), introduces moving and curved 
solid boundaries; the liquid is disturbed f rom r e s t  by a bed uplift of 
the form: 

f o r  o < ~ < T  For  Xi < X <  X2, YcD= M 

for  t >  T 

F o r  X <  X i ,  X >  X2, Y,,= 0 all t 

Within certain extreme l imits on M and T this causes a surface  
wave immediately above the bed disturbance which then spreads  out 
to each side and is  followed by a depression wave over  the bed uplift. 
The l inearized solution is  

a, 

iM (X2- Xi )  Z - c = ;T ---A(t) + 7 d Rk [ i t a n h ( ~ )  A(t) cos($) 

k= l 

+ ~ ~ ( t )  s in  (+)I 
where 

A(K) = 2 s in  2 m - t  for  o < ~ < T ,  = 2   fort>^ 

= 2 + u (cos v t + cos vk(t - T) for t > T 
k k 
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Fig .  11. Linearized solution to example 2: M = 0.344, X i  = 0.75, XZ = 2.12, 
T = 67, 7 = 0.35, f ree  surface positions at se lect ion  of t i m e s ,  t 

t / 'Y = 0.0 3.0 5.0 7.0 10.0 13.0 16.0 18.0 20.0 
SYMBOL Fl Cl A + X o + X Z 

MESH 4 0  X 9 POINTS 

ul 
9 
00.0 1 .O 2.0 3.0 '4 .O 5.0 x 

Fig .  12. Numerical solution to example 2: M = 0.344, X i  = 0.75, X 2 = 2.12, 
T = 67, r = 0.35, f r e e  surface positions at se lect ion  of  t i m e s ,  t 
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and 1 i s  the  a difference between the vert ical  walls. For  T of 
the o r d e r  of 2 o r  3 and for  values of M up to  0.3, a t  l eas t ,  there  
was virtually no difference between the numerical  and l inearized 
solutions. Figures  10 and 11 in which M = 0.344 demonstrate this,  

D, Example Three ,  Figs. 4(c), 13, 14,  15. A Sloping Beach 

By altering the condition on the boundary AB of example one 
and employing the shoreline treatment of Section 5E, the interaction 
of the waves with a sloping beach could be studied. In Fig. 13 a 
small  wave appraches a 270 beach. As the horizontal inclination of 
the tangent to  the  f r e e  surface at the shoreline (P) decreases ,  the  
shoreline (A) accelera tes  up the beach until becomes positive, 
The acceleration then reverses  (as in Eq. (28)) and the wave reaches 
maximum run up. The backwash is extremely rapid and positions 
t / ~  = 21, 22 suggest that this causes the smal l  wave which is follow- 
ing the main one t o  break, By this t ime the cells  have become very  
distorted and the m e s h  points excessively widely spaced to allow 
fur ther  progress .  A s imilar  succession of events takes place with 
the l a r g e r  wave and smal le r  beach angle (180) of Fig. 14. Note in  
this case  the l a rge  run-up to wave-height ratio. In neither of these  
cases  does the re  appear to be any tendency for  the main wave to 
break on its approach run. ~ n d e e d  the reaction with the beach is  
s imi la r  to the behavior predicted by C a r r i e r  and Greenspan [ 19581 
in thei r  non-linear shallow water wave analysis. The wave amplitude 
was fur ther  increased and the beach slope decreased to 90 in an 
attempt t o  produce breaking on the approach run. A preliminary 
result  is shown in Fig. 15. Variations in the application of the f r e e  
surface  condition and in the shoreline t reatment  have, a s  ye t ,  failed 
to remove the irregulari t ies in that solution. A stronger shoreline 
singularity coupled with a n  insufficiently rigorous treatment of i t  may 
be to blame. An optimistic viewer might detect a breaking tendency. 

E. Example Four ,  Figs. 4(d), i 6. A Shelf 

One final example is  shown in Figs. 4(d) and 16 where the wave 
t ravels  up a shelf ,  created by changing the boundary condition on CD, 
Fig, 1. Excessive vert ical  elongation of the cells on top of the shelf 
caused this computation to be stopped a t  the l a s t  t ime shown. (At 
this point the  wave height/water depth rat io on the shelf is of the order  
of 2.) However, one can detect a splitting of the  wave into two waves 
as might be expected f rom the theory of Lax  [ 19681. 
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%/I' = 8.0 11.0 14.0 17.0 19.0 21.0 22.0 

SYMBOL a A + x 6 + 
MESH 3 0  X 9  POINTS 

Fig, i 3 .  Example 3 with M=0,30 and T =  67, T =  0.571. The beach slope 
is  27O. F r e e  surface  positions a t  selection of t imes ,  t 

- I  
/ %/I' = 8.0 12.0 lU.O 17.0 19.0 21.0 23.0 25.0 

zr SYMBOL Cl B A + X 0 + X 
MESH 30 X 9 POINTS 

O0.0 1 .O 2.0 3.0 r1 .O 5 .O 6.0 7.0 8.0 9.0 x 
Fig, 14. Example 3 with M =  0.60 and T = 87, T =  0.571. The beach 

slope is 18O. F r e e  su r face  positions a t  selection of t imes  , t  
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:FL----- I I t/r = 12.0 16.0 20.0 21.0 22.0 22.8 23.7 2u.s 

I 
I MESH 51 X 9 POINTS 

'2 - 

(9 
0 0 . 0  2.0 U .O 6 .O 8 .0  10.0 12.0 1'4.0 X 

Fig .  15. Example 3 with M=2,00 ,  T = 167, 7=0.481.  The beach slope 
is 9O. F r e e  surface  positions at  select ion of t i m e s ,  t 

t/r = 8.0  10.0 11.4 12.2 13.1 13.9 14.3 
SYMBOL 0 A + x @ 4 

MESH 8 0  X 9 POINTS 

Fig .  16. Example 4 with M =2.00, T =  167, r=0.481. Shelf defined by 
Xi = 441,  X2 = 5.16, HR = 0.3, F r e e  surface positions at 
se lect ion  of t i m e s ,  t 

142 
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VII. CONCLUDING REMARKS 

Rather severe examples were taken in order  to test  the 
limiting characteristics of the method developed. Provided the 
various interval limitations were adhered to only two problems arose 
which could prematurely conclude a computation. F i r s t ,  excessive 
elongation of the cells in regions of the most violent motion could 
cause the mesh points to be excessively widely spaced; rezoning 
could, however, make it possible to continue. Secondly, it would 
appear that a more detailed knowledge and treatment of some singu- 
larities i s  required. Work on this, and especially on the shoreline 
singularity of example three, is in progress at the moment. 

0the.r types of examples which have been only briefly investi- 
gated thus fa r  are: the matching with a semi-infinite region in which 
some analytic solution is used; the inclusion of surface tension; the 
extension of the method to three dimensions; examples in which the 
fluid is inhomogeneous. It is hoped to present such results in the 
near future. 

The authors a r e  deeply appreciative of the kind and considerate 
help given by Professor T. Y. Wu. 

This work was partially sponsored by the National Science 
Foundation under grant GK 2370 and by the Office of Naval Research 
under contract N00014-67-A-0094-0012. 
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