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On singularity formation in three-dimensional vortex sheet evolution
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It is shown that if a doubly-infinite vortex sheet has cylindrical shape and strength distributions at
some initial time, then this property is retained in its subsequent evolution. It is also shown that in
planes normal to the generator of the cylindrical sheet geometry, the nonlinear evolution of the sheet
is the same as that of an equivalent strictly two-dimensional sheet motion. These properties are used
to show that when an initially flat vortex sheet is subject to a finite-amplitude, three-dimensional
normal mode perturbation, weak singularities develop along lines which are oblique to the
undisturbed velocity jump vector at a time that can be inferred from an extension of Moore’s@Proc.
R. Soc. A 365, 105 ~1979!# result for two-dimensional motion. ©1999 American Institute of
Physics.@S1070-6631~99!01010-7#
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The nonlinear evolution of a doubly-infinite, uniform
vortex sheet subject to small out-of-plane disturbances
classic problem in fluid mechanics. It has long been kno
that the linearized Kelvin–Helmholtz instability of the vorte
sheet subject to two-dimensional shape disturbances re
in an ill-posed initial value problem1,2—see Saffman3 for a
discussion. Moore4,5 studied the nonlinear problem by con
structing small-disturbance solutions of the exact Birkho
Rott equation describing vortex sheet evolution in two sp
dimensions. Using approximate asymptotic methods, Mo
demonstrated the possible formation of a finite-time sin
larity in the form of an infinite sheet curvature and a cusp
the sheet strength~local velocity jump!. Subsequent numeri
cal studies6–9 of vortex sheet evolution up to the time
which the singularity forms have strongly supported this p
diction. These results have practical relevance to the po
wise convergence of numerical solutions to the compress
Euler equations, where slip surfaces~vortex sheets! are pro-
duced at triple points.10

There is some evidence for the formation of singularit
in the evolution of vortex sheets in axisymmetr
geometry11,12and for certain three-dimensional perturbatio
to a plane vortex sheet.13 In the present note we consider th
vortex sheet evolution when subject to a disturbance whic
a finite-amplitude, three-dimensional~3D! normal mode of
the linear stability problem. The 3D normal mode is cyli
drical, in a defined sense. It is shown that the full nonlin
sheet motion then remains cylindrical and that it is identi
to a suitably chosen, strictly two-dimensional~2D! vortex
sheet evolution. It follows that the singularity formation pr
cess is the same as for a 2D normal mode disturbance
lowing a straightforward extension of Moore’s result to t
case of an initial disturbance consisting of a finite amplitu
3D normal mode.

Consider the motion of a doubly-infinite vortex sheet
three dimensions. In Cartesian coordinates~x,y,z! the undis-
turbed sheet shape lies in the (x2y) plane with uniform
x-velocities of2 1

2U for z.0 and 1
2U for z,0, whereU is

the velocity jump magnitude acrossz50 in thex-direction.
For a general sheet shape we employ a parametric su
description
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X~j,h,t !5S X~j,h,t !
Y~j,h,t !
Z~j,h,t !

D , G5G~j,h!, ~1!

where ~j,h! are Lagrangian parameters defining the sh
positionX, and the velocity potential jumpG. Unless other-
wise specified the dependence on timet will be suppressed.
The vortex lines on the sheet are given by

v5 WY U]X

]j
3

]X

]hU , W5
]G

]j

]X

]h
2

]G

]h

]X

]j
. ~2!

At a field pointx, the velocity induced by the sheet is

u~x!5
1

4p E
2`

` E
2`

` W3~x2X!

ux2Xu3
dj dh. ~3!

Whenx→X on the sheet, the left hand side of Eq.~3! can be
replaced by]X/]t resulting in a Lagrangian equation14 for
the sheet evolution from given initial conditionsX(j,h,t
50), G~j,h!. The integral must then be interpreted as a Ha
amard principal-part integral; thus sheet velocities are
average of the sheet-induced velocity whenx→X from ei-
ther side. In the sheet evolutionG~j,h! is invariant with time.

We define a strictly 2D vortex sheet evolution by

X~j,h,t !5S g1~j,t !
h

g2~j,t !
D , G5g3~j!, W5

]g3

]j S 0
1
0
D . ~4!

The field velocity is then

u~x!2D5
1

2p E
2`

` S ]g3

]j D 1

~x2g1!21~z2g2!2 S z2g2

0
2x1g1

D dj.

~5!

It follows from Eqs.~4! to ~5! that the vortex sheet shape
invariant in they-direction and that vortex lines remain pa
allel to they-axis. Whenx˜X on the sheet and the left-sid
8 © 1999 American Institute of Physics
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of Eq. ~5! is replaced by]X/]t, a version of the Birkhoff–
Rott equation for 2D vortex sheet evolution results.

Moore4 showed that the 2D evolution of a vortex she
from initial conditions given, in our notation by

g1~j!5j, g2~j!5e sinkj, g3~j!52Uj, ~6!

where k52p/l, l is the wavelength ande is the initial
disturbance height, results in a possible curvature singula
in the sheet shape at a timetc given by

11p t̃ c1 ln~2p t̃ c!5 ln ~2/pẽ!, ~7!

where ẽ5e/l and t̃ c5tcU/l. This result requires thatẽ
!1. The mechanism of singularity formation is the focusi
of vorticity onto the singularity point by the nonlinear she
dynamics fort.0. This choice of initial disturbance does n
correspond to a normal mode of the linearized Birkhoff–R
evolution equation. However, a modification of Moore’s r
sult for a normal mode disturbance was given by Krasn6

who showed that the initial sheet disturbance of wavelen
l given by

g1~j!5j2e sin~kj!, g2~j!5e sin~kj!,
~8!

g3~j!52Uj,

produced Moore’s curvature singularity at a timetc given by

11p t̃ c1 ln~p t̃ c!5 ln ~1/2pẽ!. ~9!

We now introduce and define a ‘‘cylindrical’’ sheet. W
work in Cartesian coordinates (x8,y8,z8) and use Lagrangian
sheet coordinates~j8,h8!. For present purposes, a vorte
sheet is said to be cylindrical at some time instant if
shape geometry and vorticity distribution are of the form

X8~j8,h8!5S f 1~j8!

h8
f 2~j8!

D , G5 f 3~j8!1c1h8,

~10!

W5
] f 3

]j8 S 0
1
0
D 2c1S ] f 1 /]j8

0
] f 2 /]j8

D ,

wherec1 is a constant equal to the gradient ofG in the y8
direction. The functionsf 1 and f 2 are such thatf 1(j)5j

1 f̂ 1(j), with u f̂ 1(j)/ju→0 as j→`, and u f 2(j)u is
bounded. A line parallel to they8-axis is the generator of th
cylindrical surface. Substituting Eq.~10! into Eq. ~3! gives
the velocity at a general field pointx8 as the sum of two
components

u~x8!5u~x8!2D1u~x8!y8 , ~11!

where

u~x8!2D5
1

4p E
2`

` E
2`

` ] f 3

]j8 S 0
1
0
D 3~x82X8!

dj8 dh8

ux82X8u3
,

~12!
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2p E
2`

` S ] f 3

]j8D 1

~x82 f 1!21~z82 f 2!2

3S z82 f 2

0
2x81 f 1

D dj8, ~13!

and

u~x8!y852
c1

4p E
2`

` E
2`

` S ] f 1 /]j8
0

] f 2 /]j8
D 3~x82X8!

dj8 dh8

ux82X8u3 ,

~14!

5
c1

2p E
2`

` ~] f 1 /]j8!~z82 f 2!2~] f 2 /]j8!~x82 f 1!

~x82 f 1!21~z82 f 2!2

3S 0
1
0
D dj8. ~15!

This last integral can be evaluated analytically to give

u~x8!y85S 0

6 1
2 c1

0
D , ~16!

where the plus sign holds for a field point which lies abo
the sheet and the minus sign applies if the field point l
below the sheet. Thus the sheet-induced velocity in
y8-direction is constant and nonzero at all points above
below the sheet, whenc1Þ0, irrespective of the sheet shap
in the (x82z8) plane. Moreover, comparison of Eqs.~13!
and~5! shows that the components of the induced velocity
the (x82z8) plane are identical to an equivalent 2D sheet,
the sense described above. Whenx8˜X8 on the sheet, the
component of the velocity in they8-direction, taken as the
average of the constant values from above and below, is
at all points on the sheet. It therefore follows that:

~i! a vortex sheet which is cylindrical at some initial tim
in the sense of Eq.~10! remains cylindrical for all time, and

~ii ! the nonlinear evolution of a cylindrical sheet is ide
tical to that of an equivalent (c150) 2D vortex sheet with
the same initial conditions.

The third of equations~10! shows that whenc1Þ0 there
are spatially nonuniform vorticity components on the sh
in both thex8 and they8 directions. This vorticity is passive
and has no dynamical effect on the sheet evolution. Th
results are reminiscent of Stuart’s procedure15 for construct-
ing 3D solutions of the Euler equations from a given 2
solution.

We now obtain the shape and vorticity distributions fo
3D normal mode disturbance to the vortex sheet. The spa
parts of the normal modes obtained from a linear analysi
terms of perturbation potentials above and below the fl
sheet with uniform velocity jumpU in the x direction, are

h~x,y!5A exp@ i ~mx1ny!#, ~17!

f6~x,y!5B6 exp~7kz!exp@ i ~mx1ny!#7 1
2Ux, ~18!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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whereh is the disturbance in thez direction,f6 are velocity
potentials above and below the sheet,m,nare wave numbers
in the x,y directions respectively and

k25m21n2, B65 1
2 UA ~m/k! ~ i 71!. ~19!

At an initial time t50 this corresponds to a potential jum
function

G[f12f252Ux2UA ~m/k! exp@ i ~mx1ny!#. ~20!

We refer to Eqs.~17! and ~20! as normal modes of the 3D
vortex sheet.

We now rotate from~x,y,z! axes to (x8,y8,z8) axes using

kx85mx1ny, ky852nx1my, z85z. ~21!

In the (x8,y8,z8) axes, the sheet shape and potential ju
distribution corresponding to the real parts of the linear n
mal mode Eqs.~17!–~20! can then be parameterized as

X8~j8,h8!5S j8
h8

e cos~kj8!
D ,

~22!
G52U ~m/k! @j81e cos~kj8!#1U~n/k!h8,

where e5A. A re-parameterizationj̃85j81e cos(kj8), h̃8
5h8 applied to Eq.~22! accompanied by a phase shift, an
expansion of the result toO(e) gives

X8~j8,h8!5S j82e sin~kj8!

h8
e sin~kj8!

D ,

~23!
G52 ~m/k!U@j82 ~n/m!h8#,

where following the re-parameterization we have putj̃8
→j8, h̃8→h8. When n50 Eq. ~23! agrees with Eq.~8!.
WhennÞ0 Eq. ~23! is the same as Eq.~8! if U in Eq. ~8! is
replaced bymU/k and the termh8 in the G equation of Eq.
~23! is omitted. This is effectively a statement of Squir
theorem for oblique disturbances. We remark that the dif
ence in form of Eqs.~22! and ~8! arises because the 2
normal mode was obtained from a linear analysis of the
Birkhoff–Rott evolution equation while our Eq.~17! is ob-
tained from an analysis in terms of linear perturbation pot
tials; the expressions must agree toO(e).

Comparing Eq.~10! to Eq. ~23! shows that in the
(x8,y8,z8) axes, the geometry and vorticity for the 3D no
mal mode correspond to our definition of a cylindrical vort
sheet with the choices

f 15j82e sin~kj8!, f 25e sin~kj8!,
~24!

f 352 ~m/k!Uj8, c15~n/k!U.

If this is taken as a finite amplitude initial condition, the
from ~i! and ~ii ! following Eq. ~16! we can conclude that

~a! the evolution of the vortex sheet from an initial co
dition corresponding to a finite-amplitude 3D normal mo
disturbance remains cylindrical for all time, and

~b! in the (x82z8) plane its nonlinear evolution is th
same as that for an equivalent 2D normal mode with suita
Downloaded 16 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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modified velocity jump and ratio of disturbance amplitude
wavelength. WhennÞ0, the evolution proceeds with a un
form shear, with velocity differencenU/k, along the genera-
tor of the cylindrical sheet geometry. The vortex lines a
then not parallel to the generator.

To the order of accuracy of Eq.~9!, it follows that the
evolution produces a curvature singularity at a timetc ob-
tained from

11p t̃ c1 ln~p t̃ c!5 ln ~1/2pẽ!, ~25!

where we now have

t̃ c5tc@~m/k!U#/l5tcmU/2p , ~26!

ẽ5e/l5~e/2p!Am21n2, ~27!

l5 2p/k52p/Am21n2 . ~28!

The singularity forms along the linesmx1ny5b, parallel to
the generator of the 3D cylindrical sheet, whereb is some
constant. Equations~13!, ~16! and ~25!–~28! summarize the
main results of this note. They show that the singular
which forms following a finite amplitude, 3D normal mod
perturbation to an undisturbed vortex sheet is the same
Moore’s result for the 2D perturbation. Whene, k andU are
held constant, it is clear thattc is a minimum for the 2D case
n50.

ACKNOWLEDGMENTS

This work was partially supported by NSF Grant N
CTS 9634222. The authors are grateful for useful discuss
with S. J. Cowley.

1G. Birkhoff and J. Fisher, ‘‘Do vortex sheets roll up?,’’ Rend. Circol
Mat. Palermo8, 77 ~1959!.

2P. G. Saffman and G. R. Baker, ‘‘Vortex interactions,’’ Annu. Rev. Flu
Mech.11, 95 ~1979!.

3P. G. Saffman,Vortex Dynamics~Cambridge U.P., Cambridge, 1992!.
4D. W. Moore, ‘‘The spontaneous appearance of a singularity in the sh
of an evolving vortex sheet,’’ Proc. R. Soc. London, Ser. A365, 105
~1979!.

5D. W. Moore, ‘‘Numerical and analytical aspects of Helmholtz instab
ity,’’ in Theoretical and Applied Mechanics, Proc. XVI ICTAM, edited by
F. I. Niordson and N. Olhoff~North-Holland, New York, 1985!.

6R. Krasny, ‘‘A study of the singularity formation in a vortex sheet by th
point-vortex approximation,’’ J. Fluid Mech.167, 65 ~1986!.

7D. I. Meiron, G. R. Baker, and S. A. Orszag, ‘‘Analytic structure
vortex-sheet dynamics. Part 1. Kelvin–Helmholtz instability’’ J. Flu
Mech.114, 283 ~1982!.

8M. J. Shelly, ‘‘A study of singularity formation in vortex-sheet motion b
a spectrally accurate vortex method,’’ J. Fluid Mech.244, 493 ~1992!.

9S. J. Cowley, G. R. Baker, and S. Tanveer, ‘‘On the formation of Moo
curvature singularities in vortex sheets,’’ J. Fluid Mech.378, 233 ~1999!.

10R. Samtaney and D. I. Pullin, ‘‘On initial and self-similar solutions of th
compressible Euler equations,’’ Phys. Fluids8, 2650~1996!.

11D. Pugh, ‘‘Development of vortex sheets in Bousinesq flows—format
of singularities,’’ Ph.D. thesis, University of London, 1998.

12Q. Nie and G. R. Baker, ‘‘Application of adaptive quadrature to a
symmetric vortex sheet motion,’’ J. Comp. Phys.143, 49 ~1998!.

13T. Ishihara and Y. Kaneda, ‘‘Singularity formation in three-dimension
motion of a vortex sheet,’’ J. Fluid Mech.300, 339 ~1994!.

14R. E. Caflisch and X. Li, ‘‘Lagrangian theory for 3D vortex sheets wi
axial or helical symmetry,’’ Transport Th. Stat. Phys.21, 559 ~1992!.

15J. T. Stuart, ‘‘The production of intense shear layers by vortex stretch
and convection,’’ AGARD Report 514~1965!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp


