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Supplementary Information Guide 
Supplementary Figures and Legends S1-S6 
These figures show the negative index mode field profiles and dispersion relations supported by the 
plasmonic coaxial waveguide geometry, and summarize the effective refractive index of the coupled 
plasmonic coaxial waveguide array for varying incident angle and array pitch. 

Supplementary Discussion 
This discussion explains the modal decomposition method for a single plasmonic coaxial waveguide. 

Supplementary Movie S1
This movie shows backwards phase front propagation and negative refraction of 0 = 483 nm light 
incident at a 30° angle from air onto a semi-infinite NIM slab (QuickTime; 6.6MB). 

Supplementary Movie S2
This movie shows negative refraction of 0 = 483 nm light incident on a ~300 nm thick NIM slab cut at a 
3° angle (QuickTime; 1.3MB).  
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Supplementary Figures and Legends 

 

 

 
Figure S1. Coaxial waveguide negative-index mode. Lateral cross-section of 

a coaxial waveguide consisting an infinitely long 25 nm GaP annular channel with 

a 75 nm inner diameter embedded in Ag. The dielectric channel is schematically 
indicated. Plotted is the real part of the H-field distribution of the n=1 negative 

index mode at λ0 = 483 nm, where n refers to the azimuthal dependence of the 

fields. The in-plane Re(Hxz) field distribution is depicted with arrows while the out-

of-plane Re(Hy) fields are plotted using a color scale. 
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Figure S2. Summary of effective refractive index for varying angle of 

incidence. The metamaterial effective refractive index neff is plotted for λ0 = 483 
nm s- and p-polarized light incident at angles ranging from 0 − 50° derived from 

slab wave vector angles as in Fig. 3a as well as from refraction angle 

measurements in wedge-shaped samples as in Fig. 5.  The dashed line indicates 

the calculated mode index of a single coaxial waveguide. 
 

 

 

 

 

 

 
 

Figure S3. Effective refractive index as a function of pitch. The effective 

refractive index neff derived from wave vector angles is plotted as a function of 

pitch for λ0 = 483 nm p-polarized light incident at 30° on a variable pitch 
waveguide array slab similar to that shown in Fig. 3a. The dashed line indicates 

the calculated mode index of a single coaxial waveguide. 
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Figure S4. Coaxial waveguide mode dispersion relations.  The coaxial 

waveguide consists of an infinitely long 25 nm GaP annular channel with a 75 nm 
inner diameter embedded in Ag. Plotted are the n = 0, 1, and 2 dispersion 

relations, where n refers to the azimuthal dependence of the fields in the 

waveguide described by the harmonic function einψ of order n. Energy is plotted 
versus β′ in (a), β′′ in (b). The Ag/GaP planar surface plasmon energy at ħωSP = 

2.3 eV (λ0 = 540 nm) and the target negative-index operation wavelength (λ0 = 

483 nm) are indicated by black dashed horizontal lines. 

 

 

 

 
 

Figure S5. Coaxial waveguide eigenmodes. The coaxial waveguide consists of 
an infinitely long 25 nm GaP annular channel with a 75 nm inner diameter 

embedded in Ag. Plotted are the real (a, b, c) and imaginary (d, e, f) parts of the 

Hy field components of the n = 0 (a, d), 1 (b, e), and 2 (c, f) modes at λ0 = 483 

nm, where n refers to the azimuthal dependence of the fields. 
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Figure S6. Modal reconstruction. A semi-infinite coaxial waveguide consisting 
of a 25 nm GaP annular channel with a 75 nm inner diameter embedded in Ag is 

illuminated from air with λ0 = 483 nm light at a 50° angle-of-incidence. Plotted are 

the real and imaginary parts of Hy. The two panels on the left (a, c) show the 
mode excited inside the waveguide and the two right-side panels (b, d) show the 

mode reconstructed from a superposition of 87% n=1 mode and 13% n=0 mode, 

where n refers to the azimuthal dependence of the fields. 
 

 

 

 

Supplementary Discussion 

 
Modal decomposition. Conducting a modal decomposition on a single coaxial waveguide structure 

excited at the maximum incidence angle of 50° with λ0=483 nm light, we find that the resulting excited 

waveguide mode is composed of 87% n=1 mode and only 13% n=0 mode, where n refers to the azimuthal 

dependence of the fields in the waveguide described by the harmonic function e
inψ

 of order n. The 

accuracy of the modal decomposition can be seen in Fig. S6 where the measured and reconstructed 

waveguide modes are plotted with 99.97% modal overlap. Furthermore, in looking at the dispersion 

relations of these two modes, we find that their complex indices are similar around the operation 

wavelength λ0 = 483 nm (Fig. S4), thus explaining why the minor contribution from the n = 0 mode does 

not significantly affect the overall functionality of the predominantly n = 1 mode material at off-normal 

angles of incidence. For reference, Hy field cross-sections of the three lowest order modes (n = 0, 1, 2) are 

plotted in Fig. S5. 
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Supplementary Movie Legends 

 
Movie S1. Time evolution of the magnetic field distribution Re(Hy) along the polarization plane 

of a semi-infinite NIM slab excited with λ0 = 483 nm p-polarized light incident at a 30° angle from 

air (Fig. 3a). The simulation geometry is schematically indicated. Playing the movie file forwards 
in time clearly shows that phase fronts inside the NIM have a negative phase velocity and 

refract negatively with respect to the surface normal. 

 
Movie S2. Time evolution of the steady-state magnetic field distribution Re(Hx) along the plane 

of refraction for λ0 = 483 nm s-polarized light at normal incidence to the right-angle side of a 

~300 nm thick NIM slab cut at a 3° angle (Fig. 5a). The simulation geometry is shown 
schematically along with the surface normal of the output plane. Playing the movie forwards in 

time shows that light refracts negatively at the angled side of the prism due to the accumulation 

of negative phase across the wedge thickness. 

 

 

 

 

 

 

 

 

 

 


