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ABSTRACT 

In this paper a theoretical method is developed for analyzing the 
mechanical behavior of granular solid propellant materials. The granular 
nature of the material is specifically taken into account and, the analysis 
allows for a media composed of non-uniformly sized particles with random 
stacking configuration. The voids between the particles are assumed 
to be filled with an elastic, homogeneous binder material. Three types 
of internal forces are assumed to be acting; the normal and tangential 
contact forces between the granular particles and, the elastic stresses 
in the binder. 

The paper consists of three main parts. First a model is developed 
to represent a general granular medium. Subsequently, in the second 
part this model is used to analyze the response of a granular medium 
to hydrostatic pressure loading. Finally the stress-strain relations are 
derived for a general loading condition. Because of the presence of the 
non-conservative frictional forces between the granular particles, the 
deformation of such a medium depends on the loading history. Consequently 
the stress-strain relations are in a differential, or incremental form. 

INTRODUC TION 

The fact that the solid propellants are granular in nature has usually 
been neglected in their characterization and analysis, instead the propellants 
have usually been described by a homogeneous continuum model. This 
approach has been successful mainly for two reasons: first, the homo­
geneous model was able, very satisfactorily, to describe most of the mechan­
ical behavior of the propellant and secondly, the use; of homogeneous 
anal ysis, as opposed to granular characterization, leads to relatively 
simple and standard mathematics. Nevertheless inspite of the above 
advantages of the homogeneous model the need for granular analysis of 
the propellant has been recognized for some time. The reason for this 
is that certain phenomena are direct consequence of the granular nature 
of the propellants and therefore the theoretical analysis of the se can only 
be performed based on a granular model. One example of such a pheno­
mena is the dewetting effect in which the rupture occurs of the bond 
between the binder and the oxidizer paritc1es. Obviously such a pheno-
mena could never be treated on the basis of homogeneous model. 

':< This work was sponsored by the Aerojet-General Corporation, Solid 
Rocket Plant, Sacramento DivIsion, Sacramento, California, under the 
Contract No. P. O. S-420061-0P. 
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In the present paper it is intended to develop a method of analysis 
of granular media which can be directly applied to solid propellant 
materials. The paper is in three main parts. First a granular model 
is constructed to represent a material which contains an arbitrary 
number of groups of different size particles. The space between the 
particles is assumed to be filled with an elastic homogeneous material, 
which will be referred to as the binder. The particles are assumed to 
be stacked in an arbitrary configruation which is made to depend on the 
relative amounts of the binder and the granular material. In the second 
part of the paper this model is used to predict the response of a granular 
material to a hydrostatic compression. Finally the analysis is extended 
to a granular material under a general loading condition. This is done 
by obtaining the relationship between the deformation tensor for the 
whole material and the internal forces. These internal forces are the 
normal and tangential contact forces between the particles and the 
stresses in the binder material. The tangential forces are non-conservative 
and therefore the relationship between them and the deformation has to 
be written in an incremental form. This in turn leads to an incremental 
form for the stres s- strain laws. 

Since little previous analysis has been done in the area of granular 
media with irregular configuration, see for example the state-of-the-art 
review in Reference 1, the pre sent analysis has to begin from basic 
principles. The basis of the analysis is the solution by Hertz (Ref. 2) of 
the elastic contact problem between two spherical bodies and the extension 
of this solution by Mindlin (Ref. 3) to include combined normal and tangential 
forces. These two analyses provide the necessary mathematical tools which 
will be used in this paper. 

DEVELOPMENT OF A GRANULAR MODEL 

A granular model which is to represent a solid propellant has to 
satisfy certain broad requirements. First the model has to take into 
consideration the irregular nature of the particles in the -propellant and 
be able to predict the number and nature of contact points between these 
particles. Secondly, since the configuration can change during loading 
the model has to be such as to allow for this. Finally the model has to 
possess enough simplicity so that it can be handled mathematically. We 
shall try to create such a model. 

It can be quickly established that a mathematically rigorous description 
of an irregular granular material is not possible and therefore certain 
approximations are necessary. In our analysis these approximations will 
be introduced when we average certain properties of the medium. 

We shall assume that the granular medium is composed of x components, 
each component being a group of different size particles. We let Nl' N2, 
N3 ..• Nx denote the number of particles of the r~spective componts. It 
should be pointed out that assuming x discreet sizes in no way limits the 
generality of the present analysis since what follows could be developed 
for a granular model posse s sing a continuous distrib uti on of particle 
size s. 
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We now define an average radius of the particles in the ith component 
as follows: 

(I) 

where; Vi is the volume of the ith component particle s. 

We now introduce the average diameter of all the particles and define 
it as follows: 

(2) 

It should be noted that definitions in equations (I) and (2) both are based 
on equal volume concept. 

We shall now proceed to calculate the number of contact points, or 
in the granular mechanics terminology the coordination number. An 
exact evaluation of the coordination number for each component is not 
possible and therefore we have to proceed in a semi-empirical manner. 
Figure 1 below contains a two dimensional representation of a granular 

FIGURE 1. TWO DIMENSIONAL REPRESENTATION 
OF A GRANULAR MEDIUM. 
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medium composed of different size particles. It can be noted from this 
figure that, on the average, the smaller particles have a smaller number 
of contact points than the bigger one s. This can be explained as follows: 
any sphere of given size will, when it is in contact with another smaller 
sphere, subtend a larger solid angle at the center of the smaller sphere 
than when it is in contact with a larger one. Therefore this solid angle 
can. be used as the measure of number of immediate neighbors that any 
size particle can have. In our pre sent model we shall introduce a number, 
called the compaction number, which will be defined as the maximum number 
of average spheres that can be accommodated around the ith component 
sphere. This we will write as 

c" -= 
" 

where; C. is the compaction number 
1 

(3i is the solid angle that a sphere of radius R subtends 

(3) 

at the center of a sphere radius Ri, when contact exists. 
It can easily be shown that 

L:l." :::. (/ - Vr-R~i +-.2-~-,q-(" ) 2 fT 
V {, ((i + I'< / (4) 

therefore 

Ci == /?+ f(i - V R~ -r L /{/(L" 
(5 ) 

In an actual configuration the number of neighbors that the ith sphere 
possesses will be less than Ci since this quantity was defined assuming 
complete composition, however Ci can be used as some measure of the 
actual number of neighbors. 

It is now important to determine an expression for the coordination 
number of each different size particles. Any given sphere will be in 
contact with spheres of different size, the number of jth particles in 
contact with any ith particle will be denoted bYo(ij. Clearly the total 
number of contact points "Vi on the ith particle is therefore 

"Vi =~j (6) 

I 
where the summation sign extends over j = I to x. The number,(ij will, 
first of all, be proportional to the number of pos sible neighbors tHat the 
ith particle can possess, that is Ci. Secondly, the smaller neighbors 
of the ith particle will be less likely to form a contact, this is illustrated 
in figure 1. It can be seen from this figure that the small sphere, marked 
I, is further away from touching the ith sphere than the larger sphere 
marked 2. Now since the smallness, or the bigness, of any particle can 
be measured by the compaction number, therefore we can expre ss the 
effect of the size on a probability of contact by the following qualitative 
relation, 

~ .. D(C.C. 
lJ 1 J 

(7) 
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There is also a compatibility relation that has to be satisfied, this is that 
the total number of contact points, between the ith and jth particles, on all 
the ith particles and all the jth particles has to be equal. This' mathe-
ma tically is equivalent to 

N.d.. = N. 0(.. (8) 
1 lJ J Jl 

Therefore we finally write a relation foro<'ij which satisfies the two 
conditions (7) and (8), 

g( .. = k 
lj 

(9) 

The coefficient k will be a function of the particular configuration which 
the model is suppose to represent and its evaluation will in general be 
by experim ental methods. In order to account for the fact that the 
number of contact points will change with applied loading, and therefore 
with the change of compaction, we can write k = k (p) where p is fractional 
porosity of the granular material. We have now sufficient information 
regarding the configuration of the granular material to enable us to solve 
certain problems. To illustrate this, the response to an external hydro­
static pre ssure will now be investigated. 

RESPONSE TO HYDROSTATIC COMPRESSION 

It is assumed that the granular medium is subject to a hydrostatic 
pressure the problem is to calculate the change of volume, or the bulk 
modulus. The space between the granules, which we shall refer to as 
voids, will be assumed to contain compressible liquid which has zero 
shear modulus. It is expected that, under the present loading condition, 
this liquid will closely approximate solid propellant binder. 

The equation relating the pressure to volume change will be obtained 
by using the virtual work theorem. This is a similar approach to that 
used by Brandt (Ref. 4) in his analysis and therefore we will extend his 
method for one degree of freedom to our model which has many degrees. 

As the external load is applied there will be two elastic deformations. 
The liquid contained in the voids will be compressed and the granules 
will be locally deformed at the points of contact. We shall denote the 
decrease in radius of ith sphere at the point of contact with the jth 
sphere by tJ.~j' The original total volume of the granular material is 

/ ffi' '3 
V .::. - "'C"/V.' ~R' /- f T l 3 l 

(10) 

where p is the volume fraction of the total volume of the voids. As the 
hydrostatic pressure is applied there will be a decrease in the total 
volume, this decrease we denote by tJ. V and it is easy to see that 

.?IV ~ ;!p f N, #/1 Rc'L1Ri 
where tJ.~ is the average change of radius of the ith particle 
defined as 

(11 ) 

and it is 
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DR· :::: Z 
L . 

( 12) 

d 
The change of volume of the voids will be equal to the total change of 
volume ~ V less the decrease in volume of all the particles at the point 
of contact. However the change of volume of the particles due to the 
elastic deformation can be shown to be of order (~Rij)2 and therefore 
to be consistent with Hertz's theory it has to be neglected with respect 
to ~ V. It follows, the refore, that the total change of volume is equal to 
the change of the void volume. 

There are three types of energies involved in this problem. These 
are; the external work done by the pressure qe' the elastic energy 
stored in the deformed particles, and finally the energy stored in the 
compressed void liquid. 

Let us consider now a deformed state defined by the quantities ~Rij 
and imagine small virt1,lal changes in these quantitiesb (~%j) These 
virtual changes will produce small changes in the energy state of the 
system. The virtual change in the external work done is 

bW=qe~(~V) (I3) 

and from equation (II) 

'I . 2 (' 
(~V) = -1-2. N. 4'lTR. b{~R.) 

-p . 1 1 1 
l, 

Therefore 

t'W = ~ Z z N· 4lt ;'<; ~. 
J /- P i i l., l'i (14) 

From Hertz's theory of contact the force between the ith and the jth sphere 
is given by 

(15 ) 

where; E and -V are the Young's modulus and the Poisson's ratio of the 
granular material respectively. Therefore the virtual change of the 
strain energy EI stored in the particles of the medium is 

~ E,::: f f IV i "<'i F1i £(.4 Ri;) (16) 

SUbstituting from equation (15) it follows 
...L 3 

S"E, == ~ 2' Ni ~il' 4~ 7!;'l~~·+~.)(J f<IJ)Z ~(tlf(lJ) (I7) 
, ; I. 'i 

Consider now the strain energy change in the void liquid, if q is the 
pressure in the liquid then, by definition of the bulk modulus, 
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integrating equation (18) 

where; V = V -/::,. V and 
o 

q = - (6ln';-
o 

V 0 is the initial volume of the voids and is given by 

It follows from equation (19), by expanding in series of /::,. VIVo and 
neglecting second order terms, that 

a/::"V 
q = 't!-Y 

o 

(I8) 

( 19) 

(20) 

(21 ) 

Therefore the virtual change in the strain energy E2 of the void liquid is 

~ E2 = q ~ (/::,. V) 

/::,. V 1 ~ c:::: 2 "<i' ( =~....."..... -1- L C-. N. 4'IT R. ~ 0 (/::"R .. ) 
v - p. . 1 1 '{ . lJ 
o J, J 1 

(22) 

For equilibrium of the system the virtual change in the external wo rk 
must be equal to the changes in the two strain energies, and therefore 

(23) 

and substituting from equations (14), (17) and (22) it follows.1- ~ 

~ \' [k IV'" 'i1 Rt o{,j = j\/' 0(.. "fi ~l. (1ft' lfi.J ~ (,D {<I'J} jl 
L;. ~ I - fO' ;y . L cJ '3 I - I) l;qi f J<j 
.. J ..dl ~ ~ III. 4 l. ~z iii-] ((..t:. If . . ) (24) 

+ f To I - P IV, Ii c· Yi j LJ 

Since the virtual changes t, (/::"~j) are arbitrary therefore equation (24) 
has to be satisfied for each of tlie se quantities separately. However not 
all J (/::,.Rij) quantities are independent since from Hertz contact theory it 
follows that 

/::,.R·· = /::"R .. 
lJ Jl 

(25) 

Therefore equation (24) represents a xl 2(x+l) degree of freedom system 
and it has to be satisfied for each degree of freedom. This leads to 
xl 2(x+ 1) equations 
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I 3 

ere E (I'<I Ki.. (fA R, J~ - /- v~ R/ -I- f<i J .LtV 317 

~e f -+ (E -f !!L) (26) Yo 
d":. If' l J 

in the derivation of equation (26) the relation (8) was used. The set of 
x/2(x+l) equations represented by (26) can now be solved for t.Rij and 
u sing the relation ~ ~ 

.1\ V - ~ L:£ /y' 111 --J-: /i,·..Ll f(t'J' 
po - I-? i ill, 

and substituting for t.~j' obtained from (26), a relationship between qe 
and t. V follows. This is done as follows, from equation (26) 

fA?. -I- ~~) f 2-

L1Ri;== (if -if 6e-(3Av;/3 
2. rz -.E- (Ri «i )~ 
37T 1_))1. t<; + !<t' 

(27) 

Substituting into equation for t. V from (27) 

2 2" 8. /<.' -3 ~ 
~ 't -t !j; It. AV)3 

J- 471 ~ ~ rI. . Y,' / l te -(5 Va 
A V::: '-ff ~~, - 1i L J ef1 Lt. /K"I<L)~ (28) 

J :3 II /- V (- Jt7 • ~ • 

"I -I "1: 

Rearranging equation (28) we obtain the final expression lor the relation 
between the external pressure qe and the volume change t. V, Z 

~ 

(i-e) .D V 

(29) 
AV ~ ~ 

q = BY;; + ~ <-" 4f1l<i J ~ -t ~J~' 
Ie l L L N' -~.. 't 

l J I __ i J ~ 
. ' L· d". {J -2.-rz~z=--~--=..{-~-. -;?-. ).!.-

"3" I-V (?' -I f? (' 
It should be noted that for very small volume changg equation (29) reduces 
to 

8 t.V 
qe = \--V­

o 

and therefore the granular medium will respond with the bulk modulus 
of the binder. 
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In equation (26) there are a number of quantities which depend on the 
porosity p. As the hydrostatic pressure increases the porosity decreases 
and therefore the quantities which depend on p will also change. If the 
porosity change is appreciable then it has to be taken into consideration 
in the solution of ,(26) and the solution will no longer be as simple as 
indicated above. In such a case then an approximate solution to (26) would 
have to be obtained. Such an approximate solution could be carried out 
by dividing the change of volume into a number of small changes and 
solving (26) for each small change assuming that the porosity is constant 
over any particular step. 

The porosity is defined by the following relation 

V -~V o 
p = V-~ V 

and expanding in the powers of ~ VI V it follows 

~V 
p=p -(l-p)~ 

o 0 v 

(30) 

(31 ) 

where; Po = Vol V and it is the original porosity. Therefore the change of 
porosity ~p is given by ~ 

'tr; R t' ,J... A /f,i 
~. "J , ~~ Ni 

L d 
(32) 

It can be seen that the change of porosity will usually be small 
since it is of order of ~Rij and therefore for most practical applications 
it can be neglected. However, depending on the accuracy required from 
the calculation, its effect can always be evaluated as indicated above. 

DEVELOPMENT OF THE "STRESS-STRAIN" LAWS 
FOR GENERAL LOADING 

The relations between the deformations and the various forces acting 
in the material can be regarded, with the analogy with the continuum 
material, as the stress-strain laws. This terminology will be used in 
the present analysis. 

The first concept which has to be developed is that of the surface in 
a granular material. Components of the resultant force on this surface 
will then be defined. Mathematically a plane surface can be defined in a 
granular material in the same way as in the continuum, however, if this 
is done then the resultant force on this surface will be a function of the 
inter-granular forces, the stress in the filler, and also the internal 
stresses inside the granular particles. This last dependence arises 
since the surface will in general pass through various particles cutting 
them at arbitrary angles. Inclusion in the analysis of the internal 
stresses would lead to an extremely complex situation since the stress 
anslysis of the various granular particles would be required. Therefore 
a new surface is introduced so that its position and direction are approxi-

Page 207 



mately defined by the original plane surface but it does not pass through 
the interior of the granular particles. This new surface, over which 
the forces will be computed, weaves between the particles 'and is there­
fore non-planar. In two dimensions the situation can be repre sented by 
the Figure 2 below. This new surface is still not uniquely determined 
since it can move 'an arbitrary distance above and below the reference 
plane. However, it is intended that this surface follow the reference 
plane as closely as the size of the particles permits. In general this 
means that the maximum distance from the reference plane should not 
exceed one-half of the equivalent diameter of the particle of maximum size. 

FIGURE 2. INTER-GRANULAR SURFACE. 
Particles of maximum size can be denoted by the subscript unity without 
any loss of generality and therefore the maximum radius will be denoted 
by Rl. The inter-granular surface, henceforth designated simply lithe 
surface, II will lie anywhere inside a plane region of thickness 2Rl having 
the reference plane as its center. 

The next step is to evaluate the number of particles of each size which 
will be adjacent to the surface. Denoting the number of particles per 
unit volume by ni, SUbscript indicating the ith group, we have from the 
previous section 

/1. 
I.- L.N' ill R~ . ) 3 J 

In the region of the surfate the number of particles 
unit area of reference plane, will be given by 

(33) 

of the ith group, pe r 

1<, Ni (1- p) 
h f1 - (34) "1 i - 2:. IV ,. 4JJ ~ ~ 

) ) 3 J 
Not all the particles contained in this surface region will have the same 
probability of being adjacent to the surface. On qualitative grounds it 
can easily be deduced that the smaller particles will have a lesser chance 
of coming into contact with the surface that the larger one s. This is 
illustrated by Figure 3. 
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FIGURE 3. AMPLITUDE OF THE INTER-GRANULAR SURFACE. 

In fact the probability of any particle to be adjacent to the surface can 
be taken to be proportional to the radius. The largest particle with 
radius Rl will most definitely be adjacent to the surface and therefore its 
probability can be tq.ken as unity. On this basis the probability for the ith 
particle is Ri/Rl. Using equation (34) the number of particles/3i of each 
size adjacent to the surface can be written as \-

I?i, Nt'(;-?) 
z.. N· fTL I.::J ~ 

(35 ) 

. d :3 I'd 
The amount of area of each adjacett particle which will be in contact 

with the surface will also have to be determined. We can see from the 
above sketch that the largest particles will have about one-half of their 
area adjacent to the surface while the smaller ones will have less. This 
again can be put in terms of probability based on the radius of the particles. 
We can assume that the area fraction ai of the ith particle in contact with 
the surface is given by 

/ Ri' 
4 ---i- ~ Rj. (36) 

In engineering applications only the average deformation of the 
granular material will be observed. This deformation can be represented 
by a strain tensor in the same way as for a continuum. This tensor is 
denoted here by6'klwhere k and l refer to a cartesian orthogonal coordinate 
system. Consider now~ particles in contact, the vector joining the 
centers is denoted by (Ri+~). On the average all the distances in the 
medium will change accordmg to the strain field6kt and therefore the 
change of the distance between the two particles considered can be 
written as 

(f<i -I- R/ t -( t( -I- ~; t-- 2 f'k iff> If}J/f{7 -I- I? ;)l (37) 

where R~ denotes the original radius and (R~ +ROj)k is a component of 
the vector joining the particle centers. The summation in equation (37) 
is on k, £ = 1, 2, 3. 
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Using the results of the Hertz theory (Ref. 2) of contact the normal 
force between the two particle s can be written as 

F·· -
~tf 

1/~v' ( ;~i4~~; l[ £t-I<Jr<,~+ ~.)) If,?-t "'J0J] 
J 0 0 

yVn.e 1-1 ~. f~' < I'<{ f ~ i 
O I~ 0 6 

{38} 

vvn€n Rl'+~i > ~L' -f ~i 
where E is the Young's modulus and Y is the Poisson's ratio of the 
granules. The components of this force along the three cartesian axes 
can be written as 

Fi' (If '! -I I{ ;) r7-? 

'i fi~ -I ~~ ( J 
{39} 

The contribution from the normal contact forces to the components of the 
total force acting on the inter- granular surface can now be obtained by 
combining equations {35}, (36), {38} and (39). Denoting these components 
by cr k 1 it follows that 

r~ = ~ 4 /t"J·ai (3i(Ai)/<. 
l ( 

Itt-' N,'(I-p) I</.' 
= ~ ~ £/'1. 'rTT ~~ 0<£'/' z~ 

1..) L ,,'"3 L I 
(40) 

[ e elm (Jf{7+ ~; i (~t -I- ~;) In 7 
where it is unde-rstood that 1:k 1 = 0 when (Ri +Rj)./ (Roi +RO

j ) and the 
summations on e andp-tis still implied. The above expression still 
depends on the distribution of contact points since this Cl:ffects the 
components {R'i + ROj}k. The discussion of this distribution will be 
left until later in the analysis. 

N ext we turn our attention to the tangential force s between the 
granules. In order to evaluate these forces it is necessary to obtain the 
expres sions for the slip at each contact point. The slip can occur in two 
ways, it can be due to the angular motion of one particle around 
another while both remain with the same orientation, also it can be 
produced if the centers of the two particles remain in fixed position and 
the particles rotate about the centers. The se two situations are illustrated 
in two dimensions in Figure 4 . 
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Ctlse 2. 
FIGURE 4. TANGENTIAL MOTION OF PARTICLES. 

The amount of slip in the Case lcan be related to the shear deformation 
of the medium. For clarity we shall first develop this for the above two 
dimensional situation. Consider the two particles imbedded in a deform­
able medium as shown below in Figure 5. 

8e f () re /Je J () r J-y1t:' Ii f) 1-'1 

1. 

FIGURE 5. RELATION BETWEEN SLIP AND SHEAR STRAIN. 

The deformation of the matrix medium is given by the shear strain, 
e12 say, and therefore the change of angle£" e ij is given by 

J e ij = C 12 e ij (41 ) 
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Therefore if the particles remained with the original orientation in space 
then the amount of slip Sij 1 due to the relative position change would be 
given by 

(42) 

The additional slip 5 ii 2 due to the rotation of the particle s about their 
own centers is obviously 

.5. ~ :: - (Ri Wi 01-

'J 
Therefore the total slip Sij is 

(43) 

These ideas will now be extended to the three dimensional case. The 
components of rotation, about the three cartesian axes, of each particle are 

denoted by (Wi)k. Also, there will be three angles (e i·)k one 
associated with each axis, these angles are shown in the ~igure 6 below. 

1 

FIGURE 6. THREE-DIMENSIONAL SLIP 

Using the same arguments as for the two dimensional case the projection 
of the slip line in each of the carte sian plane s can be written as 
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(45 ) 

-i(WJ)(f?J-!-(~i): + (0A/0); +(l<jJ;) 
with similar expressions for (Sij}z3 and (5ij b1. Components of these 
proje~tions along the three axes are 

(..59), -= (5'//2 > /"v,(e tj), -(5 tj)31 SIt" (f3"/)3 (46) 

with similar expressions for (Sij}z and (Sijb. These three components 
define the magnitude and the direction of the slip between the ith and jth 
particle. 

As mentioned before the tangential force acting between the particles 
of the material is a frictional force and therefore the relation between the 
amount of slip and the load is dependent on deformation history. In such 
a case the relation between the load and slip has to be written in an 
incremental form. This idea was introduced in reference 4 where vibration 
of a regular granular material was analyzed. Writing equation (46) in an 
incremental form we obtain 

(47) 

where, from equation (45), 

(48) 

- S(W'")3/(R,),' + (f<t"J: - ~(~i~ 1(~·J,~~)2Z 
with similar expression for ~ C5ij)31. Denoting the tangential contact 
force by Tij we can write the incremental relation between this force and 
the slip S i j in the form 

(49) 

where C T is defined as the tangential compliance. More will be said 
about this quantity later. Equation (17) can be written in the component 
form 

(50) 

where S(Sij)k can be expressed in terms of the incremental changes in 
the strains ~ (tkl) and the incremental changes in rotation (~'>k from 
equations (47) and (48), 
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As in the case of the normal contact forces the tangential forces acting 
on the inter-granular surface will have force components. Denoting these 
components, per unit area of the reference plane, by 't'm 2 we can write, 
by using similar arguments as in equation (40) 

) 

~tt:) = 4 ~ J ii at' ft' 5(~i)~ 
t J (J 

(51) 

CL" J • • (3. -L S(s·.) = f J f?\L'J tit 1-" Cr II W1 

It still remains to consider the contribution to the forces on the 
surface due to the stresses in the filler material. In the present analysis 
it is assumed that the material in the voids is much softer than the 
granular material. In view of this the change in bulk deformation in the 
total material will be taken up by the filler. This follows from the fact 
that the volume change of the gr anules at the points of contact is of second 
order as was shown in the previous section. Therefore the normal 
strains in the filler denoted by ekk will actually be larger than the average 
strainse kk of the whole medium, we write 

(52) 

where A is some magnification factor. Since the apparent volume 
dilation of the total granular material is equal to the change of void volume, 
therefore 

(53) 

and 

The shear strains in the filler material will on the average be the same 
as for the overall material. Assuming classical elastic behavior for the 
filler the stresses Ok t in this material are 

\Jkt = ;.~ [{ fkf<] Ski -r ~ t-I<t. 
(54) 

where) and)1 are the Lame's constants, and S kt is the Kronecker delta. 
The contribution to the components of force per unit area of this surface 
from the stresses in the filler is denoted by tTk 3 and it can be written 

t: -=1[1 { 6/<1<) fkl + ~ P f-kl7 (55 ) 

(summation on e 
where Bt. is some multiplying constant which depends on the orientation 
of the surface with respect to the cartesian coordinate system and also 
on the amount of filler in contact with the surface. If the inter-granular 
surface is chosen perpendicular to the one of the cartesian axis, l say, 
then B l will only be function of the latter effect. In agreement with the 
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results for the hydrostatic compression case previously analyzed we 
choose B l = p. Therefore 

r;= ).(f~kl<)Skl T 2;"1PG kl (56) 

Finally the kth component of the total force acting on an inter­
granular surface can be obtained by combining equations (40), (51) and 
(56). Because of equation (51) this final expression has to be written in 
the incremental form 

J(rm) == {(T~)~ S(7~)+ S(f'!1) 
I:) 0 .J-

_ If, #;(/-;:» fi ~ L (~/r<i.. )2--ff Z IJi if'Ri eJtj ,zR, :3 1_';" ff;·.,t r<} y 

[CJ(fkl/r<:+ ~;)k(r~;' + ~;)l 7 
-I-ZZ~··CI·(3· -)- [(s·) 

c.. J II (J ('-7 1/ ,..,.., 

-I-). ~ [~( G1<I.)] S;171.+ c/" p S(€.n-, e} (57) 
The above equation is the required "stress-strain" law for the granular 
material. It relates to the incremental changes in the components of 
the resultant force, acting on an interior surface of a granular material 
perpendicular to the t -axis, to the incremental changes of the strains 
J (Ck,.t.) and the incremental rotation components K (Wi). Before 
equatlOn (57) can be applied it is necessary to develop further ideas 
regarding the tangential compliance CT, the components of rotation 
«(.J j)k and, the distribution of contact points on the granular particle. 

We shall first deal with the tangential compliance CT. As discussed 
before the form of this function depends on the history of loading. Based 
on Mindlin's original work on the tangential force (Ref. 3) Mindlin and 
Deresiewicz (Ref. 6) have examined a number of different loading 
histories in detail. We shall use the results of this analysis in our investi­
gation. We shall reproduce the results from reference 6 for only certain 
loading conditions which are the most likely to be of practical interest. 
For any other more complex histories the necessary expression for CT 
can always be developed using the approach of reference 6. For the sake 
of simplicity we shall denote the normal force by F and the carre sponding 
tangential force by T. 

Case 1. F and T are increased at any a.rbitrary rates. 
For this case _ _ L 

C = ~ l! ;~ 1- v-f #-)(-11) 37 

and 

T / iF ~ 
when 0 < rr< I 

C 
T 

c/F ..L 
when Tr~ I 

(58 ) 

(59) 
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In the above expressions-Vis the Poisson's ratio,,;IA is the shear 
modulus, a is the instantaneous radius of contact and, f is the static 
coefficient of friction between the granular particles. 

Case 2. F decreasing and T increasing at any arbitrary rate. 
For this case I 

Z-l? II dF ;; dF)/ L)-31 CT ::: o/t a - Tr r {Ir/ dr J/ /-f F (60) 

Case 3. F increasing and T decreasing at same arbitrary rates. 
For this case 

and 

(. -T-

1-
If -3 

,z - V [ d F / f!!.£ )(, _ T - T) ] 
~4 f TT .,. (1- dT)(' 21 F 

,2-v 

~q 

when 0;> d F Z - L 
dT:r I 

when 
iE-<._.L 
dT- f 

(61 ) 

(62) 

In equation (61) T>:< represents the initial value of the tangential force T. 

Case 4. F decreasing and T decreasing at some arbitrary rate. 
For this case 

2-,)/ dF ;; d.z:::V. T--T_r"S] 
CT :: BjAq - J dr -I- (I-f/ TTl. 1- -,z! F I (63) 

The above four cases cover the most common possible situation. It 
should be noted that the frictional force T can never physically exceed 
the value of fF, this always has to be kept in mind as this analysis is 
applied. This of course imposes a ceiling on the tangential force and 
introduces a discontinuity into the analysis. However no additional 
difficulties arise since the solution of any problem has to be obtained by 
incremental procedure and this type of discontinuity is easily taken 
into account. 

We shall now deal with the components of rotation (c..?j& of the 
granules. These quantities are additional deformation parameters which 
cannot be evaluated on the basis of the analysis so far. To evaluate these 
parameters it is necessary to consider the rotational equilibrium of the 
granular particles. There are two types of rotational forces acting on 
the particles, the tangential forces at the contact points and the tangentfal 
forces between the granules and filler material in the voids. The rotational 
incremental moments due to contact forces can be obtained from equation 
(50) and these are in the component form, for the ith particle 

Page 216 



~(~<I ) = ? J(TiJ-), ~-H ~m (64) 
J 

whe re ell< , M t k and, XI"7 are the coordinate s of the contact point. 
The rotational moments due to the filler are little less easy to estimate 
analytically. However, since the filler is elastic the re storing moment, 
on the particle, due to its rotation, has to be proportional to the rotation. 
Therefore the incremental moment due to this effect can be written as 

(65) 

where G is some constant which depends on the shear modulus of the 
filler and the granular geometric configuration. Due to geometric 
complexities it would be very difficult to estima te G analytically and 
therefore experimental methods would have to be used. The total 
restoring incremental moment is therefore 

S rMk ) =- f fM:< ) -f f{Mk2.) 
(66) 

:: Z '(~))e X1-Y7 fim r 4 J(w/() = 0 
The three equations ~6) provide the additional relations from which the 
components of rotation can be evaluated. 

It remains now to discuss the distribution of the contact points with 
respect to the cartesian coordinate system. If on any particle there are 
many points of contact then any arbitrary distribution should yield 
essentially the same result because of the averaging process. However 
for cases with few such contact points the problem become s more involved. 
In such cases it is necessary to introduce the idea of probability. Consider 
a spherical particle in the cartesian coordinate system and imagine that 
its surface is divided into equally small area segments. Each small area 
is completely defined by the orientation with respect to a cartesian coordin­
ate system. Suppose that this particle possesses o(contact points, then 
the porbability that any contact point falls in some area AM is 11M; where 
M is the number of area segments into which the surface has been divided. 
Since there are ,< contact points than the number of contact points in any 
area is tl..IM. This defines how the contact points should be oriented 
with respect to the cartesian coordinate system. 

CONCLUDING REMARKS 

Some specific comments regarding this granular analysis are now in 
order. It is quite probable that the model chosen to represent the medium 
will only by applicable to certain propellant materials. Such propellants 
would have reasonably dense packing in order for the averaging processes, 
assumed in the analysis, to hold. Furthermore, the particle shapes 
would have to have approximately spherical shapes. For certain propellants, 
for example such that contain dendritic type particles, this analysis would 
be wholly inapplicable. 
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In the course of the development of the analysis a number of empirical 
assumptions and a number of averaging processes was used. 
Consequently the analysis is far from rigorous, however it is felt that 
most important features of the granular material have been taken into 
consideration. The final proof of such analysis can only be through 
experimental verification and, it would be a useful extension of the 
present investigation if such experimental work was carried out and 
compared with the results of the present analysis. We, therefore, 
propose that certain simple geometries of highly filled propellant, 
'subject to simple loading conditions, be analyzed by the present method 
and tested experimentally. This should provide a useful check for the 
theoretical method. 

In spite of the semi-empirical nature of this analysis we feel that 
it can be useful in analyzing actual propellant materials. What is 
more important it is hoped that the present investigation will stimulate 
more work in this area which, up to the present time, has not received 
much attention. 
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E1, E2 
F 
F·· IJ 
G 

LIST OF SYMBOLS 

constant defined in equation (52) 
constant defined in equation (55) 
compaction number for the ith particle 
tangential compliance 
Young's modulus of granular particles 
strain energy of granules and binder, respectively 
normal contact force 

Mk1, 

normal contact force between ith and jth particles 
constant defined in equation (65) 

Mk2, MJt moments acting on the granular particles 
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T·· lJ 
Vo , 
Vi 
/::;.V 
W 

a 
a· 1 

ekL 
f 
k 
n· 1 

Po' 
q 
qe 
x 
Xm 

0/. .. lJ 
~ 
(j,. 
'Vi I. 
~ 
ekt 
e· 1 

eij 
').JJA 

'" Ukt 

p 

number of particles of ith size and total number, respectively 
average radius of all particles 
the initial and instantaneous average radius of ith particle 
changes in radius at the contact point between ith and jth particles 
average change of radius of ith particle 

S2ij , Sij relative tangential slips between ith and jth particle 
tangential force 
tangential force between ith and jth particle 

V initial and instantaneous volume of all particle s 
volume of ith particle 
change in volume 
external work 

contact radius 
defined in equation (36) 
strain in binder 
coefficient of friction 
defined in equation (9) 
number of ith particles per unit volume 
initial and instantaneous porosity 
hydrostatic pressure in the binder 
external hydrostatic pressure 
number of different size particles 
cartesian coordinates 
number of contact points between ith and jth particle 
bulk modulus of the binder 
defined in equation (35) 
number of contact points on the ith particle 
denote s an infinite sim al change 
strain 
solid angle 
andle defined in figure 5. 
Lame constants 
Poisson's ratio 
stres s in the binder 

t~ , ~ 2k ' cr k re sultant force s on the inter- granular surface 
i ith particle rotation 

Subscripts: i, j - refer to the particles 
1, 2, 3, k, t , m - refer to the cartesian orthogonal reference 

coordinate system. 
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