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On singularity formation in three-dimensional vortex sheet evolution
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It is shown that if a doubly-infinite vortex sheet has cylindrical shape and strength distributions at
some initial time, then this property is retained in its subsequent evolution. It is also shown that in
planes normal to the generator of the cylindrical sheet geometry, the nonlinear evolution of the sheet
is the same as that of an equivalent strictly two-dimensional sheet motion. These properties are used
to show that when an initially flat vortex sheet is subject to a finite-amplitude, three-dimensional
normal mode perturbation, weak singularities develop along lines which are oblique to the
undisturbed velocity jump vector at a time that can be inferred from an extension of Mperets

R. Soc. A365 105 (1979] result for two-dimensional motion. €999 American Institute of
Physics[S1070-663199)01010-7

The nonlinear evolution of a doubly-infinite, uniform X(&, 7,1)
vortex sheet subject to small out-of-plane disturbances is a X(& 0= Y(&nb) I=T(& 7) 1)
classic problem in fluid mechanics. It has long been known n Z(& ) ’ v

that the linearized Kelvin—Helmholtz instability of the vortex

;heet 'subject tp 't\(vo-dimensional shape disturbances resulfgere (¢7) are Lagrangian parameters defining the sheet
in an ill-posed initial value problehf—see Saffmahfor a position X, and the velocity potential jump. Unless other-

. . 5 . .
discussion. MOO'_% studied the nonlinear problem by con- ise specified the dependence on titmeill be suppressed.
structing small-disturbance solutions of the exact Birkhoff—1nea vortex lines on the sheet are given by

Rott equation describing vortex sheet evolution in two space

dimensions. Using approximate asymptotic methods, Moore axX  oX

demonstrated the possible formation of a finite-time singu- = W/ &—gxa—

larity in the form of an infinite sheet curvature and a cusp in n

the sheet strengtfiocal velocity jump. Subsequent numeri-

cal studie§™® of vortex sheet evolution up to the time at

which the singularity forms have strongly supported this pre- 1 (= (= WX(X=X)

diction. These results have practical relevance to the point-  y(x)= _J f —————d&dy. 3

wise convergence of numerical solutions to the compressible 4 ) w)w |x=X]

Euler equations, where slip surface®rtex sheetfsare pro-

duced at triple points? Whenx— X on the sheet, the left hand side of E&) can be
There is some evidence for the formation of singularitiesePlaced bygX/at resulting in a Lagrangian equatiénfor

in the evolution of vortex sheets in axisymmetric the sheet evolution from given initial condition$(¢, 7.t

geometry**?and for certain three-dimensional perturbations=0), I'(§, 7). The integral must then be interpreted as a Had-

to a plane vortex sheét.In the present note we consider the amard principal-part integral; thus sheet velocities are the

vortex sheet evolution when subject to a disturbance which igverage of the sheet-induced velocity when X from ei-

a finite-amp”tude, three-dimension@D) normal mode of ther side. In the sheet eVOlUti(Tmf, 77) is invariant with time.

W_&F&X al' aXx 2
W @

At a field pointx, the velocity induced by the sheet is

the linear stability problem. The 3D normal mode is cylin- ~ We define a strictly 2D vortex sheet evolution by
drical, in a defined sense. It is shown that the full nonlinear

sheet motion then remains cylindrical and that it is identical 91(&.1) a9 0

to a suitably chosen, strictly two-dimension@D) vortex  X(&,7,t)= 7 , I'=g3(¢é), W= a—; 4
sheet evolution. It follows that the singularity formation pro- go(&,1) 0

cess is the same as for a 2D normal mode disturbance, al-
lowing a straightforward extension of Moore’s result to the The field velocity is then
case of an initial disturbance consisting of a finite amplitude,

3D normal mode. 1 (= (g 1 z—g;
Consider the motion of a doubly-infinite vortex sheet in U(X)ZDZ_J (_3) . 5 0 dé.

three dimensions. In Cartesian coordinatey,? the undis- 2m ) e\ 06 | (X=91) "+ (2=92)7 | _, 9

turbed sheet shape lies in th&<y) plane with uniform (5)

x-velocities of — U for z>0 and3U for z<0, whereU is

the velocity jump magnitude acrogs-0 in thex-direction. It follows from Egs.(4) to (5) that the vortex sheet shape is
For a general sheet shape we employ a parametric surfag@variant in they-direction and that vortex lines remain par-
description allel to they-axis. Whenx—X on the sheet and the left-side
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of Eq. (5) is replaced byX/dt, a version of the Birkhoff— 1 (= [ofs 1
Rott equation for 2D vortex sheet evolution results. o le (9—5, (X — )2+ (2 —f,)2
Moore* showed that the 2D evolution of a vortex sheet ! 2
from initial conditions given, in our notation by z'—f,
: X 0 dé¢’, 13
G(O=E GiO)=esinké, glO=-UL (6 ) 13
where k=2m/\, \ is the wavelength and is the initial
disturbance height, results in a possible curvature singularity
in the sheet shape at a timggiven by af 1 19& de’ dy’
~ ~ 4 )= — X _X ,
1+ 7t +In(271,) =In (2/77), @ UXDy fwfm(af Jog" ) X=X o |3
(14)

whereé=e/\ andt.=t,U/\. This result requires thak
<1. The mechanism of singularity formation is the focusing Cy [ (9f110& ) (2" —F)—(9f10E") (X' —F1)
of vorticity onto the singularity point by the nonlinear sheet “ox ). (X — )2+ (2 —f,)2
dynamics fort>0. This choice of initial disturbance does not
correspond to a normal mode of the linearized Birkhoff—Rott ( o)

X dé

evolution equation. However, a modification of Moore’s re-

1 15
sult for a normal mode disturbance was given by Krasny, 0 (19
who showed that the initial sheet disturbance of wavelength
\ given by This last integral can be evaluated analytically to give
g1(§)=¢&—esin(ké), ga(§)=esin(ké), 0
) ux' )y =| *ic, |, 16
05(8)= ~U¢, S 10

produced Moore’s curvature singularity at a titgegiven by where the plus sign holds for a field point which lies above

= T \— ~ the sheet and the minus sign applies if the field point lies
1+ ate+In(aty)=In(1/27€). 9 . S
mletin(te) (1/2me) © below the sheet. Thus the sheet-induced velocity in the
We now introduce and define a “cylindrical” sheet. We y’-direction is constant and nonzero at all points above and
work in Cartesian coordinates/(,y’,z') and use Lagrangian below the sheet, wher, #0, irrespective of the sheet shape
sheet coordinate$¢’,'). For present purposes, a vortex in the (x’—2') plane. Moreover, comparison of Eq4.3)
sheet is said to be cylindrical at some time instant if theand(5) shows that the components of the induced velocity in

shape geometry and vorticity distribution are of the form the (x’—2) plane are identical to an equivalent 2D sheet, in
the sense described above. Whér-X’ on the sheet, the

fi(&") component of the velocity in thg'-direction, taken as the
X'"(&, 9= 7 =fy(&")+cy7, average.of the constant values from above and below, is zero
fo(&") at all points on the sheet. It therefore follows that:
(10) (i) a vortex sheet which is cylindrical at some initial time
0 of L 19€' in the sense of Eq10) remains cylindrical for all time, and
of ! - , : o o
W= _? 1]—c, 0 , (i) the nonlinear evolution of a cylindrical sheet is iden-
23 9f,19¢" tical to that of an equivalentc{=0) 2D vortex sheet with

the same initial conditions.
wherec; is a constant equal to the gradientlofin they’ The third of equation$10) shows that whew;+# 0 there
direction. The functions; and f, are such thaf,(§)=¢  are spatially nonuniform vorticity components on the sheet
+f,(&), with |f1(g)/§|ﬂo as £€—o, and |[f,(&)] is in both thex’ and they’ directions. This vorticity is passive
bounded. A line parallel to thg’ -axis is the generator of the and has no dynamical effect on the sheet evolution. These
cylindrical surface. Substituting Eq10) into Eq. (3) gives  results are reminiscent of Stuart's proceduifer construct-
the velocity at a general field point as the sum of two ing 3D solutions of the Euler equations from a given 2D

components solution.
We now obtain the shape and vorticity distributions for a

u(x")=u(x")ptu(x’)y, (1) 3D normal mode disturbance to the vortex sheet. The spatial
parts of the normal modes obtained from a linear analysis in
where terms of perturbation potentials above and below the flat-

sheet with uniform velocity jumpJ in the x direction, are

= df3 d¢'d 77 .
u(x")2p=7— Lof,mag ( ) X=X X h(x,y)=Aexdi(mx+ny)], 17
(12 ¢ (X,y)=B. expg Fkz)exdi(mx+ny)]F3Ux, (18
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whereh is the disturbance in thedirection,¢.. are velocity — modified velocity jump and ratio of disturbance amplitude to
potentials above and below the sheetnare wave numbers wavelength. Whem= 0, the evolution proceeds with a uni-
in the x,y directions respectively and form shear, with velocity differenceU/k, along the genera-
tor of the cylindrical sheet geometry. The vortex lines are

2_ 24 12 _1 .

kKi=m™+n®,  B.=3UA(M/K) (i+1). (19 then not parallel to the generator.
At an initial timet=0 this corresponds to a potential jump To the order of accuracy of Eq9), it follows that the
function evolution produces a curvature singularity at a titpeob-
=6, ¢ =—Ux—UA(MK exfi(mxtny)]. (20 t@inedfrom
We refer to Eqs(17) and (20) as normal modes of the 3D 1+mte+In(wte)=In(1/27€), (25
vortex sheet. _ where we now have

We now rotate fronix,y,2 axes to k’,y’,z’) axes using 5

kx'=mx+ny, Kky'=—-nx+my, 2z'=z (21 te=t (MU =temU/2m, 26

~_ — 2 2

In the (x’,y’,z’) axes, the sheet shape and potential jump €~ e/\=(e/2m)ym=+n®, (27
distribution corresponding to the real parts of the linear nor- , _ 27/k= 27/ \Jm?+n2, (28)

mal mode Eqs(17)—(20) can then be parameterized as
The singularity forms along the linesx+ny=Db, parallel to

5’, the generator of the 3D cylindrical sheet, whérés some
X' (&, n')= U , constant. Equation€l3), (16) and (25)—(28) summarize the
ecogké’) main results of this note. They show that the singularity
, , , (220 which forms following a finite amplitude, 3D normal mode
=— + + . . .
r U (mfk) [&"+ e cogke) ]+ Un/k) 7", perturbation to an undisturbed vortex sheet is the same as
where e=A. A re-parameterizatio’ = ¢’ + e coské'), 7' Moore’s result for the 2D perturbation. Whenk andU are
=7’ applied to Eq(22) accompanied by a phase shift, and held constant, it is clear that is a minimum for the 2D case
expansion of the result tO(e) gives n=0.
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