
The Astrophysical Journal, 715:724–735, 2010 June 1 doi:10.1088/0004-637X/715/2/724
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A CLOSE COMPANION SEARCH AROUND L DWARFS USING APERTURE MASKING INTERFEROMETRY
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ABSTRACT

We present a close companion search around 16 known early L dwarfs using aperture masking interferom-
etry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the de-
tection of close binaries, corresponding to projected physical separations of 0.6–10.0 AU for the targets of
our survey. This survey achieved median contrast limits of ΔK ∼ 2.3 for separations between 1.2λ/D–4λ/D
and ΔK ∼ 1.4 at 2

3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%–98%).
Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries
contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and
photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hub-
ble Space Telescope as part of companion searches. We use the increased resolution of aperture masking
to search for close or dim companions that would be obscured by full aperture imaging, finding two can-
didate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several
new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored.
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1. INTRODUCTION

The mass determinations of stars through binary studies have
provided numerous mass–luminosity benchmarks for the testing
and calibration of stellar models. Such studies have only recently
begun for the regime of brown dwarfs.

The empirical calibration of brown dwarf models is gener-
ally made more difficult by the added dependence on age in the
mass–luminosity relationship. For example, an object spectro-
scopically classified as a late-M dwarf may be a young brown
dwarf or an old star just above the hydrogen burning limit.
This broadens the range of potential physical properties (mass,
age, composition) that generate the same observable spectrum.
Conversely, photometry can only very generally reveal the ob-
jects’ physical properties. Measurements of brown dwarf masses
through the tracking of binary orbits provide the strongest con-
straints on stellar models, “mass benchmarks” that reduce the
degeneracy of photometric studies even for targets with un-
known ages (Liu et al. 2008). Mass measurements of brown
dwarfs by Konopacky et al. (2010) show systematic discrepan-
cies between models and measurements; late-M through mid-L
systems tended to be more massive than models predict, while
one T dwarf system was less massive than its model prediction.
This collection of mass benchmarks grows even more impor-
tant as brown dwarf models are extended to infer the masses of
directly imaged planets, such as system HR 8799 (Marois et al.
2008).

Binary surveys have also begun to turn up interesting sta-
tistical results that may suggest that the brown dwarf binary
formation mechanism is different than that for solar type bina-
ries (see Burgasser et al. 2007 for a summary of results from
low-mass surveys, including many results presented in this sec-
tion). Few surveys, however, have produced results for very
low mass binaries, especially those with very tight separations
(�3.0 AU). This regime of short-period binaries is particularly
challenging to achieve with ground-based direct imaging.

While the companion fraction of brown dwarfs is proposed
to be low (≈15%) and peaked within a narrow separation
range, 3–10 AU (Burgasser et al. 2008), little conclusive results
are known for separations less than 3 AU despite preliminary
evidence that many additional companions are likely to reside
at very close distances (Jeffries & Maxted 2005; Pinfield et al.
2003; Chappelle et al. 2005).

Over 90% of known very low mass binaries have less than
20 AU (Burgasser et al. 2007). Competing theories of stellar
formation aim to explain the observed companion statistics of
brown dwarfs. As a general trend, stars appear to have a binary
fraction that decreases with mass. This can partly be explained
by the decreased binding energy of lower mass primaries, and
thus a maximum binary separation that decreases as a function
of total mass (Reid et al. 2001; Close et al. 2003). For very
low mass stars, the companion fraction peaks near 3–10 AU
and exhibits a significant (and statistically significant) drop at
separations beyond 20 AU separation. Slightly more than half of
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known very low mass binaries lie within this narrow separation
range (Burgasser et al. 2007). On the near side of this peak, the
data collected are very likely incomplete, where the necessary
resolution (300 mas) stretches the limitations of HST/NICMOS
and ground-telescopes with adaptive optics (AO) alone. What
data have been collected suggests direct imaging may have
missed companions at very close separations.

Spectroscopic, spectral morphology, and laser guide star
(LGS) AO surveys suggest that very tight binaries within
3 AU may be as plentiful as binaries of moderate separation.
Burgasser et al. (2007) have used spectral features of unresolved
sources to indicate composite spectra, implying multiplicity.
This technique has suggested numerous early/mid-L dwarfs
with potential mid-T dwarf secondaries and systems of equal-
mass L/T transition objects. Jeffries & Maxted (2005) used
sparse radial velocity data sets of very low mass systems
to predict additional 17%–30% binaries at separations less
than 2.6 AU. Photometric overluminosity studies by Pinfield
et al. (2003) and Chappelle et al. (2005) have also hinted at
surprisingly larger binary fractions (up to 50%) in the Pleiades
and Praesepe, though concerns over membership contamination
and the influence of variability limit the conclusiveness of the
results. In each study, with the exception of the Burgasser
mid-L/mid-T systems, very low mass binaries tend toward
equal-mass pairs (q ∼ 1) at close separations, just as is the
case at moderate separation.

These preliminary results contrast those of previous, obser-
vationally complete surveys that focused on moderate and wide
separation binaries. Those surveys predict that fewer than 3% of
very low mass companions sit at separations closer than 3 AU
(Allen 2007). This discrepancy speaks to the importance of addi-
tional, observationally complete surveys searching for binaries
at close separations.

Non-redundant aperture masking (NRM) on 5–10 m class
telescopes, combined with LGS AO, allows sub-diffraction limit
resolution observations at contrasts high enough to search for
most binaries in this potentially fertile, unresolved region. The
detection of close brown dwarf binaries, with a typical period
of 1–2 years, also allows mass measurements of late-L or T
dwarfs, providing particularly valuable empirical benchmarks
for the study of low-mass stellar models. To put into perspective
the dearth of benchmarks, the mass measurements of 15 very
low mass systems (including 6 with L or T dwarf components)
using LGS AO alone by Konopacky et al. (2010) have tripled
the number of very low mass systems with mass measurements.

In Section 2, we describe the 16 field L-dwarf targets imaged
at Palomar using aperture masking with LGS AO and outline the
data analysis techniques used to determine the binarity of the
targets. In Section 3, we present the results of our survey, which
operated in the range of 60–320 mas (1.1–8.4 AU at 18.4 pc, the
median distance of our targets). We identify four new candidate
L-dwarf–brown-dwarf binaries at moderate or high (90%–98%)
confidence. This survey achieved median contrast limits of
ΔK∼ 2.3 between 1.2λ/D and 4λ/D, ruling out companions
down to approximately 0.06 M� for old (5 Gyr) systems and
0.03 M� for young (1 Gyr) systems. In Section 4, we discuss
the aperture masking techniques employed in this paper and
present recommendations for future faint target observations.
In Section 5, we summarize the results of this survey and
discuss its implications for future companion searches around
brown dwarfs. Finally, we discuss in detail our methods for
calculating detection confidence and contrast limits in the
Appendix.

PHARO

Lyot Stop

Pupil Mask

Figure 1. Aperture mask inserted at the Lyot stop in the PHARO detector.
Insertion of the mask at this location is equivalent to masking the primary
mirror.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Observations

We observed our target sample of 16 field L dwarfs in 2008
September and October with the Palomar Hale 200′′ telescope
(refer to Table 1).

Ten of the 16 targets in this survey have been observed previ-
ously as part of various companion searches using the Hubble
Space Telescope (HST; Reid et al. 2006; Bouy et al. 2003). These
previous observations were capable of resolving low contrast or
distant (beyond about 300 mas) companions. Aperture masking
complements these previous surveys, extending the detection
limits around these targets to dimmer and closer companions.

Aperture masking observations were obtained using the
PHARO instrument (Hayward et al. 2001), with a nine-hole
aperture mask installed in the pupil plane of the Lyot-stop
wheel (Figure 1). The longest and shortest baselines, which
set the approximate inner and outer working angles, are 3.94 m
and 0.71 m, respectively (58 and 320 mas in the K band). We
operate to minimize atmospheric and AO variation during a
single image, using PHARO in 256 × 256 sub-array mode with
a total of 16 reads (sub-frames) per array reset and 431 ms
exposures. Every read was saved to the disk. In post-processing,
we discard the first three sub-frames of each exposure (usually
corrupted by detector reset) and combine the remaining sub-
frames by a Fowler sampling algorithm in which later sub-
frames are weighed more heavily. Approximately 300 images
(each with 16 sub-reads) were taken in Ks for each target, for a
total integration time of roughly 60–70 minutes per target.

The Palomar LGS AO system (Roberts et al. 2008) provided
the wavefront reference for high-order AO correction, while
nearby (a few arcminutes) field stars were observed contempo-
raneous to provide tip-tilt correction.

Aperture masking operates most effectively when exposure
times are as short as possible, but long enough to observe fringes
over read noise. The optimal exposure time depends on the
brightness of the targets and the level of correction provided
by the AO system. Poor correction favors shorter exposure
times, where variation of the incoming wavefront quickly
degrades the average transmission of long baseline frequencies.
For targets brighter than about 10th magnitude, the readout-
limited exposure time of the PHARO detector, 431 ms for the
256 × 256 array, is sufficient to observe long baseline fringes.
The targets of this survey are approximately 12th magnitude,
and initial experimentation showed that short exposures did
not consistently provide long baseline fringes. Longer exposure
times (1 minute) faired poorly because variations in correction
over the exposure degraded the average transmission of long
baselines below background levels. We opted to use short
exposures and to weigh more heavily in post-analysis those
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Table 1
The 16 Very Low Mass Survey Targets

Name R.A. Decl. Spectral Type Distance J H K 5 Gyr q (ms/mp)a 1 Gyr
(J2000.0) (J2000.0) (pc) (mag) (mag) (mag) (65–105/105–

450 mas)
(65–105/105–450 mas)

2M 0015+3516 00 15 44.76 +35 16 02.6 L2 20.7 ± 3.2b 13.88 12.89 12.26 0.87/0.84 0.68/0.60
2M 0036+1821c 00 36 16.17 +18 21 10.4 L3.5 8.76 ± 0.06 12.47 11.59 11.06 0.86/0.83 0.61/0.58
2M 0045+1634c 00 45 21.43 +16 34 44.6 L3.5 10.9 ± 2.1b 13.06 12.06 11.37 0.83/0.82 0.57/0.54
2M 0046+0715 00 46 48.41 +07 15 17.7 M9 30.5 ± 4.1b 13.89 13.18 12.55 0.86/0.83 0.80/0.73
2M 0131+3801 01 31 18.38 +38 01 55.4 L4 20.9 ± 4.2b 14.68 13.70 13.05 0.92/0.91 0.74/0.70
2M 0141+1804 01 41 03.21 +18 04 50.2 L4.5 12.6 ± 2.7 13.88 13.03 12.50 0.87/0.84 0.66/0.63
2M 0208+2542d 02 08 18.33 +25 42 53.3 L1 25.3 ± 1.7 13.99 13.11 12.59 0.84/0.82 0.62/0.56
2M 0213+4444c 02 13 28.80 +44 44 45.3 L1.5 18.7 ± 1.4 13.50 12.76 12.21 0.83/0.82 0.56/0.53
2M 0230+2704 02 30 15.51 +27 04 06.1 L0 32.5 ± 4.0b 14.29 13.48 12.99 0.88/0.87 0.78/0.75
2M 0251– 0352c 02 51 14.90 −03 52 45.9 L3 12.1 ± 1.1 13.06 12.25 11.66 0.92/0.91 0.75/0.71
2M 0314+1603c 03 14 03.44 +16 03 05.6 L0 14.5 ± 1.8b 12.53 11.82 11.24 0.82/0.80 0.60/0.54
2M 0345+2540d 03 45 43.16 +25 40 23.3 L1 26.9 ± 0.36 14.00 13.21 12.67 0.83/0.81 0.57/0.53
2M 0355+1133c 03 55 23.37 +11 33 43.7 L5 12.6 ± 2.7b 14.05 12.53 11.53 0.91/0.90 0.77/0.72
2M 0500+0330c 05 00 21.00 +03 30 50.1 L4 13.1 ± 2.6b 13.67 12.68 12.06 0.91/0.89 0.72/0.65
2M 2036+1051c 20 36 03.16 +10 51 29.5 L3 18.1 ± 3.2b 13.95 13.02 12.45 0.87/0.85 0.63/0.58
2M 2238+4353 22 38 07.42 +43 53 17.9 L1.5 21.8 ± 1.6 13.84 13.05 12.52 0.84/0.82 0.57/0.54

Notes. Coordinates and characteristics of the 16 very low mass targets observed in this sample. Photometry is taken from the Two Micron All Sky Survey (2MASS)
catalog. Spectral types (spectroscopic) and distances are taken from http://DwarfArchives.org, unless otherwise noted.
a Survey detection limits of Table 2 given in terms of secondary–primary mass ratio, assuming a co-eval system (same age and metalicity). Masses ratios are derived
from the 5 Gyr (first row) and 1 Gyr (second row), solar-metalicity substellar DUSTY models of Chabrier et al. (2000), using J- and K-band photometry.
b Distance measurements derived from J-band photometry and MJ/SpT calibration data of Cruz et al. (2003) assuming a spectral type uncertainty of ±1 subclass.
c Target previously observed by Reid et al. (2006).
d Target previously observed by Bouy et al. (2003).

observations in which long baseline fringes could be seen (see
additional discussion later in this section).

Background subtraction is necessary for targets as faint as
L dwarfs, and background levels were often comparable to the
signal levels. In many instances, our observations were back-
ground limited. To remove the background in post-processing,
each target was dithered on the 256 × 256 sub-array.

A requirement for obtaining good contrast limits around
bright targets is the contemporaneous observation of calibrator
sources: single stars which are nearby in the sky and similar
in near-infrared magnitudes and colors. This calibration is
necessary to remove non-stochastic phase errors introduced by
primary mirror imperfections and other non-equal path length
errors. This error can be on the order of one to a few degrees,
comparable to the measurement scatter of the closure phases for
bright targets. For brighter targets, the typical observing mode is
to obtain several observations of the science target, interspersed
with observations of calibrator stars. However, the lengthy
time of acquisition for the LGS AO system made this method
inefficient for this survey. Furthermore, the measurement scatter
for the faint targets of this survey was much larger than the
expected systematic error. Therefore, we did not use calibrator
stars. We note that calibrator stars have also not been used for
similar reasons in Dupuy et al. (2009).

2.2. Aperture Masking Analysis and Detection Limits

2.2.1. Extracting Closure Phases from Raw Images

The core aperture masking pipeline implemented in this
paper is similar to that discussed in previous work, modified
to handle low signal-to-noise data and with improved methods
of calculating confidence intervals and contrast limits.

Raw images are first dark subtracted and flat-fielded, bad
pixels are removed, and the data are windowed by a super-

Gaussian (a function of the form exp(−kx4)). This window
limits sensitivity to read noise and acts as a spatial filter. A per-
pixel sky background map is then constructed from the set of
target data and subtracted. The background map is generated by
masking out the target from each image within a set, then, for
each pixel, using the median value of the pixel flux from those
images that were not masked.

The point-spread function of the nine-hole mask consists of
36 interfering fringes, called the interferogram. Because the
mask is non-redundant, each fringe is produced uniquely by
the pairing of two holes; the amplitude and phase of this fringe
translates directly to the complex visibility of the corresponding
spatial frequency.

Fourier transforming each image reveals 72 patches of trans-
mitted power we call splodges (36 frequencies transmitted, pos-
itive and negative; Figure 2). The complex visibilities are ex-
tracted by weighted averaging of the central 9 pixels of each
splodge. Optical telescope aberrations, AO residuals, and detec-
tor read noise contribute noise to the complex visibilities. Under
the best conditions, visibility amplitudes suffer large (>100%)
calibration errors and are not used for the analysis in this survey.

Visibility phase suffers less from these variations, but the use
of the complex triple product and closure phase (Lohmann et al.
1983) yields an observable that reduces the effect of wavefront
degradations from baseline-length-independent sources such as
low-order AO residuals. For an interferometric array (or aperture
mask), closure phases are built by adding the visibility phases
of “closure triangles”: sets of three baseline vectors that form
a closed triangle (see Figure 2). The set of closure phases have
lower noise than visibility phases, allowing precise photometric
measurements despite the loss of photons imposed by the mask.

Thirty-six baselines are present with the nine-hole mask,
from which 84 closure phases can be constructed. However,
these closure phases are not all linearly independent, and the
36 baseline phases cannot be uniquely determined. The phase
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Figure 2. Interferogram and power spectrum generated by the aperture mask.
Left: the interferogram image is comprised of 36 overlapping fringes, one from
each pair of holes in the aperture mask. Right: the Fourier transform of the
image shows 36 (positive and negative) transmitted frequencies. Right, inset and
overlay: closure phases are built by adding the phases of “closure triangles”:
sets of three baseline vectors that form a closed triangle.

(A color version of this figure is available in the online journal.)

information cannot be uniquely inverted (by inverse Fourier
transform) into an image without further assumptions (see,
for example, the CLEAN algorithm (Högbom 1974) and the
maximum entropy method (Gull & Skilling 1984)).

As our survey is a search for binaries, the closure phase signal
of such a target can be modeled easily. Thus, instead of inverting
the closure phases to form an image, we search for the modeled
binary configuration that best fits the measured closure phases.

2.2.2. Typical Results on Bright Targets

Aperture masking with natural guide star AO has been
employed during numerous near infrared surveys on the Palomar
and Keck telescopes. (For mass determinations made through
orbit tracking, see Lloyd et al. 2006; Ireland et al. 2008;
Martinache et al. 2007, 2009; Dupuy et al. 2009; and Kraus
et al. 2008 for an extensive survey of upper Scorpius.) Aperture
masking has also recently begun usage in conjunction with Keck
LGS AO (Dupuy et al. 2009).

The observation of bright targets (Ks � 9), such as nearby
early-M dwarfs, with an aperture mask enables the detection of
companions of contrast up to 150:1 (ΔKs ∼ 5.5) at the formal
diffraction limit and 20:1 (ΔKs ∼ 3.3) at 2

3λ/D at Palomar.
In this regime, non-stochastic phase errors introduced by

the optical pipeline dominate closure phase errors, as well as
background flux, wavefront residuals of the AO system, and
achromatic smearing of the fringes. Typically, these sources
contribute errors on the order of one degree after calibration.

2.2.3. Noise Properties of Dim Targets

For each star image, of which we have approximately 300 for
each star, we extract closure phases.

Because our targets are faint and exposure times are short,
detector readouts contribute significant noise in the phase
and amplitude of the complex visibilities and bispectrum.
Amplitudes are particularly susceptible to calibration errors.
Even during high signal-to-noise conditions, amplitudes have
been seen to fluctuate by up to 100% and are not directly used for
fitting model binaries. However, closure phase data show a clear
improvement in per-measurement signal to noise for increasing
amplitude. That is, bispectrum with the largest amplitude tends
to have the highest fidelity closure phases. In order to pare

off bad data and weigh higher signal-to-noise measurements
more heavily, we empirically estimate the relationship between
amplitude and closure phase fidelity (Figure 3).

This relationship is estimated by binning the set of clo-
sure phase data by amplitude and calculating the standard
deviation of each bin. As already described, as the aver-
age amplitude within a bin increased, the standard deviation
within the bin decreased. To first approximation, this esti-
mates the relationship between amplitude and closure phase
fidelity.

The noisiest bins often show closure phase errors approach-
ing 180◦. Because the closure phase is inherently a measure-
ment of the bispectrum phasor, there is a 360◦ ambiguity in
the measurement of closure phase. Furthermore, even if the
underlying noise source is Gaussian distributed, the distribu-
tion of measured closure phases approaches a uniform dis-
tribution when the standard deviation of the noise source is
larger than about 180◦. Direct calculation of the rms deviation
under-represents the variance of the underlying noise source;
the calculation of the mean depends on the choice of angle zero
point. The variation within one bin was at times large enough
to motivate alternative methods for averaging bispectrum
data.

We adopt a maximum likelihood method to calculate the
standard deviations of bins and overall closure phase mean.
We presume the closure phases in each bin are drawn from a
wrapped normal distribution.9 The standard deviation is varied
to maximize the likelihood of the data in the bin. The same
mean is used for every bin, and the mean which maximizes
the likelihood of the entire data set is data set’s overall mean.
This allows bins to take arbitrarily large standard deviations;
a wrapped normal distribution with large standard deviation
converges toward a uniform distribution. For bins dominated by
read noise or very low signal to noise, this method accurately
estimates very large standard deviations and translates that into
very low weighting for the bin. The overall errors of closure
phase sets ranged between 6◦ and 15◦. In addition, this method
of paring off bad data typically reduced errors by a factor of 2
over other methods.

Even after employing this data paring, some sets of clo-
sure phase data contained so much noise that no reliable sig-
nal could be discerned. In this case, the closure phase was
removed from the set of 84 closure phases further analyzed.
For some targets, up to half of the closure phases, triangles
were removed. In these circumstances, the uv-coverage of the
data drop allowed the possibility of model aliasing: i.e., that
multiple binary configurations yield similar closure phase sets,
and each fits the data equally well. When previous observa-
tions of the target were available, we used this information
to rule out unlikely fits. When not, we list all fits to the
data.

Finally, non-stochastic errors are typically on the order of
one to a few degrees. This contribution is much smaller than
the statistical error, and as such overall best fits of our data
changed very little whether or not we attempted to calibrate out
this component.

9 The wrapped normal distribution is the probability distribution function
(p.d.f.) of the wrapped variable θ ≡ x mod 2π , given by
pw(θ ) = ∑

p(θ + 2πk), where p is the unwrapped probability of the
unwrapped variable x. The sum is over integer values of k from −∞ to ∞. The
wrapped normal distribution, denoted by WN, is

WN(θ ) ≡ 1√
2πσ 2

∑
exp

[ −(θ−μ−2πk)2

2σ 2

]
, with the same summation limits.
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(a) Closure Phase 50 (b) Closure Phase 29 (c) Closure Phase 21

Figure 3. Estimating per-measurement weights for three closure phase data sets for target 2M 2238+4353. The data sets have comparatively high (a), moderate (b),
and very low (c) signal to noises. Top: plot of bispectrum (closure) phase vs. bispectrum amplitude. Note that larger amplitude data have smaller phase spreads, and a
clear asymptotic mean can be identified in the high and moderate signal-to-noise cases. (Closure phase 21 contains no discernible signal and would be removed from
further analysis.) Low-amplitude bispectrum is swamped by read noise, introducing phase errors which are nearly uniformly distributed. The solid line estimates the
relationship between per-measurement standard deviation and bispectrum amplitude. Middle: closure phase vs. approximate weighting. Note that the higher weighted
points have lower per-measurement standard deviation. Bottom: resulting p.d.f. of the closure phase.

2.2.4. Modeling the Binary Fit, and the Calculation of Confidence and
Contrast Limits

For each target, we attempted to fit the observed closure
phases with a three-parameter binary model (separation ρ,
orientation θ , and contrast ratio r > 1). The best-fitting model
is the one which maximized the overall likelihood of the data.
Errors in the parameters are calculated from the curvature of the
log-likelihood surface at its maximum.

The strength of our fits was determined by comparing the
increase in log-likelihood, Δ logL, between a single star fit and
a binary star fit for our real data set as compared to many
simulated data sets of single stars. If the real data set has a much
higher value of Δ logL than the simulated data sets, we regard
the real data set to be indicative of a binary star (for purely
Gaussian noise, Δ logL is equivalent to Δχ2.).

We simulate measurements of single stars with identical noise
properties and uv-coverage of the candidate binary target. The
measured closure phases of a single star are the sum of three
sources: the intrinsic signal of the target, which is zero for a
single star; noise fluctuations from various sources which are
described by the standard deviations measured on the target; and
a non-stochastic systematic error component, which we assume
is negligible compared to the stochastic noise of these targets (as
a check, we also estimated the typical systematic contribution
from the measured signal of eight survey targets whose best fits
indicated high likelihood for being single stars. Including this
component to simulate single stars had little effect on the overall
confidence measurements.).

From this information, we generate 10,000 mock measure-
ments of single stars. To each, we fit the three-parameter binary
model, record the Δ logL, and build a distribution of Δ logL
that results from single star observations.

Comparing the value of Δ logL of the data’s fit to the
simulated distribution yields the probability of false alarm: the
probability that our apparent binary fit is an observation of a
single star co-mingled with noise. The confidence that our target
is binary is one minus this false alarm probability.

To calculate our contrast limits, we first add model binary
signals to the simulated single star data. These mock binary
signals span a range of separations, orientations, and contrast
ratios. We fit each, determine the fit confidence, and determine,
for a given separation, the highest contrast ratio (i.e., dimmest
companion) that would be detected with 99.5% confidence (false
alarm probability of 0.005). These calculations are discussed in
more detail in the Appendix.

2.2.5. Calculation of Bayes’ Factors

As an alternative to confidence measure presented in the
previous subsection, our group also applied Bayesian methods
to calculate the Bayes’ factor of each fit, i.e., the odds by which
our data favor binary models.

Using Bayesian comparison, the binary hypothesis is tested
by contrasting two probabilities: that the data set would arise
from a binary target observation and that the set would arise
from a single star observation. Expressed mathematically, this
is

Pr(binary|data)

Pr(single|data)
= Pr(star is binary)

Pr(star is single)

Pr(data|binary)

Pr(data|single)
.

(1)

The first term on the right-hand side is an attribute of the
survey population—it is the ratio of the companion fraction to
one minus the companion fraction—and is independent on the
data.

The second term is the Bayes’ factor, representing the odds
by which the data favor one hypothesis over the other. These
probabilities are marginalized (and integrated) over the binary
parameters. Whereas the maximum likelihood method searches
out the set of parameters that maximizes the likelihood of the
data, the Bayesian approach averages over the parameters:

Bayes, factor = Pr(binary|data)

Pr(single|data)
(2)

=
∫

Pr(ρ|bin.)Pr(θ |bin.)Pr(r|bin.)L(data|ρ, θ, r)

L(data|single)
. (3)

The quantities Pr(ρ|binary), Pr(θ |binary), and Pr(r|binary)
refer to distributions of the companion separation, orientation,
and contrast ratio as they are presumed known prior to our ob-
servation. These distributions for very low mass primaries are
themselves ongoing topics of debate and limited by observa-
tional incompleteness, particularly in the separation regime of
our survey. (For a current review of separation and mass ratio
distributions derived through observational studies, the reader
is invited to view Burgasser et al. 2007.) Allen (2007) quantifies
the underlying companion distributions from the currently avail-
able data. We ultimately chose to use blind prior distributions
(known as Jeffreys’ priors). These distributions are uniform for
separation and log-uniform for contrast ratio. We compare this
choice to the Allen priors and discuss its implications.
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Figure 4. Proposed log-normal distribution of companion separation around
L dwarf primaries from Allen (2007). The peak and width of the distribution
have been constrained by previous surveys. The most likely distribution (solid
line) and 1σ distributions (dashed lines) are shown. Despite the constraints, the
distribution is noticeably uncertain in the region of separations searched by our
survey. We opt to use a uniform prior for our Bayesian analysis, noting that such
a prior may over signify companions closer than roughly 2 AU as compared
to the Allen prior. Similarly, a confirmed detection of a close companion could
indicated that this distribution has been incorrectly described as log-normal (see
the text).

Our survey focuses on close binaries; our observations
probe between roughly 1 and 8 AU for 75% of our L dwarf
targets. Allen (2007) concludes that the (physical) separation of
companions can be characterized by a log-normal distribution
which peaks at 7.2+1.1

−1.7 AU with a 1σ width of roughly 11+∼2
−∼3 AU.

This uncertainty in the peak and width contributes noticeable
variability of the resulting distribution at the separations we
consider (see Figure 4). One characteristic unifying the span of
distributions, however, is that companions closer than ∼2 AU
are less likely by up to an order of magnitude. The is due in part
to describing the distribution as a log-normal functional. This
choice is motivated by the sharp drop in companion fraction
observed outward of about 10 AU, and by assuming a similar
drop shortward of a few AU, where observational data are
incomplete. As Allen states, this result is derived without well-
defined searches for companions at close separations, and the
preliminary results of the Jeffries & Maxted (2005) and Basri
& Reiners (2006) surveys potentially indicate the presence of
a larger number of close binaries. We use a uniform prior
to avoid the bias of the Allen priors, keeping in mind that
companions with high Bayes’ factor at less than 2 AU could
indicate observational evidence of close companions yet may
also be biased toward undue significance.

Observational surveys of very low mass systems show a
tendency toward equal-mass binaries (q ∼ 1; Burgasser et al.
2007; Reid et al. 2006; Allen 2007). The distribution of
mass ratios has been roughly characterized by a power law,
p(q) ∝ qγ , with γ ∼ 2–4 depending on the survey. The
large exponent of this distribution indicates that low-mass ratio
(low q) systems are highly unlikely (and rare). Transforming
this to a distribution of broadband contrast ratios (r, with
r > 1) requires assumptions about target age distributions,
bolometric luminosity corrections, and mass–luminosity models
(see Allen et al. 2005, 2003, for these assumptions applied to
field stars). We wish our prior distribution not to depend so
highly on these assumptions and rather to rely on a few basic
assumptions.

The rapid drop of the L dwarf mass–luminosity relation (i.e.,
halve the mass of the star and its luminosity drops by much more)
implies that ratios of contrast are larger than ratios of mass, and
that contrast ratios still favor unity (i.e., p(r) ∝ (1/r)γ with
0 < γ � 2–4). The blind prior for a scale-independent quantity
like contrast ratios is p(r) ∝ 1/r which, conveniently, has the
desired properties. It is worth noting that Allen (2007, Figure 14)
carries out the transformation from mass ratio to contrast ratio,
finding a distribution that follows roughly p(r) ∝ 1/(r log r)
for contrasts down to below 100:1.

Finally, the same methods can be applied to calculate poste-
rior distributions for ρ, θ , and r for each data set. For a data set
with a single best fit, this distribution yields a probability dis-
tribution function (p.d.f.) describing the best-fitting parameters.
The parameter values and errors quoted in this paper are those
derived from maximum fit likelihood, as discussed in the pre-
vious subsection, and are not drawn from Bayesian posteriors.
However, we calculate the posterior distributions to assure both
methods give comparable results.

3. SIXTEEN BROWN DWARF TARGETS; FOUR
CANDIDATE BINARIES

Aperture masking is most sensitive to companions between
λ/2D and 4λ/D, corresponding to angular separations of
60–450 mas in Ks at Palomar and physical projected separations
ranging from 0.6 to 10 AU for the targets in our survey.

Our achieved detection limits for all 16 targets are summa-
rized in Table 2. Our limits remain relatively flat at separations
beyond λ/D, plateauing near ΔK ∼ 2.3 for more than half our
targets, and decline to roughly 1.4 mag shortward of λ/D (see
Figure 5).

We infer the (companion) stellar properties and mass ratios to
the corresponding magnitude limits using the DUSTY models
for target ages of 5 Gyr and 1 Gyr (Table 1). At the formal
diffraction limit (about 110 mas in Ks), companions with mass
ratios of 0.83 for 5 Gyr systems and 0.55 for 1 Gyr systems
would be resolved for 50% of our targets at a 99.5% confidence
of detection (Figure 6).

Our survey found four candidate binary systems with de-
tections at 90%–99% confidence and Bayes’ factors favoring
the binary model (Table 3). We summarize and discuss these
detections below.

For some targets in our survey, closure phase measurements
constructed from the longest baselines had too much noise to
extract a useable signal. The resulting drop in uv-coverage
can give rise to aliasing of the model fits: i.e., multiple binary
configurations fit the data equally well. When possible, we used
previous observations of the target to rule out certain aliased
fits; when not possible, all model fits are listed.

2M 0036+1821. A companion at separation 89.5 mas and
13.1:1 contrast was detected with 96% confidence and a Bayes’
factor of 7.8:1. The data also fit an alternative (alias) binary
configuration (ρ ∼ 243 mas and 25:1 contrast) with 96%
confidence that we rule out by previous observations. Reid et al.
(2006) observed this target in 2005 November with the NICMOS
imager on the HST in the F170M and F110W bands. At or near
this separation, this alternative configuration would have likely
been detectable in the F110W bands.

2M 0355+1133. A companion at separation 82.5 mas and
2.1:1 contrast was detected with 90% confidence and a Bayes’
factor of 6.3:1. Reid et al. (2006) also observed this target in
the F110W band and found no companion. As a proxy for the
F110W bandpass, we estimate a J-band contrast of 2.5:1 using
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Figure 5. Limits at 99.5% detection for each target as a function of primary-companion separation. The solid, bold line is the median limit of the survey. Left: the
primary–secondary magnitude difference in Ks detectable at 99.5% confidence. Middle: the same detection limits in terms of the absolute magnitude of the companion.
Right: the same detection limits in terms of the apparent magnitude of the companion.

Table 2
Survey Contrast Limits (ΔK) at 99.5% Confidence

ΔKa

Primary 65.0 85.0 105.0 125.0 145.0 165.0 185.0 225.0 265.0 305.0 345.0 385.0 425.0

2M 0015+3516 0.92 1.52 1.73 1.88 2.07 2.25 2.27 2.18 2.03 1.82 2.06 2.06 1.79
2M 0036+1821 1.77 2.30 2.52 2.57 2.63 2.74 2.77 2.79 2.71 2.70 2.62 2.67 2.56
2M 0045+1634 2.06 2.61 2.82 2.87 2.90 2.96 3.01 3.02 2.94 2.93 2.80 2.86 2.84
2M 0046+0715 0.62 1.01 1.16 1.29 1.48 1.58 1.66 1.60 1.38 1.27 1.28 1.35 1.22
2M 0131+3801 0.74 1.26 1.30 1.30 1.35 1.47 1.52 1.55 1.45 1.28 1.25 1.41 1.25
2M 0141+1804 1.52 2.13 2.37 2.51 2.55 2.61 2.65 2.59 2.58 2.58 2.41 2.51 2.42
2M 0208+2542 1.29 1.93 2.16 2.28 2.35 2.48 2.52 2.47 2.34 2.28 2.29 2.32 2.25
2M 0213+4444 1.84 2.40 2.59 2.64 2.72 2.77 2.79 2.81 2.76 2.73 2.59 2.69 2.58
2M 0230+2704 0.72 1.11 1.20 1.18 1.23 1.27 1.30 1.32 1.27 1.09 1.03 1.26 1.08
2M 0251-0352 0.69 1.07 1.24 1.26 1.32 1.39 1.48 1.38 1.36 1.28 1.24 1.37 1.34
2M 0314+1603 1.52 2.08 2.32 2.47 2.54 2.60 2.65 2.61 2.54 2.50 2.51 2.52 2.39
2M 0345+2540 1.75 2.28 2.51 2.56 2.61 2.70 2.76 2.75 2.61 2.57 2.55 2.58 2.51
2M 0355+1133 0.69 1.15 1.21 1.05 1.04 1.22 1.27 1.25 1.29 1.32 1.24 1.27 1.12
2M 0500+0330 0.79 1.35 1.53 1.64 1.81 1.97 2.02 1.99 1.80 1.57 1.80 1.83 1.57
2M 2036+1051 1.30 1.90 2.10 2.26 2.31 2.41 2.50 2.40 2.31 2.24 2.26 2.30 2.18
2M 2238+4353 1.77 2.29 2.51 2.53 2.57 2.63 2.71 2.69 2.57 2.54 2.52 2.56 2.50

Notes. Detection contrast limits around primaries:
a Primary–secondary separations are given in units of mas, and the corresponding detection limits are in ΔK magnitudes.

the J − K color–magnitude relations of Dahn et al. (2002). Their
program achieved a contrast limit of 2.5:1 beyond approximately
100 mas in F110W, suggesting that this candidate binary sat at
the edge of their detection limits.

2M 2238+4353. Thirty-five percent of the closure phase
triangles showed very high noise and were removed from

analysis. As a result, aliasing of the signal was particularly
problematic. Three distinct binary configurations were detected
at 95%–97% confidence. These range in separations between
100 and 400 mas and contrasts between 17:1 and 28:1.

2M 0345+2540. Like 2M 2238+4353, a large percentage of
the closure phases were removed from analysis. Two distinct
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Figure 6. Companion mass and mass ratio limits at 99.5% detection as a function of primary-companion separation. Top left: the primary-companion mass ratio
detectable at 99.5% confidence. Dashed lines are for systems aged 5 Gyr; dot-dashed lines are system ages 1 Gyr. Top right: the same data in terms of companion mass.
Middle/bottom left: as a function of separation and companion mass, this plot reveals the percentage of 5 Gyr (middle) and 1 Gyr (bottom) companions detectable at
99.5% given the data quality of the survey. Binaries in the white area would have been detected for 100% of the survey targets, followed by contour bands of 95%,
90%, 75%, 50%, 25%, and 10%. At the diffraction limit (110 mas), companions of mass 0.65 M� would be resolved for 50% of our targets. Middle/bottom right: the
same plot in terms of mass ratio. Diffraction limit sensitivity: 5 Gyr companions of mass 0.65 M� (.038 M� for 1 Gyr) would be resolved for 50% of our targets.
Equivalently, our survey reached mass ratios of 0.83 (5 Gyr) and 0.55 (1 Gyr) for 50% of our targets at the diffraction limit.

Table 3
Model Fits to Candidate Binaries

Julian Date Separation Az. Ang. Contrast Bayes’ Separation
Primary (+245000) (mas) (deg) Ratio Factor Conf. (AU)

2M 0036+1821 4731 89.5 ± 11.4 114.1 ± 5.5 13.14 ± 3.14 7.9 96% 0.78 ± 0.10

2M 0345+2540 4731 217.4 ± 9.1 258.8 ± 2.8 26.44 ± 4.22 7.6 98% 5.85 ± 0.26
352.7 ± 10.5 87.6 ± 2.0 30.79 ± 9.08 96% 9.49 ± 0.31
352.7 ± 10.5 87.6 ± 2.0 30.79 ± 9.08 96% 9.49 ± 0.31

2M 2238+4353 4732 128.2 ± 10.3 209.9 ± 5.3 17.76 ± 4.25 7.1 97% 2.79 ± 0.30
228.5 ± 9.1 251.8 ± 3.5 23.79 ± 5.92 95% 4.98 ± 0.42
395.5 ± 9.7 19.5 ± 1.2 17.63 ± 4.22 97% 8.62 ± 0.66

2M 0355+1133 4757 82.5 ± 13.0 276.2 ± 4.1 2.10 ± 0.40 6.3 90% 1.03 ± 0.27

configurations, both with contrasts ∼28:1 (ΔK ∼ 3.5), were
determined with high confidence. Bouy et al. (2003) observed
this target with the Wide Field Planetary Camera 2 (WFPC2) on
the HST in 2001 March, but we estimate these companions to be
below their detection limits. Their survey reached background
limitations at contrasts between ΔM ∼ 3 and 5 in the F814W
band. Using the I band as a proxy for F814W, we estimate the
companion of 2M 0345+2540 to have a contrast of ΔI � 5 and
to have been undetectable in the Bouy survey.

2M0213+4444. We observed target 2M0213+4444 three
times over two nights in 2008 September (two sets in Ks, one
in H) and once one month later (in Ks). Two data sets from
September were of poor quality and were not used for analysis.
The remaining set from September found one binary fit (ρ ∼
81 mas, θ ∼ 290◦, 5.2:1 contrast in Ks) at 89% confidence. The
target was observed again in Ks in October under poor seeing
and much of the data were unusable. This data set could not
be fit well by the September results and implied a different
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configuration with 90% confidence (ρ ∼ 234 mas, θ ∼ 135◦,
11:1 contrast in Ks). Given the low confidences of fits and the
unreproducibility of these results, we conclude that this target
is unlikely to be a binary.

4. DISCUSSION: APERTURE MASKING OF FAINT
TARGETS

The use of NRM removes many types of spatial perturba-
tions to the incoming wavefront. During high signal-to-noise
observations, when read and background noises are minimal,
the largest contributor to measurement noise is the temporal
and spatial atmospheric fluctuations of the wavefront, even
after AO correction. Short exposure times, roughly less than
the coherence time of atmosphere, freeze the tip-tilt and low-
order perturbations to the wavefront, which can be removed
by combining fringe phases into closure phases. This advan-
tage is lost when exposures extend over multiple coherence
times. For this reason, aperture masking flourishes with short
exposures.

Behind LGS AO systems, although the structure of the
corrected wavefront may be different, the functionality of
aperture masking is the same. However, targets requiring LGS
AO tend to be fainter, and thus require either longer exposure
times (permitting sufficient correction) or techniques for dealing
directly with noise from readouts and background flux.

This survey opted for maintaining short exposure times.
The signal to noise of fringe amplitudes declines rapidly
for longer baselines, as the transmission function for these
baselines is lower and turbulence variations are larger. Just
as, for instance, Stehl ratio depends on the variance of the
incoming wavefront, so does the fringe amplitude, also dropping
as exp(−σ 2

baseline). For faint targets, long baselines fringes often
linger undetectable below the background and read noise,
making difficult measurements of long baseline phases.

The capture of a large number of short exposure images
allows us to select out the best fringe measurements, dur-
ing the serendipitous moments of very good correction or
still atmospheres, and discard those dwarfed by read noise.
This technique, analogous to lucky imaging, effectively se-
lects high signal-to-noise measurements of closure phase. In
most cases, these lucky closure phases were sufficient to ob-
tain measurements of the target closure phase, even at long
baselines.

We contrast this method to two measurements of targets
observed with long (1 minute) exposures. These exposures did
often have long baseline fringes detectable at or just above
background. But this method resulted in poor measurements of
the target closure phase, even at shorter baselines. The multiple-
coherence time exposures mean that low-order perturbations
are not effectively removed by closure phases, resulting in
large phase errors, and the fewer overall number of data points
removes the statistical advantage. The measured closure phase
is not a good measurement of the true target phase.

Long exposures, with adequate correction, do allow longer
baseline fringes to grow in amplitude above the read noise or
background limit. Exposures for aperture masking should be
limited to the effective coherence time of the AO system—the
interval over which the phase variance of the longest baselines
reaches about 1 rad.

The quality of measurements from both sets of exposure data
suggests a slight modification of the technique for the next
application of aperture masking with LGS AO. The higher
noise content of the 1 minute exposures suggests that these

exposures are too long for the level of correction obtained in this
survey. The short exposure method fared much better, but a large
percentage of images failed to observe fringe amplitudes above
read noise. This suggests that slightly longer exposures would
have benefited the observations. It is worthwhile to note that
the low transmission of the long baselines, even at Strehl ratios
of 15% typically reached in this survey, indicates that direct
imaging would not have been able to obtain λ/D resolution.

5. CONCLUSION

We present the results of a close companion search around
nearby L dwarfs using aperture masking interferometry and
Palomar LGS AO. The combination of these techniques yielded
typical detection limits of ΔKs = 1.5–2.5 between λ/D
and 4λ/D and limits of ΔKs = 1.0–1.7 at 0.6 λ/D. Our
survey revealed four candidate binaries with moderate-to-high
confidence (90%–99%) and favorable Bayes’ factors.

Ten of the targets have previously been observed with the HST
as part of companion searches. As such, we did not expect to
find bright or distant companions around these targets which
would have been identified in the previous surveys. But as
demonstrated in this paper, the detection profile of aperture
masking is capable of revealing close or dim companions
which are obscured by the point-spread function of full aperture
imaging. Aperture masking demonstrates an increase in formal
resolution and detectable contrast at close separations over LGS
AO alone.

Our survey indicated two previously observed targets as
candidate binaries. Our survey indicated one companion around
2M 0355+1133 within the formal diffraction limit of the
HST and one companion around 2M 0345+2540 below the
background detection threshold of the previous survey. Two
other targets, 2M 0345+2540 and 2M 2238+4354, also indicated
the presence of companions, both with contrast ratios greater
than 15:1.

Aperture masking is most sensitive to companions between
λ/2D and 4λ/D, corresponding to angular separations of
60–450 mas in Ks at Palomar and physical projected separations
ranging from 0.6 to 10 AU for the targets in our survey. Two
candidate binaries presented in this paper have projected sepa-
rations less than 1.5 AU. The results suggest a favorable target
set for future companion searches. Their candidacy is consistent
with the conjecture that tight binaries are under-represented in
the current tally of low-mass binaries. Spectroscopic surveys,
which focus on separations within 3 AU, are necessary to con-
clusively answer this question. Extending the use of aperture
masking with LGS AO is a rewarding approach for detecting
companions within this range and facilitating the measurements
of their masses.
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APPENDIX

BINARY DETECTION CONFIDENCE AND CONTRAST
LIMITS

In this section, we provide the basic formalism for fitting
closure phase measurements to binary models. This formalism
also drives the Monte Carlo simulation which determines the
strength of these fits.

Each pair of holes in the Palomar non-redundant nine-hole
aperture mask is designed to transmit one unique Fourier
spatial frequency, for a total of 36 frequencies transmitted by
the mask. Each image produced by the mask consists of 36
overlapping fringes which, when Fourier transformed yields the
amplitude and phase of each transmitted frequency. Combining
these phases by adding specific triplets to form closure phases
produces an observable that is more robust to many forms
wavefront noise. Eighty-four closure phases are extracted from
each image, then averaged over the set of images. Finally, these
averages are compared to model closure phases of various binary
configurations to determine the likelihood that the target is a
binary.

A.1. Determination of Best Fit

The measured closure phase signal of each image is the
composite of three sources: the intrinsic signal of the target,
which is zero for a single star and non-zero for a binary; a non-
stochastic systematic error component, which may vary from
target to target, but not during the observation of a single target;
and stochastic noise from various sources such as atmospheric
turbulence, read noise, etc. We denote the intrinsic signal by
Ψbinary, the systematic component by βsystem(t), and the stochastic
noise by ξnoise(t,i). That is, the measurement of closure phase k,
extracted from image i, observed during the target acquisition
set t, Ψk,t,i , is

Ψk,t,i = Ψk,binary + βk,system(t) + ξk,noise(i,t). (A1)

The measured closure phase from a given set of images that will
be fit to model binaries is

〈Ψk,t 〉i = Ψk,binary + βk,system(t), (A2)

where the sum is taken over the set of images, and the noise prop-
erties of the mean are described by the distribution of ξk,noise(i)
convolved over the set of images. The systematic component
βk,system(t) may change from one acquisition to another (affected
by telescope movement or AO system performance, etc.) but is
assumed constant during the observation of a single target.

We typically use the measurement of calibrator (single) stars,
with zero intrinsic signal (i.e., Ψk,binary = 0), to estimate the un-
derlying distribution of systematic noise in the optical system.
The typical observing mode is to obtain several observations of
the science target, interspersed with observations of calibrator
stars. Although the systematic component cannot be determined
exactly because it is itself a random variable, we can compile a
composite distribution of βk,system from calibrator observations.
Subtracting the systematic component from the measured clo-
sure phases (or, specifically, convolving the two distributions)
leaves remaining the intrinsic signal of the target, Ψk,binary. (This

calibration step is important for obtaining high contrasts during
high signal-to-noise observations, when the contribution from
systematic noise is on the order of the stochastic noise. Calibra-
tion is less effective when the typical stochastic noise is much
larger than the systematic component.)

We wish to find the three-parameter model binary (separa-
tion ρ, orientation θ , and contrast ratio r) which best fits the
calibrated signal, Ψk,binary. Approached as a maximum likeli-
hood problem, we calculate the probability that our measured
data would result from a noiseless, modeled binary, Ψm(ρ, θ, r),
observed through the noise in the system:

Lmodel = p(Ψm|{Ψk,binary}) ∝∏
k

∫
Lk(Ψk,t = Ψm − βk,system)p(βk,system)dβk,system. (A3)

The integral is due to the convolution of the systematic
distribution with the likelihood function, which itself follows
the distribution of ξk,noise.

The best-fitting model is that which maximizes the above
probability, which we determine by a combination of gradient
search and visual inspection. The parameter errors are calcu-
lated from the curvature of the log-probability surface at the
maximum. Calculating the confidence of this fit, i.e., that this
model represents the true target configuration, is detailed in the
following subsection.

Assuming the underlying distributions are wrapped normal or
Gaussian, the convolution above reduces to a single wrapped-
normal or Gaussian distribution with mean 〈Ψk,t 〉 − 〈βk,system〉
and variance σ 2

Ψk,t
+ σ 2

βk,system
. The maximum probability problem

reduces to one of minimizing χ2.

A.2. Binary Detection Confidence

Our null hypothesis, which we wish to test against the binary
fit, is that the observed target is a single star, with intrinsic binary
phase being zero. Following Equation (A3), the probability of
the null model is

Lnull = pnull(Ψm = 0|{Ψk,binary}) ∝∏
k

∫
p(Ψk,t = βk|βk)p(βk)dβk. (A4)

A natural goodness-of-test statistics for comparison is the
ratio of the data likelihood to that of the null likelihood or the
log of this ratio:

log

(
Lmodel

Lnull

)
= log(Lmodel) − log(Lnull) = Δ logL. (A5)

Systematic and stochastic noise may at times conspire to
mimic a binary signal, as expressed by a higher probability of
a binary model, even though the target is a single star. This is
a false alarm event. We, therefore, classify the target goodness-
of-fit statistic as statistically significant only if its value is large
compared to results of noisy observations of single stars.

We simulate 10,000 measurements of single stars with iden-
tical (u, v)-coverage and noise properties of the candidate bi-
nary target. The intrinsic phase of a single star, Ψbinary, is zero.
For one measurement, the contribution due to statistical noise is
drawn from the measured distribution of ξk,noise, which typically
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Figure 7. Determination of binary confidence for target 2M 0036+1806. The goodness-of-fit statistic, Δ logL = 12.8 (vertical line), is compared to a distribution
generated from fits to simulated single stars (curve labeled “Monte Carlo”), resulting in a fit confidence of 96% (empirical). Notice that comparing this value to a χ2

distribution with three degrees of freedom (curve labeled “Analytic”) results in a much higher confidence of fit.

can be approximated by a wrapped-normal or Gaussian distri-
bution with mean zero and measured standard deviation. The
systematic contribution, if included, is drawn from a distribu-
tion βk,system, compiled from observations of calibrator (single)
stars.

We then apply the same approach used for the target star
to each simulated single star. We fit the three-parameter binary
model to each simulated single star, record the Δ logL, and build
a distribution of Δ logL that results from fitting single stars. The
probability that our target fit is statistically significant, then, is
the probability that the goodness of fit of a single star is less
than the target data’s goodness of fit:

pfalse alarm(Ψm) =
p((Δ logL)best fit to data < (Δ logL)fits to single stars) (A6)

and
detection confidence = 1 − pfalse alarm. (A7)

We consider the target data to reveal a definitive binary de-
tection if the best-fitting model produces a detection confidence
greater than 99.5% (false alarm probability less than 0.5%). Note
that this empirical method is more conservative than compar-
ing the values of Δ logL, which reduce to 0.5Δχ2 for Gaussian
noise, to a distribution of χ2 variables with three degrees of
freedom (Figure 7).

A.3. Calculation of Contrast Limits

Whether the target observed is identified as a single star
or a binary, we are able to quantitatively state the highest
contrast (dimmest) companion that our technique would have
been capable of identifying with high confidence (99.5%) as
a function of separation. This is, in essence, a statement on
the noise characteristics of the data and the uv-coverage of our
mask.

This amounts to asking the following question: given simu-
lated binary observations (separation ρ, orientation θ , and con-
trast ratio r), at what contrast does our detection confidence drop
below 99.5%?

Simulated binary data are the composite of the same noise
contributions to single star data plus an intrinsic signal due to
the presence of a companion. That is, the nth simulated binary
data are

Ψn
k,binary = Ψn

k,single + Ψk,model(ρ, θ, r). (A8)

For binary models of a range of separations, orientations, and
contrast ratios, we generate 10,000 mock binary signals of each
by adding the intrinsic binary signal to the mock noise simula-
tions described in the previous subsection. We fit each, record
the fit confidence, and determine the average confidence that the
binary can be detected under conditions identical to the target
observation. For each separation, averaged over orientations, we
determine the highest contrast ratio (i.e., dimmest companion)
that would be detected with 99.5% confidence (a false alarm
probability of 0.005).

Ideally, we would determine the confidence of each mock
binary by search for its best fit, recording its Δ logL, and
comparing it to the false alarm distribution of the previous
subsection. In practice, using a fitting routine to fit each of
these simulated binaries is computationally slow.

Instead, we approximate this process by modifying the false
alarm distribution. We make the assumption that the inserted
binary model yields the best fit. Because we effectively restrict
the fitting search to the range of separation, orientations, and
contrast ratios used to generate the mock binaries, we apply
the same restriction to the fitting search that generates the
false alarm distribution. We then use this modified false alarm
distribution to determine the confidence of the mock binary fits.
In practice, this approximation produces contrast limits slightly
more conservative than full fitting by about 5%–10%.
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