
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010 1223

On Distributed Scheduling in Wireless Networks
Exploiting Broadcast and Network Coding

Tao Cui, Lijun Chen, and Tracey Ho, Member, IEEE

Abstract—In this paper, we consider cross-layer optimization
in wireless networks with wireless broadcast advantage, focusing
on the problem of distributed scheduling of broadcast links.
The wireless broadcast advantage is most useful in multicast
scenarios. As such, we include network coding in our design to
exploit the throughput gain brought in by network coding for
multicasting. We derive a subgradient algorithm for joint rate
control, network coding and scheduling, which however requires
centralized link scheduling. Under the primary interference
model, link scheduling problem is equivalent to a maximum
weighted hypergraph matching problem that is NP-complete.
To solve the scheduling problem distributedly, locally greedy
and randomized approximation algorithms are proposed and
shown to have bounded worst-case performance. With random
network coding, we obtain a fully distributed cross-layer design.
Numerical results show promising throughput gain using the pro-
posed algorithms, and surprisingly, in some cases even with less
complexity than cross-layer design without broadcast advantage.

Index Terms—Cross-layer design, rate control, wireless net-
works, broadcast advantage, network coding, hypergraph match-
ing.

I. INTRODUCTION

OPTIMIZATION-BASED cross-layer design for wireless
networks has attracted much interest recently, see, e.g.,

[2]–[5] and the references therein. Joint optimization of mul-
tiple protocol layers can substantially increase the end-to-
end throughput, or reduce power consumption. Most existing
works on cross-layer design do not incorporate the exploitation
of the wireless broadcast advantage where transmissions from
an omnidirectional antenna can be received by any nodes that
lie within its communication range. This broadcast advan-
tage can result in throughput improvement and power saving
especially with multicasting [6]. In this paper we consider
distributed algorithms for wireless link scheduling that take
the broadcast advantage into account. We apply this to a
distributed joint optimization of multicast network coding, rate
control, and channel access.

We model the wireless network as a directed hyper-
graph, with wireless broadcast being abstracted as a hyperarc.

Paper approved by R. Fantacci, the Editor for Wireless Networks and
Systems of the IEEE Communications Society. Manuscript received October
27, 2008; revised August 13, 2009.

The authors are with the Division of Engineering and Applied Science,
California Institute of Technology, Pasadena, CA 91125, USA (e-mail:
{taocui@, chen@cds., tho@}caltech.edu).

This work has been supported in part by DARPA grant N66001-06-C-
2020, Caltech’s Lee Center for Advanced Networking, the Okawa Foundation
Research Grant and a gift from Microsoft Research. This paper has been
presented in part at the IEEE Conference on Decision and Control, New
Orleans, Louisiana USA, December 2007. An extended version can be found
in [1].

Digital Object Identifier 10.1109/TCOMM.2010.04.080564

Scheduling with broadcast advantage is a hard problem in
general. It forms a component of the algorithm proposed
in [7], where it is assumed to be solved by a central con-
troller. In this paper we focus on a simple, so-called primary
interference model [8]. Under this interference model, any
valid link schedule corresponds to a hypergraph matching
and the optimal schedule corresponds to a maximum weighted
hypergraph matching.

The maximum weighted hypergraph matching problem is,
however, NP-complete [9]. We thus propose two classes
of distributed approximation algorithms to solve the link
scheduling problem under the primary interference model.
The first class of algorithms is locally greedy algorithm,
which chooses the locally heaviest hyperedge. We show that
this algorithm returns a hypergraph matching with weight at
least a constant factor of the maximum weighted hypergraph
matching, giving a stability region for multi-hop commu-
nication within a constant factor of the region achievable
with any hypergraph matching algorithm. The second class of
algorithms is randomized algorithm, which always returns a
maximal hypergraph matching. This gives a stability region for
single hop communication that is at least 1/𝐾 of the region
achievable with any hypergraph matching algorithm, where
𝐾 is the maximum number of nodes in any hyperedge. The
randomized algorithm can be readily turned into a constant-
time algorithm.

We also provide a generalization of existing results in cross-
layer optimization for multicast network coding in wireless
networks. Our cross-layer design uses the framework of utility
maximization, see, e.g., [5]. Our objective is to maximize
the aggregate user utilities subject to flow conservation and
schedulability constraint on the hypergraph. We then apply
duality theory to decompose the problem vertically into rate
control, network coding and session scheduling, and link
scheduling subproblems, which interact through dual vari-
ables. Based on this decomposition, a distributed subgradient
algorithm is proposed, whose session and link scheduling
components are similar to the back-pressure algorithm in [7]
which does not incorporate rate control.

The rest of this paper is organized as follows. In Section II,
we briefly review some related work. Preliminaries including
hypergraph formulation and network coding are presented
in Section III. In Section IV, we present the cross-layer
design algorithm. Link scheduling algorithms for the primary
interference model are given in Section V. Simulation results
are presented in Section VI, and finally, we conclude the paper
in Section VII.

0090-6778/10$25.00 c⃝ 2010 IEEE

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1224 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

II. RELATED WORK

Extensive research has been devoted to the cross-layer
design for wireless networks but usually without considering
network coding, see, e.g., [2]–[5]. Similar cross-layer design
algorithm is proposed in [3], [4], [10], [11], and in particular,
the impact of imperfect scheduling is also studied in [3]. In
[10], the network capacity region is characterized, and a joint
routing and power allocation policy is proposed to stabilize
the system whenever the input rates are within this capacity
region.

Network coding extends the functionality of network nodes
from storing/forwarding packets to performing algebraic op-
erations on received data. Starting with the work of [12],
various potential benefits of network coding have been shown,
including robustness to link/node failures and packet losses
[13]. It is especially preferred in wireless networks, where
the bandwidth is scarce. Distributed random linear coding
schemes, see, e.g., [14], have made practical implementation
of network coding possible.

There exist many works on optimization with network
coding. Lun et. al. [15] propose a dual subgradient method
for the problem of minimum cost multicasting with network
coding. For rate control, the approach in [2] is extended to
network coding in [16]. In [7], the rate stability region for
a wireless network with and without correlated sources is
characterized. In [17], medium access control and network
coding is considered and broadcast advantage is also exploited.
A set of conflict-free transmission schedules is predetermined,
and the scheduling uses a time division mechanism, which is
suboptimal.

The primary interference model was introduced in [8].
In [18], randomized algorithms are proposed, which achieve
the capacity region with reduced complexity by comparing
a random matching with the current matching. In [19], a
distributed implementation of the algorithm in [18] is pro-
posed. Scheduling algorithms based on maximal matching are
also considered in works such as [3]. These matching-based
algorithms do not consider the broadcast advantage.

III. PRELIMINARIES

A. Network Model

A wireless network is modeled as a directed hypergraph
ℋ = (𝒩 ,𝒜), where 𝒩 is the set of nodes and 𝒜 is the set
of hyperarcs. A hyperarc is a pair (𝑖, 𝐽), with 𝑖 ∈ 𝒩 the
start node and 𝐽 ⊆ 𝒩 the set of end nodes, representing a
broadcast link from node 𝑖 to nodes in 𝐽 . We assume that
(𝑖, 𝐽) is lossless, i.e., it does not experience packet erasures.
When 𝐽 only contains a single node 𝑗, the hypergraph reduces
to the conventional graph model.

Let 𝑆(𝜏) = {𝑆𝑖,𝑗(𝜏)} denote the matrix process of channel
states, where 𝑆𝑖,𝑗(𝜏) represents the channel state from node
𝑖 to node 𝑗 at time 𝜏 . Every time slot, node 𝑖 determines
transmission rates on each hyperarc (𝑖, 𝐽) ∈ 𝒜 by allocating
a power matrix 𝑃 = {𝑃𝑖𝐽} subject to a total power constraint∑

{𝐽∣(𝑖,𝐽)∈𝒜}
𝑃𝑖𝐽 ≤ 𝑃 tot

𝑖 , ∀𝑖 ∈ 𝒩 , (1)

s1

r

s2

t2t1

(0,5) (5,5)

(0,0) (5,0)

(2.5,2.5)

Fig. 1. Wireless butterfly network.

where 𝑃 tot
𝑖 is the maximal total power allowable at node

𝑖. Hyperarc rates are determined by a rate-power curve
𝑟(𝑃 , 𝑆) = {𝑟𝑖𝐽(𝑃 , 𝑆)}, where 𝑟𝑖𝐽 (𝑃 , 𝑆) is the rate at which
packets are transmitted on hyperarc (𝑖, 𝐽) and received by all
the nodes in 𝐽 . The rate-power curve is assumed to be given,
either based on information theoretic capacity or on actual
coding and modulation schemes. By time-sharing, the capacity
region is the convex hull Co(𝑟(𝑃 , 𝑆)) of all achievable rate
vectors 𝑟(𝑃 , 𝑆).

B. Network Coding

A set ℳ of multicast sessions is transmitted through the
network. Each session 𝑚 ∈ℳ is associated with a set 𝒮𝑚 ⊂
𝒩 of sources and a set 𝒯𝑚 ⊂ 𝒩 of sinks. In session 𝑚, each
source 𝑠 ∈ 𝒮𝑚 multicasts 𝑥𝑚𝑠 bits per second to all the sinks
in 𝒯𝑚. In session 𝑚, each source 𝑠 ∈ 𝒮𝑚 multicasts 𝑥𝑚𝑠 bits
per second to all the sinks in 𝒯𝑚. By the flow conservation
condition,∑

{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 −

∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝑔𝑚𝑠𝑡
𝑗𝐼𝑖 = 𝜎𝑚𝑠

𝑖 , (2)

∀𝑖 ∈ 𝒩 , 𝑠 ∈ 𝒮𝑚, 𝑡 ∈ 𝒯𝑚, 𝑚 ∈ ℳ, where 𝜎𝑚𝑠
𝑖 = 𝑥𝑚𝑠

if 𝑖 = 𝑠, 𝜎𝑚𝑠
𝑖 = −𝑥𝑚𝑠 if 𝑖 = 𝑡, 𝜎𝑚𝑠

𝑖 = 0 otherwise, and 𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

is the information rate from source 𝑠 to sink 𝑡 of session 𝑚
over (𝑖, 𝐽) and is intended to node 𝑗 ∈ 𝐽 .

In network coding, nodes can algebraically combine pack-
ets, increasing efficiency of information transfer. We assume
that coding is done only across packets of the same multi-
cast session. To achieve a fully distributed design, we use
distributed random network coding, see, e.g., [20].

We define 𝑓𝑚𝑖𝐽 as the physical flow of session 𝑚 on hyperarc
(𝑖, 𝐽) as opposed to the virtual flow 𝑔𝑚𝑠𝑡

𝑖𝐽𝑗 in (2). By the
flow sharing property of network coding [12] and the rate
constraint, we have the following two constraints∑
𝑠∈𝒮𝑚

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ≤ 𝑓𝑚𝑖𝐽 , ∀(𝑖, 𝐽) ∈ 𝒜, 𝑚 ∈ℳ, 𝑡 ∈ 𝒯𝑚, (3)

∑
𝑚∈ℳ

𝑓𝑚𝑖𝐽 ≤ 𝑟𝑖𝐽 , ∀(𝑖, 𝐽) ∈ 𝒜, (4)

where {𝑟𝑖𝐽} ∈ Co(𝑟(𝑃 , 𝑆)).
To illustrate this, consider the network in Figure 1. There

is a single multicast session 𝑚 with two source nodes and
two sink nodes. The hyperarc (𝑠1, {𝑟, 𝑡1}) carries actual flow

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: ON DISTRIBUTED SCHEDULING IN WIRELESS NETWORKS EXPLOITING BROADCAST AND NETWORK CODING 1225

𝑓𝑚𝑠1{𝑟,𝑡1} and virtual flows 𝑔𝑚𝑠1𝑡1
𝑠1{𝑟,𝑡1}𝑡1 to receiver 𝑡1, 𝑔

𝑚𝑠1𝑡1
𝑠1{𝑟,𝑡1}𝑟

to receiver 𝑡1 via 𝑟, and 𝑔𝑚𝑠1𝑡2
𝑠1{𝑟,𝑡1}𝑟 to receiver 𝑡2 via 𝑟. The

flow sharing condition (3) for this hyperarc is

𝑔𝑚𝑠1𝑡1
𝑠1{𝑟,𝑡1}𝑡1 + 𝑔𝑚𝑠1𝑡1

𝑠1{𝑟,𝑡1}𝑟 ≤ 𝑓𝑚𝑠1{𝑟,𝑡1} (5)

𝑔𝑚𝑠1𝑡2
𝑠1{𝑟,𝑡1}𝑟 ≤ 𝑓𝑚𝑠1{𝑟,𝑡1} (6)

IV. CROSS-LAYER DESIGN WITH BROADCAST

ADVANTAGE AND NETWORK CODING

In this section, we derive a cross-layer design by using
the utility maximization framework, which is an extension
of [7], [16]. Each source 𝑠 of session 𝑚 is associated with
a utility function 𝑈𝑚𝑠(𝑥

𝑚𝑠), which is assumed to be strictly
concave, non-decreasing and twice continuously differentiable.
We formulate network resource allocation as the following
optimization problem

max
𝑥𝑚𝑠,𝑔𝑚𝑠𝑡

𝑖𝐽𝑗
,

𝑓𝑚
𝑖𝐽

,𝑟𝑖𝐽 ,𝑃𝑖𝐽

∑
𝑚∈ℳ,𝑠∈𝒮𝑚

𝑈𝑚𝑠(𝑥
𝑚𝑠)

s.t.
∑

{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 −

∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝑔𝑚𝑠𝑡
𝑗𝐼𝑖 = 𝜎𝑚𝑠

𝑖 ,

∀𝑖 ∕= 𝑡, 𝑠 ∈ 𝒮𝑚, 𝑡 ∈ 𝒯𝑚,𝑚 ∈ℳ,∑
𝑠∈𝒮𝑚, 𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ≤ 𝑓𝑚𝑖𝐽 , ∀(𝑖, 𝐽), 𝑡 ∈ 𝒯𝑚,𝑚 ∈ ℳ,

∑
𝑚∈ℳ

𝑓𝑚𝑖𝐽 ≤ 𝑟𝑖𝐽 , ∀(𝑖, 𝐽),

{𝑟𝑖𝐽} ∈ Co(𝑟(𝑃 , 𝑆)),
∑

{𝐽∣(𝑖,𝐽)∈𝒜}
𝑃𝑖𝐽 ≤ 𝑃 tot

𝑖 , ∀𝑖,

(7)

where the constraints come from equations (2)-(4). Here we do
not include flow conservation equation at destinations, which
is automatically guaranteed by the flow conservation at the
source and intermediate nodes. Problem (7) is strictly convex
and has a unique solution with respect to source rates 𝑥𝑚𝑠.
The partial dual function to (7), by relaxing only the first
set of constraints, can be decomposed into the following two
subproblems

𝜙1(𝑞) = max
𝑥𝑚𝑠

∑
𝑚,𝑠

𝑈𝑚𝑠(𝑥
𝑚𝑠)−

∑
𝑚,𝑠

(∑
𝑡

𝑞𝑚𝑠𝑡
𝑠

)
𝑥𝑚𝑠, (8)

𝜙2(𝑞)

= max
𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

,𝑓𝑚
𝑖𝐽

,

𝑟𝑖𝐽 ,𝑃𝑖𝐽

∑
𝑖,𝑚,𝑠,𝑡

𝑞𝑚𝑠𝑡
𝑖

(∑
{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

−
∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝑔𝑚𝑠𝑡
𝑗𝐼𝑖

)
,

subject to
∑

𝑠∈𝒮𝑚, 𝑗∈𝐽
𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ≤ 𝑓𝑚𝑖𝐽 ,

∑
𝑚∈ℳ

𝑓𝑚𝑖𝐽 ≤ 𝑟𝑖𝐽 ,

{𝑟𝑖𝐽} ∈ Co(𝑟(𝑃 , 𝑆)),
∑

{𝐽∣(𝑖,𝐽)∈𝒜}
𝑃𝑖𝐽 ≤ 𝑃 tot

𝑖 ,

(9)

where 𝑞𝑚𝑠𝑡
𝑖 is the Lagrange multiplier at node 𝑖 for source 𝑠

and sink 𝑡 of session 𝑚, and will be interpreted as congestion
price. The first subproblem is rate control. The second is joint

network coding and scheduling. Thus, by dual decomposi-
tion, the flow optimization problem decomposes into separate
“local" optimization problems of transport and network/link
layers, respectively. The two subproblems interact through the
dual variable 𝑞.

Rate Control: At time 𝜏 , given dual variable 𝑞(𝜏), each
source adjusts its sending rate according to the aggregate dual
variable

∑
𝑡 𝑞

𝑚𝑠𝑡
𝑠 that is generated locally at the source

𝑥𝑚𝑠(𝜏 + 1) = 𝑈 ′−1
𝑚𝑠

(∑
𝑡
𝑞𝑚𝑠𝑡
𝑠 (𝜏)

)
. (10)

Session Scheduling and Network Coding: Note that (9) is
equivalent to the following problem

max
𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ,𝑓𝑚

𝑖𝐽 ,𝑟𝑖𝐽 ,𝑃𝑖𝐽

∑
(𝑖,𝐽),𝑚,𝑡

∑
𝑠,𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

(
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

)
,

subject to
∑
𝑠, 𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ≤ 𝑓𝑚𝑖𝐽 ,

∑
𝑚∈ℳ

𝑓𝑚𝑖𝐽 ≤ 𝑟𝑖𝐽 ,

{𝑟𝑖𝐽} ∈ Co(𝑟(𝑃 , 𝑆)),
∑

{𝐽∣(𝑖,𝐽)∈𝒜}
𝑃𝑖𝐽 ≤ 𝑃 tot

𝑖 ,

= max
𝑓𝑚
𝑖𝐽 ,𝑟𝑖𝐽 ,𝑃𝑖𝐽

∑
(𝑖,𝐽),𝑚

𝑓𝑚𝑖𝐽
∑
𝑡

max
𝑠,𝑗∈𝐽

[
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

]+
,

subject to
∑
𝑚∈ℳ

𝑓𝑚𝑖𝐽 ≤ 𝑟𝑖𝐽 , {𝑟𝑖𝐽} ∈ Co(𝑟(𝑃 , 𝑆)),

∑
{𝐽∣(𝑖,𝐽)∈𝒜}

𝑃𝑖𝐽 ≤ 𝑃 tot
𝑖 ,

(11)

where [⋅]+ denotes the projection onto ℝ
+. The

last equality in (11) comes from the fact that
max𝑔𝑚𝑠𝑡

𝑖𝐽𝑗

∑
𝑠,𝑗∈𝐽 𝑔𝑚𝑠𝑡

𝑖𝐽𝑗

(
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

)
, subject to∑

𝑠, 𝑗∈𝐽 𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 ≤ 𝑓𝑚𝑖𝐽 is a linear program, so we can

always choose an extreme point solution, i.e.,

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 =

⎧⎨
⎩ 𝑓𝑚𝑖𝐽 ,

if 𝑠 = 𝑠𝑚𝑡, 𝑗 = 𝑗̂𝑚𝑡,
and 𝑞𝑚𝑠𝑡

𝑖 − 𝑞𝑚𝑠𝑡
𝑗 ≥ 0,

0, otherwise,
(12)

where {𝑠𝑚𝑡, 𝑗̂𝑚𝑡} = argmax𝑠,𝑗∈𝐽
(
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

)
.

Let 𝑚̂𝑖𝐽 = argmax
𝑚

∑
𝑡
max
𝑠,𝑗∈𝐽

[
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

]+
be the session

with the maximum aggregate differential link prices over
hyperarc (𝑖, 𝐽). For each hyperarc (𝑖, 𝐽), a random linear
combination of packets from sources 𝑠𝑚̂𝑖𝐽 𝑡, ∀𝑡 ∈ 𝒯𝑚̂𝑖𝐽 , in
session 𝑚̂𝑖𝐽 is broadcast to all nodes in 𝐽 at the rate of 𝑟𝑖𝐽 ,
where the packets received by node 𝑗𝑚̂𝑖𝐽 𝑡 are intended for
sink 𝑡 in session 𝑚̂𝑖𝐽 . This is equivalent to solving (9) by

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 (𝑞) =

⎧⎨
⎩

𝑟𝑖𝐽 ,
if 𝑚 = 𝑚̂𝑖𝐽 , 𝑠 = 𝑠𝑚𝑡, 𝑗 = 𝑗̂𝑚𝑡,

and max
𝑠,𝑗∈𝐽

[
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

]+
> 0,

0, otherwise.
(13)

Link Scheduling and Power Control: Define 𝑤𝑖𝐽 =
max
𝑚

∑
𝑡
max
𝑠,𝑗∈𝐽

[
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

]+
. The joint link scheduling and

power control problem becomes

max
𝑟,𝑃

∑
(𝑖,𝐽)∈𝒜

𝑤𝑖𝐽𝑟𝑖𝐽

subject to {𝑟𝑖𝐽}∈Co(𝑟(𝑃 , 𝑆)),
∑

{𝐽∣(𝑖,𝐽)∈𝒜}
𝑃𝑖𝐽 ≤𝑃 tot

𝑖 .
(14)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1226 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

The problem (14) is in general a difficult global optimization
problem. In Section V, we will discuss a special interference
model such that (14) can be solved distributedly in polynomial
time.

Note that our scheduling problem (13)-(14) generalizes the
back-pressure policy in [10], [21] by taking into account the
differential backlog between node 𝑖 and all nodes 𝑗 ∈ 𝐽
instead of only a single node. Clearly, when 𝐽 = {𝑗}, our
policy reduces to those in [10], [21]. The scheduling problem
(13)-(14) is similar to that in [7], where the former is derived
using the optimization framework while the latter is obtained
by good intuition.

Dual Variable Update: At time 𝜏 + 1, each node 𝑖 updates
its dual variable 𝑞 according to the subgradient algorithm

𝑞𝑚𝑠𝑡
𝑖 (𝜏 + 1) =⎧⎨
⎩

𝑞𝑚𝑠𝑡
𝑖 (𝜏) +𝛾𝜏

(
𝑥𝑚𝑠(𝜏)− ∑

{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 (𝑞(𝜏))

+
∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝑔𝑚𝑠𝑡
𝑗𝐼𝑖 (𝑞(𝜏))

)
,

if 𝑖 = 𝑠,

𝑞𝑚𝑠𝑡
𝑖 (𝜏) + 𝛾𝜏

(∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝑔𝑚𝑠𝑡
𝑗𝐼𝑖 (𝑞(𝜏))

− ∑
{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 (𝑞(𝜏))

)
,

otherwise,

(15)

where 𝛾𝜏 is a positive stepsize. After node 𝑖 updates 𝑞𝑚𝑠𝑡
𝑖 , it

passes the value to all its neighbors. Note that the algorithm
(10)-(15) only requires nodes to communicate with neighbors.

Now, we discuss the convergence and optimality of this
cross layer design. Let the primal function (i.e., the total
achieved network utility) be 𝑃 (𝑥) and achieve its optimum at
𝑥∗. Let 𝑞∗ be a dual optimal. Define 𝑥(𝜏) := 1

𝑘

∑𝜏
𝑘=1 𝑥(𝑘),

the average data rate up to time 𝜏 , and 𝑞(𝜏) := 1
𝑘

∑𝜏
𝑘=1 𝑞(𝑘),

the average dual variable (congestion price) up to time 𝜏 .
Let 𝑔(𝑞) be a subgradient of dual function 𝜙(𝑞). When the
joint link scheduling and power control problem (14) is solved
exactly, by using results on the convergence of the subgradient
method, see, e.g., [4], [11], we can show the following result.

Theorem 1: If the norm of the subgradients is uniformly
bounded, i.e., there exists 𝔤 such that ∥𝑔(𝑞)∥2 ≤ 𝔤 for all 𝑞,
and a constant stepsize 𝛾 is adopted in (15), then the following
inequalities hold

lim sup
𝜏→∞

𝜙(𝑞(𝜏))≤𝜙(𝑞∗) +
𝛾𝔤2

2
, (16)

lim inf
𝜏→∞ 𝑃 (𝑥̄(𝜏))≥𝑃 (𝑥∗)− 𝛾𝔤2

2
. (17)

Theorem 1 implies that the average source rate and con-
gestion price approach the corresponding optima when the
stepsize 𝛾 is small enough. We omit the proof here for brevity.
We may also establish the convergence of our cross-layer
design in a slightly different sense, by using the standard
convergence results for the subgradient method [22].

V. LINK SCHEDULING

In this section, we study the joint link scheduling and power
control problem (14) for networks with primary interference.
A system is stable if the queue lengths at all nodes remain

finite all the time. Note that the queue length at node 𝑖 can
be written as 𝑞𝑚𝑠𝑡

𝑖 /𝛾 for a constant stepsize 𝛾 [3]. A rate
vector 𝑥⃗ = {𝑥𝑚𝑠} is feasible if there exists a scheduling
policy that stabilizes the system with 𝑥⃗. We are interested in
those scheduling policies that can stabilize the system for any
rate vector within 𝜂Λ, where Λ denotes the network capacity
region characterized by the constraints in (7). 𝜂 ∈ (0, 1] is a
constant that characterizes the performance of the scheduling
policy. For example, by Theorem 5 that will be presented
later, 𝜂 = max{ 1

𝐾 , 1
𝜅} for Algorithm 1 and Algorithm 2. By

following the same argument as in [3], we can show that the
performance of the joint design with each of our proposed
scheduling algorithms is not worse than the design specified
by the following optimization problem

max
∑

𝑚∈ℳ,𝑠∈𝒮𝑚

𝑈𝑚𝑠(𝑥
𝑚𝑠), subject to 𝑥⃗ ∈ 𝜂Λ, (18)

with appropriate 𝜂 that is determined by the worst-case per-
formance bound of the corresponding scheduling algorithm.

A. Problem Formulation

Under the primary interference model [8], only those links
that do not share nodes can transmit at the same time. It
models a situation where each node is equipped with a single
transceiver and neighboring nodes can transmit simultaneously
using orthogonal CDMA or FDMA channels. Under this
interference model, without using broadcast advantage, any
feasible schedule corresponds to a matching [21]. With the
broadcast advantage, any feasible schedule corresponds to a
hypergraph matching of the hypergraph ℋ, and (14) reduces
to the maximum weighted hypergraph matching1 problem.

Let Π denote the set of all hypergraph matchings of the
hypergraph ℋ. Assume that if hyperarc (𝑖, 𝐽) is active, it
transmits at a given rate 𝑟𝑖𝐽 (𝑃

tot
𝑖 , 𝑆). We can represent a

hypergraph matching 𝜋 as an ∣𝒜∣-dimensional rate vector 𝜉𝜋

𝜉𝜋𝑖𝐽 =

{
𝑟𝑖𝐽 (𝑃

tot
𝑖 , 𝑆), if (𝑖, 𝐽) ∈ 𝜋,
0, otherwise.

(19)

The achievable rate region Co(𝑟(𝑃 , 𝑆)) is then written as

Co(𝑟(𝑃 , 𝑆)) ≜
{
r : r =

∑
𝜋∈Π

𝛼𝜋𝜉
𝜋, 𝛼𝜋 ≥ 0,

∑
𝜋∈Π

𝛼𝜋 = 1

}
.

(20)
Note that Co(𝑟(𝑃 , 𝑆)) is a polytope. So, we can always pick
up an extreme point maximizer for the scheduling problem
(14), which corresponds to a maximum weighted hypergraph
matching in ℋ.

We first transform the directed hypergraph to an equivalent
undirected hypergraph ℋ̃ = (𝒱 , ℰℎ), where ℋ and ℋ̃ have the
same node set. Note that hyperarcs (𝑖, 𝐽) and (𝑗, 𝐼) mutually
interfere and have the same interference/contention relations
with other hyperarcs if {𝑖}∪𝐽 = {𝑗}∪𝐼 . Define an undirected
hyperedge 𝑒 ⊆ 𝒱 in ℰℎ, which corresponds to all hyperarcs
(𝑖, 𝐽) such that 𝑒 = {𝑖}∪𝐽 . The weight of hyperedge 𝑒 ∈ ℰℎ
is

𝑤̃𝑒 = max
{(𝑖,𝐽)∈𝒜, {𝑖}∪𝐽=𝑒}

𝑤𝑖𝐽𝑟𝑖𝐽 (𝑃 , 𝑆). (21)

1A hypergraph matching is defined as a set of hyperarcs with no pair
incident to the same node.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: ON DISTRIBUTED SCHEDULING IN WIRELESS NETWORKS EXPLOITING BROADCAST AND NETWORK CODING 1227

The problem (14) is then equivalent to the maximum weighted
hypergraph matching (or maximum weighted set packing)
problem on the weighted hypergraph ℋ̃.

Different from the maximum weighted matching problem
on graphs which can be computed in polynomial time, the
maximum weighted hypergraph matching problem is NP-
complete [9]. Also, we would like distributed algorithms.
Both factors suggest that we should focus on approximation
algorithms.

Let 𝒢 = (𝒱 , ℰ) be an undirected graph with the same node
set as ℋ. We assume that there exists an edge between node
𝑖 and node 𝑗 if and only if min{SNR𝑖𝑗 , SNR𝑗𝑖} ≥ 𝜆, where
𝜆 is a predefined threshold. This means that if 𝑖 can hear 𝑗,
then 𝑗 can hear 𝑖. Let 𝑁(𝑣) denote the neighbor node set of
node 𝑣 in 𝒢. We call 𝒢 connectivity graph in the following.

B. Local Optimal Algorithms

A linear time approximation algorithm with bounded worst-
case performance for maximum weighted graph matching is
proposed in [23], which adds a locally optimal edge into the
matching at each step. Motivated by [23], our algorithm adds
a locally heaviest hyperedge into the hypergraph matching at
each step.

Definition 1 (locally heaviest hyperedge): A hyperedge 𝑒
is a locally heaviest hyperedge if its weight is at least as large
as the weight of all adjacent hyperedges, i.e., 𝑤̃𝑒 ≥ 𝑤̃𝑓 for all
𝑓 ∈ ℰℎ such that 𝑓 ∩ 𝑒 ∕= ∅.

The distributed local optimal hypergraph matching algo-
rithm (DLOHMA) is given in Algorithm 1. In Algorithm 1,
the set Γ𝑖 keeps track of the set of neighbors of node 𝑖 that are
still not matched, which is initialized to be all its neighbors
in 𝒢. Node 𝑖 also maintains, for each neighbor 𝑗 ∈ Γ𝑖, the
set Γ(𝑖)

𝑗 which keeps track of the set of unmatched neighbors
of 𝑗, and knows the queue lengths of its two hop neighbors.
This allows node 𝑖 to compute the weight 𝑤̃𝑒 of any edge
𝑒 involving itself, as defined in (21). The vector 𝐶𝑖 counts
the number of matching 𝑒∗𝑖 messages that have been received,
which is initialized to be a null vector (line 3). Each node 𝑖
broadcasts a matching 𝑒∗𝑖 message, where 𝑒∗𝑖 = {𝑖}∪𝐽∗ is the
maximum weight hyperedge in ℋ̃ containing 𝑖 (lines 5-8). If
node 𝑖 receives ∣𝐽∗∣ matching 𝑒∗𝑖 messages, hyperedge 𝑒∗𝑖 is
added to the hypergraph matching as 𝑒∗𝑖 is a locally heaviest
hyperedge. It broadcasts a drop 𝑒∗𝑖 message to indicate that 𝑖 is
matched and unavailable, and at the same time to tell all nodes
in 𝑒∗𝑖 that they are matched (lines 26-28). If node 𝑖 receives a
drop 𝑒 message and node 𝑖 is not in 𝑒, it first checks whether
some nodes of 𝑒 are in Γ𝑖. If so, 𝑖 is the direct neighbor of
some nodes in 𝑒 and 𝑖 broadcasts the drop 𝑒 message to let
𝑖’s neighbors (two-hop neighbors of the nodes in 𝑒) know that
all the nodes in 𝑒 are matched. If not, 𝑖 does not need to
forward the drop message. Node 𝑖 then removes the nodes in
𝑒 from Γ𝑖 and all Γ(𝑖)

𝑗 , 𝑗 ∈ Γ𝑖. Furthermore, if some nodes in
𝐽∗ are in 𝑒, the hyperedge 𝑒∗𝑖 is dropped. Node 𝑖 then finds
another candidate set 𝐽∗, and it broadcasts a new matching
𝑒∗𝑖 message (lines 16-23). If 𝑖 receives a drop 𝑒 message and
node 𝑖 is in 𝑒, 𝑖 will broadcast a drop 𝑒 message if it did not
do so before, i.e., Γ𝑖 is nonempty (line 23).

Note that some nodes in the locally heaviest hyperedge may
not be able to hear each other. These nodes cannot receive

DLOHMA: (𝒢)
for each node 𝑖 ∈ 𝒱 do1

Broadcast the set {SNR𝑖𝑗 ∣𝑗 ∈ 𝑁(𝑖)} to all its2
neighbor nodes ;
Set 𝐶𝑖 = ∅, Γ𝑖 = 𝑁(𝑖), and Γ

(𝑖)
𝑗 = 𝑁(𝑗), ∀𝑗 ∈ 𝑁(𝑖);3

end4
for each node 𝑖 ∈ 𝒱 do5

Find a node set 𝐽∗ by 𝐽∗ = {𝑗∗} ∪ 𝐿∗ − 𝑖 where6
𝑗∗, 𝐿∗ are obtained via

(𝑗∗, 𝐿∗) = argmax
𝑗∈Γ𝑖∪{𝑖},

{
𝐿∣𝐿⊆Γ

(𝑖)
𝑗 , 𝑖∈𝐿

}𝑤𝑗𝐿𝑟𝑗𝐿(𝑃, 𝑆),

(22)
and 𝑤𝑗𝐿, 𝑟𝑗𝐿 are defined in (14) ;
if 𝐽∗ ∕= ∅ then Broadcast a matching 𝑒∗𝑖 = {𝑖} ∪ 𝐽∗7
message;

end8
while ∃𝑖, Γ𝑖 ∕= ∅ do9

if node 𝑖 receives a message 𝑚 which is has not10
received then

switch 𝑚 do11
case matching 𝑒12

𝐶𝑖(𝑒) = 𝐶𝑖(𝑒) + 1;13
end14
case drop 𝑒15

if 𝑖 /∈ 𝑒 then16
if 𝑒 ∩ Γ𝑖 ∕= ∅ then Broadcast a drop 𝑒17
message;
Remove the nodes in 𝑒 from Γ𝑖 and18

all Γ(𝑖)
𝑗 , 𝑗 ∈ Γ𝑖;

if 𝑒 ∩ 𝐽∗ ∕= ∅ then19
Find a node set 𝐽∗ by (22);20
if 𝐽∗ ∕= ∅ then Broadcast a21
matching 𝑒∗𝑖 = {𝑖} ∪ 𝐽∗ message;

end22
else if Γ𝑖 ∕= ∅ then Broadcast a drop 𝑒23
message, and set Γ𝑖 = ∅;

end24
end25
if 𝐽∗ ∕= ∅ and 𝐶𝑖(𝑒

∗
𝑖) = ∣𝐽∗∣ then26

Broadcast a drop 𝑒∗𝑖 message, and set Γ𝑖 = ∅;27
end28

end29
end30

Algorithm 1: Distributed local optimal algorithm.

∣𝐽∗∣ matching 𝑒 messages and conclude that 𝑒 is the locally
heaviest hyperedge. But at least one node can hear all the other
nodes in the hyperedge. This is the reason why we broadcast
a drop 𝑒 message in line 27.

In Algorithm 1, we assume that all hyperedges have dif-
ferent weights. If they do not, we can always break ties by
adding a small constant 𝜖𝑒 to 𝑤𝑒 (different 𝑒 has different 𝜖𝑒).
For example, we can change 𝑤𝑖𝐽 or 𝑟𝑖𝐽 by a small constant.
In the following, we also assume that the cardinality of all
hyperedges in ℰℎ is bounded from above by a constant 𝐾 .
Let 𝜅 = max𝑚∈ℳ ∣𝒯𝑚∣+ 1.

Proposition 1: The hyperedge 𝑒∗𝑖 in line 26 is a locally
heaviest hyperedge.

Proof: From (22), 𝑤̃𝑒 ≥ 𝑤̃𝑓 for any 𝑓 that contains 𝑖. If
node 𝑖 receives ∣𝐽∗∣ matching 𝑒 messages, we can conclude
that 𝑤̃𝑒 ≥ 𝑤̃𝑓 for any 𝑓 that contains 𝑖. Therefore, we have
𝑤̃𝑒 ≥ 𝑤̃𝑓 for any 𝑓 such that 𝑓 ∩ 𝑒 ∕= ∅, and 𝑒 is a locally
heaviest hyperedge. □

Proposition 2: In Algorithm 1, each node 𝑖 broadcasts at
most

∑
𝑗∈𝑁(𝑖) ∣𝑁(𝑗)∣+ ∣𝑁(𝑖)∣ messages.

Proof: When the algorithm begins, node 𝑖 first broadcasts a

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1228 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

matching message (line 7). After that it broadcasts a matching
message only when it receives a drop 𝑒 message from one of
its neighbors and it is not in 𝑒. It initiates a drop message
only when it gets matched. After that Γ𝑖 = ∅ and no more
messages will be sent. It forwards a drop 𝑒 message only
when 𝑖 /∈ 𝑒 and 𝑒 ∩ Γ𝑖 ∕= ∅. From Algorithm 1, node
𝑖 can receive at most 𝑁(𝑖) drop messages initiated by its
one-hop neighbors and

∑
𝑗∈𝑁(𝑖)(∣𝑁(𝑗)∣ − 1) drop messages

initiated by its two-hop neighbors. Therefore, the worst case
is broadcasting

∑
𝑗∈𝑁(𝑖) ∣𝑁(𝑗)∣− 1 matching 𝑒 messages and

forwarding ∣𝑁(𝑖)∣ drop 𝑒 messages. This require broadcasting∑
𝑗∈𝑁(𝑖) ∣𝑁(𝑗)∣+ ∣𝑁(𝑖)∣ messages. □
Different from [23] where node 𝑖 only sends a message to

node 𝑗, we make use of the broadcast property of wireless
communication, which reduces the number of messages.

Theorem 2: The complexity of Algorithm 1 is

𝑂

(
𝐾3∣ℰ∣

min{𝜅,𝐾}−1∑
𝑘=1

(
𝐾−1
𝑘

))
time and the number of

time-slots required to finish Algorithm 1 is 𝑂(∣𝒱∣).
Proof: By Proposition 2, each node broadcasts at most∑
𝑗∈𝑁(𝑖) ∣𝑁(𝑗)∣ + ∣𝑁(𝑖)∣ messages. Thus, there are at most∑
𝑖∈𝒱

∑
𝑗∈𝑁(𝑖) ∣𝑁(𝑗)∣ + ∣𝑁(𝑖)∣ ≤ (2𝐾 + 1)∣ℰ∣ broadcasted

messages. Each broadcasted message is received by at most
𝐾−1 neighbor nodes. Therefore, all the nodes receive at most
(2𝐾 + 1)(𝐾 − 1)∣ℰ∣ messages. The while loop of Algorithm
1 (lines 9-30) has at most (2𝐾 + 1)(𝐾 − 1)∣ℰ∣ iterations. In
each iteration, we need to perform (22) at most once. We can
solve (22) by performing the inner max first with fixed 𝑗 and
then the outer max by varying 𝑗. By the definition of 𝑤𝑖𝐽 and
𝑟𝑖𝐽 (𝑃 , 𝑆) in (14), we can write the inner max of (22) as

max
{𝐿∣𝐿⊆Γ𝑗, 𝑖∈𝐿}

1

𝐺
log

(
1 + 𝑃 tot

𝑗 min
𝑙∈𝐿
∣ℎ𝑗,𝑙∣2
𝜎2
𝑙

)

×
(∑

𝑡

max
𝑠,𝑙∈𝐿

[
𝑞𝑚𝑠𝑡
𝑗 − 𝑞𝑚𝑠𝑡

𝑙

]+)
.

(23)

Clearly, given any set 𝐿 with ∣𝐿∣ > 𝜅−1, we can always find
a subset 𝐿′ of 𝐿 such that the weight of 𝐿′ is at least that of
𝐿 because

∑
𝑡
max
𝑠,𝑙∈𝐿

[
𝑞𝑚𝑠𝑡
𝑗 − 𝑞𝑚𝑠𝑡

𝑙

]+
in (23) contains at most

𝜅− 1 summands, and

log

(
1 + 𝑃 tot

𝑗 min
𝑙∈𝐿
∣ℎ𝑗,𝑙∣2
𝜎2
𝑙

)
≤ log

(
1 + 𝑃 tot

𝑗 min
𝑙∈𝐿′

∣ℎ𝑗,𝑙∣2
𝜎2
𝑙

)
,

(24)
∀𝐿′ ⊆ 𝐿. Therefore, we only need to consider those
𝐿 with ∣𝐿∣ ≤ 𝜅 − 1. The number of such 𝐿’s is at

most
min{𝜅,𝐾}−1∑

𝑘=1

(
𝐾−1
𝑘

)
. Also the number of 𝑗 in Γ𝑖 ∪ {𝑖}

is at most 𝐾 . Thus, the complexity2 of solving (22) is

𝑂

(
𝐾

min{𝜅,𝐾}−1∑
𝑘=1

(
𝐾−1
𝑘

))
and the complexity of Algorithm

1 is 𝑂

(
𝐾3∣ℰ∣

min{𝜅,𝐾}−1∑
𝑘=1

(
𝐾−1
𝑘

))
.

2We can sort
[
𝑞𝑚𝑠𝑡
𝑗 − 𝑞𝑚𝑠𝑡

𝑙

]+
and ∣ℎ𝑗,𝑙∣2 beforehand so that computing

max
𝑙∈𝐿

[
𝑞𝑚𝑠𝑡
𝑗 − 𝑞𝑚𝑠𝑡

𝑙

]+
and min

𝑙∈𝐿
∣ℎ𝑗,𝑙∣2 takes 𝑂(1) time.

On the other hand, Algorithm 1 is a parallel algorithm. We
assume that every message broadcast takes one time-slot. It
is easy to see that at least one locally heaviest hyperedge
always exists. Let 𝑡 denotes the time-slot that a locally heaviest
hyperedge 𝑒 is found through line 26. Note that at least one
node in a hyperedge can hear all the other nodes. From this
node, it takes at most one time-slot to let all the nodes in 𝑒
know that they are matched. It takes at most two time-slots to
have this drop 𝑒 message propagate to all two-hop neighbors
of the nodes in 𝑒. It takes one time-slot for all one-hop and
two-hop neighbors of nodes in 𝑒 to send a new matching
message. Therefore, at the 𝑡 + 4 time-slot, we can find the
next locally heaviest hyperedge. By removing the nodes in
the locally heaviest hyperedge, the number of nodes in ℋ̃ is
reduced at least by two. Therefore, by induction, the algorithm
takes at most 𝑂(∣𝒱∣) time-steps. □

If we do not consider the complexity of computing (22) as in
[23], Algorithm 1 runs in linear time in the number of edges
in the connectivity graph, i.e., ∣ℰ∣ (not ∣ℰℎ∣), which has the
same complexity as the algorithms in [23] for finding a locally
heaviest matching. This is because we use the broadcast
advantage of the wireless communication.

Theorem 3: Algorithm 1 computes a hypergraph matching
𝐻𝑀LO with at least max{ 1

𝐾 , 1
𝜅} of the weight of a maximum

weighted hypergraph matching 𝐻𝑀MW.
Proof: We show this by induction. Let 𝐻𝑀 𝑖

LO be the
hypergraph matching set after the 𝑖-th hyperedge is added,
and 𝑉 𝑖

LO be the set of matched vertices in 𝐻𝑀 𝑖
LO. The total

weight of all the hyperedges in 𝑀 is denoted as 𝑊 (𝑀). We
need to show that for all 𝑖, the following is true

𝑊 (𝐻𝑀 𝑖
LO) ≥

max

{
1

𝐾
,
1

𝜅

}
𝑊
({𝑒∣𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑖

LO ∕= ∅}
)
.

(25)

Clearly, (25) is true for 𝑖 = 0 as 𝐻𝑀 𝑖
LO = ∅. We assume

(25) is true for 𝑖 = 𝑘− 1. Let 𝑒𝑘 be the 𝑘-th hyperedge added
into 𝐻𝑀LO. By Proposition 1 and the definition of locally
heaviest hyperedge,

𝑊 (𝑒𝑘) ≥𝑊 (𝑒), ∀𝑒 ∈ ℰℎ, and 𝑒 ∩ 𝑉 𝑘−1
LO = ∅. (26)

All the hyperedges adjacent to the nodes in 𝑉 𝑘−1
LO have been

excluded according to Algorithm 1. Therefore, we have

𝑊 (𝑒𝑘) ≥ 𝑊 (𝑒), ∀𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑘−1
LO = ∅, and 𝑒 ∩ 𝑒𝑘 ∕= ∅.

(27)
Similar to the argument in Theorem 3, the size of 𝑒𝑘 is at
most min{𝐾,𝜅}. Thus, 𝑒𝑘 intersects with at most min{𝐾,𝜅}
hyperedges in 𝐻𝑀MW, which indicates

𝑊 (𝑒𝑘) ≥ max

{
1

𝐾
,
1

𝜅

}
×𝑊

({
𝑒∣𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑘−1

LO = ∅, and 𝑒 ∩ 𝑒𝑘 ∕= ∅}) .
(28)

Adding both sides of (28) and (26) with 𝑖 = 𝑘 − 1, we find
(26) is still true for 𝑖 = 𝑘. Therefore, (26) is true for any 𝑖,
and the theorem is proved. □

In Algorithm 1, some matched nodes may not contribute
much to a locally heaviest hyperedge. But when these nodes
are matched in other hyperedges, they may contribute more,

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: ON DISTRIBUTED SCHEDULING IN WIRELESS NETWORKS EXPLOITING BROADCAST AND NETWORK CODING 1229

which results in a hypergraph matching with higher weight.
Instead of choosing the hyperedge according to its weight,
we use the average hyperedge weight, i.e., 𝑤̄𝑒 = 𝑤̃𝑒/∣𝑒∣. We
modify Algorithm 1 to Algorithm 2 by simply replacing 𝑤̃𝑒

with 𝑤̄𝑒. Both the complexity and the approximation ratio of
Algorithm 2 are identical to those of Algorithm 1.

Theorem 4: Algorithm 2 computes a hypergraph matching
𝐻𝑀LO2 with at least max{ 1

𝐾 , 1
𝜅} of the weight of a maxi-

mum weighted hypergraph matching 𝐻𝑀MW.
Proof: We show this as Theorem 3 by induction. Let

𝐻𝑀 𝑖
LO2 be the hypergraph matching set after the 𝑖-th hy-

peredge is added, and 𝑉 𝑖
LO2 be the set of matched vertices

in 𝐻𝑀 𝑖
LO2. The total weight of all the hyperedges in 𝑀

is denoted as 𝑊 (𝑀). We need to show that for all 𝑖, the
following is true

𝑊 (𝐻𝑀 𝑖
LO2) ≥

max

{
1

𝐾
,
1

𝜅

}
𝑊
({𝑒∣𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑖

LO2 ∕= ∅}
)
.

(29)

Clearly, (29) is true for 𝑖 = 0 as 𝐻𝑀 𝑖
LO2 = ∅. We assume

(29) is true for 𝑖 = 𝑘− 1. Let 𝑒𝑘 be the 𝑘-th hyperedge added
into 𝐻𝑀LO2. By Proposition 1 and the definition of locally
heaviest hyperedge, we have

𝑤̄𝑒𝑘 =
𝑊 (𝑒𝑘)

∣𝑒𝑘∣ ≥
𝑊 (𝑒)

∣𝑒∣ = 𝑤̄𝑒, ∀𝑒 ∈ ℰℎ, and 𝑒 ∩ 𝑉 𝑘−1
LO2 = ∅.

(30)
Therefore, we have

𝑊 (𝑒𝑘)

∣𝑒𝑘∣ ≥ 𝑊 (𝑒)

∣𝑒∣ , ∀𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑘−1
LO = ∅, and 𝑒 ∩ 𝑒𝑘 ∕= ∅.

(31)
We then have∑

{𝑒∈𝐻𝑀MW, 𝑒∩𝑉
𝑘−1
LO

=∅,
and 𝑒∩𝑒𝑘 ∕=∅}

𝑊 (𝑒) =
∑

{𝑒∈𝐻𝑀MW , 𝑒∩𝑉
𝑘−1
LO

=∅,
and 𝑒∩𝑒𝑘 ∕=∅}

∣𝑒∣𝑊 (𝑒)

∣𝑒∣

≤
∑

{𝑒∈𝐻𝑀MW , 𝑒∩𝑉
𝑘−1
LO

=∅,
and 𝑒∩𝑒𝑘 ∕=∅}

∣𝑒∣𝑊 (𝑒𝑘)

∣𝑒𝑘∣ ≤ min{𝐾,𝜅}𝑊 (𝑒𝑘).

(32)

Thus, (32) gives

𝑊 (𝑒𝑘) ≥ max

{
1

𝐾
,
1

𝜅

}
×𝑊

({
𝑒∣𝑒 ∈ 𝐻𝑀MW, 𝑒 ∩ 𝑉 𝑘−1

LO2 = ∅, and 𝑒 ∩ 𝑒𝑘 ∕= ∅}) .
(33)

Adding both sides of (33) and (29) with 𝑖 = 𝑘 − 1, we find
(29) is still true for 𝑖 = 𝑘. Therefore, (29) is true for any 𝑖,
and the theorem is proved. □

Theorem 5: Both Algorithm 1 and Algorithm 2 stabilize the
system for any rate vector 𝑥⃗ such that 𝑥⃗+ 𝜖 ∈ max{ 1

𝐾 , 1
𝜅}Λ

for an arbitrarily small 𝜖 ≻ 0.
Proof: We only show the stability of Algorithm 1. Algo-

rithm 2 can be shown similarly. Let 𝑥⃗ be any rate vector such
that ⃗̌𝑥+min{𝐾,𝜅}𝜖 ∈ Λ. Therefore, there exist flow variables
𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 , 𝑓𝑚𝑖𝐽 and rate variable 𝑟𝑖,𝐽 such that the constraints in (7)

are all satisfied with 𝑥𝑚𝑠 = 𝑥𝑚𝑠+𝜖 for an arbitrarily small 𝜖 ≻
0. Let ⃗̃𝑥 = max{ 1

𝐾 , 1
𝜅}⃗̌𝑥, 𝑔𝑚𝑠𝑡

𝑖𝐽𝑗 = max{ 1
𝐾 , 1

𝜅}𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 , 𝑓𝑚𝑖𝐽 =

max{ 1
𝐾 , 1

𝜅}𝑓𝑚𝑖𝐽 and 𝑟𝑖,𝐽 = max{ 1
𝐾 , 1

𝜅}𝑟𝑖,𝐽 . Let 𝑄𝑚𝑠𝑡
𝑖 (𝜏) be

the amount of session 𝑚 data queued at node 𝑖 for source 𝑠
and sink 𝑡 at time 𝜏 , and 𝜇𝑚𝑠𝑡

𝑖𝐽𝑗 be the rate offered to sink 𝑡 of
session 𝑚 from source 𝑠 for destination 𝑗 over link (𝑖, 𝐽).
Define the Lyapunov function 𝐿(𝑄) =

∑
𝑖,𝑚,𝑠,𝑡 (𝑄

𝑚𝑠𝑡
𝑖)

2.
Suppose the input rates are 𝑥̃𝑚𝑠. By following the same line
of proof as in [7], [20], we obtain

𝐸
{
𝐿(𝑄(𝜏 + 𝑇))− 𝐿(𝑄(𝜏))∣𝑄(𝜏)

}
≤2𝑇 2𝐵∣𝒩 ∣ − 2𝑇

∑
𝑖,𝑚,𝑠,𝑡

𝑄𝑚𝑠𝑡
𝑖 (𝜏)

×
[
𝐸

⎧⎨
⎩

∑
{𝐽∣(𝑖,𝐽)∈𝒜}

∑
𝑗∈𝐽

𝜇𝑚𝑠𝑡
𝑖𝐽𝑗 −

∑
𝑗∈𝒩

∑
{𝑖∣(𝑗,𝐼)∈𝒜, 𝑖∈𝐼}

𝜇𝑚𝑠𝑡
𝑗𝐼𝑖

∣∣∣∣∣∣𝑄(𝜏)

⎫⎬
⎭

− 𝜎̃𝑚𝑠
𝑖

]

(𝑎)
=2𝑇 2𝐵∣𝒩 ∣−2𝑇

∑
(𝑖,𝐽),𝑚,𝑡

∑
𝑠,𝑗∈𝐽

𝐸
{
𝜇𝑚𝑠𝑡
𝑖𝐽𝑗 ∣𝑄(𝜏)

}(
𝑄𝑚𝑠𝑡
𝑖 −𝑄𝑚𝑠𝑡

𝑗

)
+ 2𝑇

∑
(𝑖,𝐽),𝑚,𝑡

∑
𝑠,𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

(
𝑄𝑚𝑠𝑡
𝑖 −𝑄𝑚𝑠𝑡

𝑗

)− 2𝑇
∑
𝑚

∣𝒮𝑚∣𝜖,

(34)

where 𝐵 is a constant defined in [7]. Note that 𝑄𝑚𝑠𝑡
𝑖 is

a scaled version of 𝑞𝑚𝑠𝑡
𝑖 . Thus, the second term in (𝑎) is

equivalent to the objective function in the session scheduling
problem (9). Let 𝑊𝑀𝑊 and 𝑊𝐿𝑂 be the values of the second
term in (𝑎) with maximum weighted hypergraph matching
and Algorithm 1, respectively. From Theorem 3, we have
𝑊𝐿𝑂 ≥ max{ 1

𝐾 , 1
𝜅}𝑊𝑀𝑊 . On the other hand, as maximum

weighted hypergraph matching solves (9) optimally, we have

𝑊𝑀𝑊 ≥
∑

(𝑖,𝐽),𝑚,𝑡

∑
𝑠,𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

(
𝑄𝑚𝑠𝑡
𝑖 −𝑄𝑚𝑠𝑡

𝑗

)
, (35)

where 𝑔𝑚𝑠𝑡
𝑖𝐽𝑗 is also a feasible solution to (9). Multiply both

sides of (35) by max{ 1
𝐾 , 1

𝜅}, we obtain

𝑊𝐿𝑂 ≥
∑

(𝑖,𝐽),𝑚,𝑡

∑
𝑠,𝑗∈𝐽

𝑔𝑚𝑠𝑡
𝑖𝐽𝑗

(
𝑄𝑚𝑠𝑡
𝑖 −𝑄𝑚𝑠𝑡

𝑗

)
. (36)

Applying the Lyapunov drift lemma of [10] shows that
Algorithm 1 stabilizes the system with rate vector ⃗̃𝑥 with
⃗̃𝑥+ 𝜖 ∈ max{ 1

𝐾 , 1
𝜅}Λ. □

The complexity of algorithms 1 and 2 is also due to that we
need to propagate drop 𝑒 message to all two-hop neighbors
of the nodes in 𝑒. If we assume that any node can receive
drop 𝑒 message from its two-hop neighbors, the complexity
in Theorem 2 can be decreased by a factor of 𝐾 .

C. Randomized Algorithm

In this subsection, we consider randomized algorithms to
find a maximal hypergraph matching.

Definition 2 (maximal hypergraph matching): A hyper-
graph matching 𝐻𝑀 is maximal if for each hyperedge 𝑒 ∈ ℋ̃,
at least one of the following conditions is satisfied:

∙ 𝑒 ∩𝐻𝑀 ∕= ∅, i.e., 𝑒 has non-empty intersection with at
least one hyperedge in 𝐻𝑀 .

∙ 𝑤̃𝑒 = 0, i.e., the number of packets waiting to be
transmitted over the hyperedge is zero.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1230 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

DRHMA: (𝒢′)
for each node 𝑖 ∈ 𝒱 do Set Γ𝑖 = 𝑁(𝑖);1
while ∃𝑖, Γ𝑖 ∕= ∅ do2

for each node 𝑖 ∈ 𝒱 and Γ𝑖 ∕= ∅ do3
Let 𝑝 be a random number generated according to4
the uniform distribution on [0, 1].
if 𝑝 < 1

∣Γ𝑖∣ then5

For each node 𝑗 ∈ Γ𝑖, with probability 1
2

add6
𝑗 into set 𝑆𝑖;

end7
if 𝑆𝑖 ∕= ∅ then8

Node 𝑖 decides to transmit and it broadcasts9
matching messages to all nodes in 𝑆𝑖;
Set 𝐸𝑖 = ∅;10

end11
end12
for each node 𝑖 ∈ 𝒱 and node 𝑖 does not transmit do13

if node 𝑖 receives matching messages from14
several neighbors then

Node 𝑖 chooses one of them uniformly at15
random, say 𝑗, and sets Γ𝑖 = ∅;
Node 𝑖 broadcasts a 𝑖 matched 𝑗 message;16

end17
end18
while ∃𝑘, 𝑘 receives a 𝑖 matched 𝑗 message do19

if 𝑘 = 𝑗 then 𝐸𝑘 = 𝐸𝑘 ∪ {𝑖};20
else Γ𝑘 = Γ𝑘 − {𝑖};21

end22
for each node 𝑖 ∈ 𝒱 , and if 𝑖 decides to transmit do23

if 𝐸𝑖 ∕= ∅ then 𝐸𝑖 is added into the hypergraph24
matching, and set Γ𝑖 = ∅;

end25
end26

Algorithm 3: Distributed randomized hypergraph
matching algorithm.

A distributed randomized hypergraph matching algorithm
(DRHMA) is given in Algorithm 3. The input of Algorithm 3
is a graph 𝒢′, which is obtained after deleting all the directed
edges (𝑖, 𝑗) with max

𝑚,𝑠,𝑡

[
𝑞𝑚𝑠𝑡
𝑖 − 𝑞𝑚𝑠𝑡

𝑗

]+
= 0 from 𝒢. This

guarantees that all the hyperedges have positive weights. In
Algorithm 3, the set Γ𝑖 keeps track of the set of neighbors
of node 𝑖 that are still not matched, which is initialized to
be all its neighbors in 𝒢 (line 1). In each time slot, each
unmatched node 𝑖 attempts to transmit with probability 1

∣Γ𝑖∣
(line 5). This choice of probability value is similar to that in
[24] for the maximal independent sets problem. If 𝑖 attempts
to transmit, for each neighbor 𝑗, it sends a matching request
to 𝑗 with probability 1/2 (line 6). If 𝑖 sends request to at least
one neighbor, i.e., 𝑆𝑖 ∕= ∅, it decides to transmit (line 9). 𝐸𝑖

denotes the hyperedge to be added into the matching initialized
by 𝑖 (line 10). If node 𝑖 does not transmit and it receives
several matching requests from its neighbors, it chooses one
of them uniformly at random, say 𝑗, sets Γ𝑖 = ∅ (𝑖 is matched),
and broadcasts an “𝑖 matched 𝑗" message (lines 13-18). Upon
receiving an “𝑖 matched 𝑗" message, node 𝑘 checks whether
𝑘 = 𝑗. If 𝑘 = 𝑗, this indicates that 𝑖 got the matching request
from 𝑘 and it would like to join in the hyperedge initialized
by 𝑘. Thus, 𝑘 sets 𝐸𝑘 = 𝐸𝑘 ∪ {𝑖} (line 20). If 𝑘 ∕= 𝑗, this
indicates that 𝑖 got matched to 𝑗 and 𝑘 should delete 𝑖 from
Γ𝑘 (line 21). For each node 𝑖 that decides to transmit, if finally
𝐸𝑖 ∕= ∅, 𝐸𝑖 is added into the hypergraph matching, and we
set Γ𝑖 = ∅ (𝑖 is matched). Algorithm 3 returns a maximal
hypergraph matching.

Theorem 6: The expected running time of Algorithm 3 is
𝑂 (log ∣ℰ∣).

Proof: We first give some definitions. A node 𝑣 ∈ 𝒱 is bad
if more than 2/3 of the neighbors of 𝑣 are of higher degree
than 𝑣. A node is good if it is not bad. An edge 𝑒 ∈ ℰ is
bad if both of its endpoints are bad; otherwise the edge is
good. To show the expected running time of Algorithm 3, we
need to show the expected number executions of the while
loop in Algorithm 3. Let 𝒢𝑖 = (𝒱𝑖, ℰ𝑖) denote the graph after
𝑖 executions of the while loop, where we only consider those
nodes with Γ𝑣 ∕= ∅ in 𝒱𝑖.

Let 𝑣 be a good node of degree 𝑑 = ∣Γ𝑣∣ > 0 in 𝒢𝑖
and the neighbors of 𝑣 be 𝑢1, . . . , 𝑢𝑑. The vertex 𝑣 has
𝑘 ≥ ⌈ 13𝑑⌉ neighbors such that 𝑑𝑗 = ∣Γ𝑢𝑗 ∣ ≤ 𝑑, 𝑗 = 1, . . . , 𝑘.
According to Algorithm 3, the probability that node 𝑢𝑗 sends
a matching request to 𝑣 is 1/(2𝑑𝑗) ≥ 1/(2𝑑). The probability
that 𝑢1, . . . , 𝑢𝑘 do not broadcast a matching message to 𝑣 is

𝑘∏
𝑗=1

(
1− 1

2𝑑𝑗

)
≤
(
1− 1

2𝑑

)𝑑/3

< 𝑒−1/6. (37)

Therefore, the probability that 𝑣 receives at least one matching
message from its neighbors is greater than 1−𝑒−1/6 > 0. Note
that ignoring the matching messages from the neighbors with
degree greater than 𝑑 only decreases this probability. Node 𝑣
responds to received matching messages only when it decides
not to transmit, whose probability is 1 − 1

𝑑 + 1
𝑑

1
2𝑑

. It is not
hard to show that 1 − 1

𝑑 + 1
𝑑

1
2𝑑

is an increasing function in
𝑑 when 𝑑 ≥ 1. Therefore, the probability that node 𝑣 decides
not to transmit is at least 1

2 . Finally, node 𝑣 is included in the
hypergraph matching with probability at least 1

2 (1 − 𝑒−1/6).
The edges incident to 𝑣 are either included in the hypergraph
matching or deleted from ℰ𝑖. Note that every good edge is
incident with at least one good node. According to Lemma
12.6 in [24], at least half the edges in ℰ𝑖 are good. Thus,
the expected number of edges removed from ℰ𝑖 is at least
1
4 (1 − 𝑒−1/6)∣ℰ𝑖∣ or

𝐸(∣ℰ𝑖∣∣ℰ𝑖−1) ≤ ∣ℰ𝑖−1∣(1−𝛼)⇒ 𝐸(∣ℰ𝑖∣) ≤ ∣ℰ∣(1−𝛼)𝑖, (38)

where 𝛼 = 1
4 (1 − 𝑒−1/6). Therefore, the expected number

executions of the while loop in Algorithm 3 is 𝑂 (log ∣ℰ∣).
Each while loop requires 2 time-slots and the expected running
time of Algorithm 3 is also 𝑂 (log ∣ℰ∣). □

Compared with Algorithm 1, Algorithm 3 not only reduces
the time complexity from 𝑂 (∣ℰ∣) to 𝑂 (log ∣ℰ∣) but also it
does not need to compute the weight of each hyperedge. If
we assume that in each session all sinks are only one hop
away from the source, by using similar approach as in [25],
we can show the following theorem on the performance of the
randomized algorithm.

Theorem 7: Algorithm 3 stabilizes the system for any rate
vector within 1

𝐾Λ if in each session all sinks are only one
hop away from the source.

Algorithm 3 can be readily turned into a constant-time
algorithm by executing the while loop in Algorithm 3 only
𝑀 times. We call this algorithm Algorithm 4.

Theorem 8: Algorithm 4 with 𝑀 time-slots stabilizes the
system for any rate vector within 1−(1−𝛼)𝑀

𝐾 Λ.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: ON DISTRIBUTED SCHEDULING IN WIRELESS NETWORKS EXPLOITING BROADCAST AND NETWORK CODING 1231

As maximal matching plays an important role in many
scheduling algorithms, see, e.g., [18], [19], we expect that
Algorithm 3 can also serve as a basis for other scheduling
algorithms for our problem. Note that the approach in [19]
cannot be trivially adopted as the connected components in the
union of the new hypergraph matching and the old hypergraph
matching may be very large. Also, the connected components
are not simply cycles or paths as in [19].

D. Hybrid Algorithm

Algorithms 1 and 2 perform well but with high complexity,
while Algorithms 3 and 4 have low complexity but with worse
performance guarantee as they do not take into account the
weight of hyperedge. We next consider combining these two
types of algorithms to take advantage of both.

In the hybrid algorithm, we first run Algorithm 1 with 𝑇𝑡ℎ
time slots. To speed up Algorithm 1, we execute the while loop
of Algorithm 3 once at the end of 𝑇𝑡ℎ time slots. We then
continue running Algorithm 1. The process continues until
there does not exist a node 𝑖 such that Γ𝑖 ∕= ∅. Clearly, if
𝑇𝑡ℎ = 0, the hybrid algorithm reduces to Algorithm 3, while
if 𝑇𝑡ℎ = ∞, the hybrid algorithm reduces to Algorithm 1.
𝑇𝑡ℎ is used to control the tradeoff between complexity and
performance. Similarly, Algorithm 2 can also be combined
with Algorithm 3. We call this algorithm Algorithm 5. In
Algorithm 1, each node needs to wait until all its neighbors
are included in some local heaviest hyperarc or its neighbors
response to the matching request. By running Algorithm 3,
each node can directly construct a hyperarc with its neighbors
without waiting for its neighbors’ decision on the locally
heaviest hyperarc. Thus, the hybrid algorithm can accelerate
Algorithm 1. The running time of Algorithm 5 is between
Algorithm 1 and Algorithm 3. Algorithm 5 also returns
a maximal hypergraph matching, and thus Theorem 7 still
applies.

Alternatively, we can apply the algorithms in [23] to find a
maximum weighted matching first and then add the unmatched
nodes into the hypergraph matching randomly.

Remark: Note that in the previous discussion of the
scheduling algorithms, we do not consider possible collision
of coordinating/signalling messages in carrying out these algo-
rithms. This issue is particularly relevant when we come to the
implementation of the scheduling algorithm in real systems.
We usually assume to have a separate control channel to do
message passing, or divide a time slot into control mini-slots
and data slot and message passing happens in control slots.
There are basically two ways to coordinate message passing
and resolve collision. The first one is to have a “reservation”
protocol to pre-specify who to talk and in what order. The
second and popular one is to use random access scheme
such as Aloha to coordinate message passing over the control
channel or mini-slots. We will not elaborate on this, and leave
it as an issue to consider in the practical implementation in
real systems.

VI. SIMULATION RESULTS

In this section, we provide numerical examples to comple-
ment the analysis in previous sections. We assume that node 𝑖’s

0 100 200 300 400 500 600 700 800 900 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Iterations

R
at

e
of

 S
ou

rc
e

s 1

Maximum Weighted Hypergraph Matching
Hypergraph Matching Algorithm 1
Hypergraph Matching Algorithm 2
Maximum Weighted Graph Matching
Local Greedy Graph Matching
Maximum Weighted Hypergraph Matching w/o NC

Fig. 2. The evolution of source 𝑠1’s rate versus the number of iterations with
fixed stepsize 𝛾 = 0.01 for the network in Fig. 1, where our cross-layer design
with maximum weighted hypergraph matching, Algorithm 1 and Algorithm
2, and the algorithm in [16] with maximum weighted graph matching and
local greedy matching are compared.

signal power is attenuated by a factor of 𝜌−2
𝑖,𝑗 when the signal

is received by node 𝑗, where 𝜌𝑖,𝑗 is the Euclidean distance
between 𝑖 and 𝑗. All nodes have unit signal power and identical
noise power 0.02. We assume the use of orthogonal spreading
sequences and white Gaussian noise channels and compute
𝑟𝑖𝐽 using

𝑟𝑖𝐽 (𝑃 , 𝑆) = log

(
1 + min

𝑗∈𝐽
SNR𝑖,𝑗

)
, (39)

where SNR𝑖,𝑗 = 𝑃 tot
𝑖

∣ℎ𝑖,𝑗 ∣2
𝜎2
𝑗

is the effective SNR from node 𝑖

to node 𝑗, 𝜎2
𝑗 is additive white Gaussian noise power at node

𝑗, and ℎ𝑖,𝑗 is the channel fading coefficient from node 𝑖 to
node 𝑗. We have neglected the spreading factor in (39). Two
nodes 𝑖 and 𝑗 are considered to be connected if and only if the
SNR is at least 1 over link (𝑖, 𝑗) (i.e., SNR threshold 𝜆 = 1)
or the distance between 𝑖 and 𝑗 is less than 7.07 meters. We
choose log utility function log(𝑥) for each source in all the
experiments.

A. Wireless Butterfly Network

We first consider the wireless butterfly network in Fig. 1
with two sources 𝑠1, 𝑠2, two sinks 𝑡1, 𝑡2 and one relay node
𝑟. Each source multicasts data to both sinks. We thus only
consider a single multicast session. We compare our cross-
layer design with different scheduling algorithms in Section
V to that in [1] with hypergraph matching but without network
coding, that in [16] with maximum weighted matching algo-
rithm in [26] and local greedy matching algorithm in [23].
As the network is small, we also show the performance of
our cross-layer design with maximum weighted hypergraph
matching by formulating the matching problem as an integer
programming and solving it exactly.

Fig. 2 shows the evolution of source 𝑠1’s rate versus the
number of iterations with fixed stepsize 𝛾 = 0.01, where
our cross-layer design with maximum weighted hypergraph
matching, Algorithm 1 and Algorithm 2, the algorithm in [1]

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1232 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

0 100 200 300 400 500 600 700 800 900 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Iterations

R
at

e
of

 S
ou

rc
e

s 1

Maximum Weighted Hypergraph Matching
Hypergraph Matching Algorithm 3
Hypergraph Matching Algorithm 4, M=2
Hypergraph Matching Algorithm 4, M=3
Hypergraph Matching Algorithm 5, T

th
=1

Maximum Weighted Graph Matching

Fig. 3. The evolution of source 𝑠1’s rate versus the number of iterations
with fixed stepsize 𝛾 = 0.01 for the network in Fig. 1, where our cross-
layer design with maximum weighted hypergraph matching, Algorithm 3,
Algorithm 4, and Algorithm 5, and the algorithm in [16] with maximum
weighted graph matching.

without network coding, the algorithm in [16] with maximum
weighted graph matching and local greedy matching are
compared. We observe that the rates of all algorithms converge
to within a small neighborhood of the steady values after 500
steps as we have chosen a constant stepsize. Fig. 3 shows the
evolution of source 𝑠1’s rate versus the number of iterations
with fixed stepsize 𝛾 = 0.01, where our cross-layer design
with maximum weighted hypergraph matching, Algorithm 3,
Algorithm 4, and Algorithm 5, and the algorithm in [16] with
maximum weighted graph matching are compared. Compared
with Fig. 2, the rates of Algorithm 3, Algorithm 4, and
Algorithm 5 oscillate more severely as all the algorithms use
randomized mechanism, which only guarantees the queue size
at each node is finite all the time. We quantify the performance
of different algorithms in Table I, where HMopt denotes the
maximum weighted hypergraph matching, HMalg𝑖 denotes
Algorithm 𝑖 in Section V, HMalg4,𝑚 denotes Algorithm 4 with
𝑚 time-slots, HMalg5,𝑡 denotes Algorithm 5 with 𝑇𝑡ℎ = 𝑡,
HMw/onc denotes the hypergraph matching algorithm without
network coding in [1], Mopt denotes maximum weighted graph
matching, and Mlgd denotes local greedy graph matching. The
first row shows the average rate by averaging the rate of
different algorithms in Figs. 2 and 3 from 700th step to 1000th
step. Row two shows rate gains of different algorithms over
the maximum weighted graph matching.

We can see that our design with broadcast advantage and
HMopt has about 17% gain over that without using broadcast
advantage. Even with Algorithm 1, about 13% gain can still
be achieved. The loss by using Algorithm 3, the randomized
algorithm, is only 3.08% gain. A 11.81% gain can be realized
by Algorithm 5. The third row compares expected ratio be-
tween the weight of different algorithms and that of HMopt. It
can be seen that HMalg2 has a greater ratio than both Mopt and
Mlgd but they have the same throughput. This indicates that an
algorithm that can return a heavier weight does not necessary
achieve a higher throughput. Without network coding, the

throughput gain over Mlgd is small, which is only 3.43%.
Row four shows the average number of required time-slots
by different algorithms. Surprisingly, both HMalg1 and HMalg2

require less time-slots than Mlgd does, but the former two
have higher rates than the latter. This is because the broadcast
advantage is exploited during scheduling, where one matching
or drop message can reach several nodes. Also note that each
hyperedge contains several nodes, which means that nodes
are added faster into the hypergraph matching than graph
matching. HMalg5,1 has a less number of time-slots than Mlgd

but with a rate gain.

B. Random Networks

We next show the results on random networks. We assume
𝑁 nodes are randomly and uniformly placed on a 20 meter by
20 meter square. Both source and sinks are randomly chosen
from the 10 nodes. We consider only a single multicast session
with one source and various number of sinks.

Tables II-IV show the simulation results with 2, 4, and
6 sinks and 𝑁 = 10 nodes in the network, and table V
shows the simulation results with 3 sinks and 𝑁 = 15
nodes in the network. 1000 feasible network realizations are
generated. As the number of hyperedges becomes large as
the size of network increases, it is hard to find the maxi-
mum weighted hypergraph matching by solving the integer
programming directly. For comparison purposes, we take a
suboptimal approach by computing the linear programming
relaxation of the integer program first. In the next phase, we
only consider the hyperedges with nonzero solution by the
linear programming and solve the integer program with only
those hyperedges. This method is denoted as HMsub. From the
tables, we can see that even with this suboptimal solution we
can achieve a rate gain from 9.45% to 23.47%. Gain increases
as the number of sinks increases. The same observation
holds for all the other algorithms. On average, Algorithm 1
performs better than Algorithm 2. Algorithm 5 performs close
to Algorithm 1 but with reduced complexity. Algorithm 3 has
the worst performance but with the lowest complexity among
all our proposed algorithms and a comparable throughput as
the matching solution. The average number of edges in the
connectivity graph is 21.52. The number of time-slots required
by Algorithms 1, 2 and 5 is on the order of this number.
The locally optimal matching algorithm performs close to
the optimal matching algorithm, and has lower complexity
than the proposed hypergraph matching algorithms. However,
hypergraph matching provides a throughput gain that increases
with the number of sinks. Our results suggest that it is more
advantageous to use hypergraph matching when the multicast
group is large.

VII. CONCLUSION

We have studied the cross-layer optimization for multicas-
ting in wireless networks with wireless broadcast advantage.
By designing distributed approximation algorithms for broad-
cast link scheduling, we gave fully distributed algorithms for
joint rate control, network coding and scheduling. Numerical
results have shown promising throughput gain by using the
proposed algorithms, and surprisingly, in some cases with

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

CUI et al.: ON DISTRIBUTED SCHEDULING IN WIRELESS NETWORKS EXPLOITING BROADCAST AND NETWORK CODING 1233

TABLE I
COMPARISON OF DIFFERENT ALGORITHMS IN THE WIRELESS BUTTERFLY NETWORK

HMopt HMalg1 HMalg2 HMalg3 HMalg4,2 HMalg4,3 HMalg5,1 HMw/onc Mopt Mlgd
Average rate (bits/s) 0.8831 0.8486 0.7972 0.7327 0.6411 0.7062 0.8453 0.7819 0.7594 0.7560
Rate gain over Mlgd 0.1681 0.1225 0.0545 -0.0308 -0.1520 -0.0659 0.1181 0.0343 0.0045 0
Average 𝑤/𝑤HMopt 1 0.9409 0.8928 0.8765 0.8829 0.8690 0.9250 0.9056 0.8666 0.8578
Average time-slots - 4 3.9920 4.5500 3.3760 3.8532 5.0300 - - 5

TABLE II
COMPARISON OF DIFFERENT ALGORITHMS IN RANDOM NETWORKS WITH 10 NODES, 1 SOURCE AND 2 SINKS

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd
Rate gain over Mlgd 9.45% 5.74% 4.32% -6.46% 5.44% 2.30% -
Average 𝑤/𝑤HMsub 1 0.9749 0.9593 0.8584 0.9714 0.9623 0.9593
Average time-slots - 13.38 13.46 5.88 9.63 - 6.15

TABLE III
COMPARISON OF DIFFERENT ALGORITHMS IN RANDOM NETWORKS WITH 10 NODES, 1 SOURCE AND 4 SINKS

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd
Rate gain over Mlgd 15.13% 8.78% 4.99% -1.42% 8.23% 4.49% -
Average 𝑤/𝑤HMsub 1 0.9737 0.9697 0.9310 0.9729 0.9707 0.9697
Average time-slots - 10.98 11.83 5.90 9.33 - 6.26

TABLE IV
COMPARISON OF DIFFERENT ALGORITHMS IN RANDOM NETWORKS WITH 10 NODES, 1 SOURCE AND 6 SINKS

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd
Rate gain over Mlgd 23.47% 13.05% 5.50% 1.18% 12.15% 6.47% -
Average 𝑤/𝑤HMsub 1 0.9787 0.9776 0.9459 0.9785 0.9760 0.9776
Average time-slots - 10.40 11.95 5.91 9.10 - 6.57

even lower complexity than the cross-layer design without
broadcast advantage. Our results suggest that broadcast link
scheduling can be a promising avenue of further research.

REFERENCES

[1] T. Cui, L. Chen, and T. Ho, “Cross-layer design in wireless networks
by using broadcast advantage," Caltech, Tech. Rep., Mar. 2007.

[2] L. Chen, S. H. Low, and J. C. Doyle, “Joint congestion control and
media access control design for wireless ad hoc networks," in Proc.
IEEE Infocom, Mar. 2005.

[3] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer congestion control in wireless networks," IEEE/ACM Trans. Net-
working, vol. 14, no. 2, pp. 302-315, Apr. 2006.

[4] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks," in Proc. IEEE Infocom, 2005.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition," in Proc. IEEE, Jan. 2007.

[6] J. Wieselthier, G. Nguyen, and A. Ephremides, “On the construction of
energy-efficient broadcast and multicast trees in wireless networks," in
Proc. Infocom, Mar. 2000, pp. 585-594.

[7] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with
intra-session network coding," in Proc. Allerton Conf. Commun., Contr.
Comput., Sept. 2005.

[8] B. Hajek and G. Sasaki, “Link scheduling in polynomial time," IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 910-917, Sept. 1988.

[9] L. Lovasz and M. Plummer, Matching Theory. North Holland, 1986.
[10] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation

and routing for time-varying wireless networks," IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89-103, Jan. 2005.

[11] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion
control, routing and scheduling design in ad hoc wireless networks," in
Proc. IEEE Infocom, Apr. 2006.

[12] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow," IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-
1216, July 2000.

[13] D. S. Lun, M. Médard, and R. Koetter, “Efficient operation of wireless
packet networks using network coding," in Proc. International Workshop
Convergent Technol., June 2005.

[14] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding," in Proc. Allerton Conf. Commun., Control, Computing,
Sept. 2003.

[15] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks," IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2608-2623, June
2006.

[16] L. Chen, T. Ho, S. H. Low, M. Chiang, and J. C. Doyle, “Optimization
based rate control for multicast with network coding," in Proc. IEEE
Infocom, 2007.

[17] Y. E. Sagduyu and A. Ephremides, “Crosslayer design for distributed
MAC and network coding in wireless ad hoc networks," in Proc. ISIT,
Sept. 2005, pp. 1863-1867.

[18] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radionetworks and input queued switches," in Proc. Infocom, Mar.
1998, pp. 533-539.

[19] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping," ACM SIGMETRICS Perf. Evaluation
Rev., vol. 34, no. 1, pp. 27-38, June 2006.

[20] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A
random linear network coding approach to multicast," IEEE Trans. Inf.
Theory, vol. 52, no. 10, pp. 4413-4430, Oct. 2006.

[21] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks," IEEE Trans. Automat. Contr., vol. 37, no. 12,
pp. 1936-1948, Dec. 1992.

[22] N. Z. Shor, Monimization Methods for Non-Differentiable Functions.
Springer-Verlag, 1985.

[23] R. Preis, “Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs," in Proc. Symp. Theoretical
Aspects Computer Science (STACS), 1999, pp. 259-269.

[24] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[25] P. Chaporkar, K. Kar, and S. Sarkar, “Fairness and throughput guarantees
with maximal scheduling in multi-hop wireless networks," in Proc.
Allerton Conf. Commun., Contr. Comput., Sept. 2005.

[26] H. N. Gabow, “Data structures for weighted matching and nearest
common ancestors with linking," in Proc. ACM-SIAM Symp. Discrete
Algorithms, 1990, pp. 434-443.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

1234 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

TABLE V
COMPARISON OF DIFFERENT ALGORITHMS IN RANDOM NETWORKS WITH 15 NODES, 1 SOURCE AND 3 SINKS

HMsub HMalg1 HMalg2 HMalg3 HMalg5,1 Mopt Mlgd
Rate gain over Mlgd 13.07% 7.79% 3.89% 1.39% 6.45% 4.73% -
Average 𝑤/𝑤HMsub 1 0.9813 0.9809 0.9769 0.9544 0.9806 0.9689
Average time-slots - 15.75 15.41 6.99 11.73 - 7.32

Tao Cui (S’04) received the M.Sc. degree in the
Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada, in
2005, and the M.S. degree from the Department of
Electrical Engineering, California Institute of Tech-
nology, Pasadena, USA, in 2006. He is currently
working toward the Ph.D. degree at the Department
of Electrical Engineering, California Institute of
Technology, Pasadena. His research interests are in
the interactions between networking theory, commu-
nication theory, and information theory.

Lijun Chen (M’05) received his B.S. from Univer-
sity of Science and Technology of China, M.S. from
Institute of Theoretical Physics, Chinese Academy
of Sciences and from University of Maryland at Col-
lege Park, and Ph.D. from Caltech. He is a Research
Scientist in the Control and Dynamical Systems
Department at Caltech. His current research interests
are in communication networks, optimization, game
theory and their engineering application.

Tracey Ho (M’06) is an Assistant Professor in
Electrical Engineering and Computer Science at the
California Institute of Technology. She received a
Ph.D. (2004) and B.S. and M.Eng degrees (1999)
in Electrical Engineering and Computer Science
(EECS) from the Massachusetts Institute of Tech-
nology (MIT). Her primary research interests are in
information theory, network coding and communi-
cation networks.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 03,2010 at 17:46:28 UTC from IEEE Xplore. Restrictions apply.

