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Abstract—We consider three capacity definitions for composite
channels with channel side information at the receiver. A com-
posite channel consists of a collection of different channels with a
distribution characterizing the probability that each channel is in
operation. The Shannon capacity of a channel is the highest rate
asymptotically achievable with arbitrarily small error probability.
Under this definition, the transmission strategy used to achieve
the capacity must achieve arbitrarily small error probability for
all channels in the collection comprising the composite channel.
The resulting capacity is dominated by the worst channel in its
collection, no matter how unlikely that channel is. We, therefore,
broaden the definition of capacity to allow for some outage.
The capacity versus outage is the highest rate asymptotically
achievable with a given probability of decoder-recognized outage.
The expected capacity is the highest average rate asymptotically
achievable with a single encoder and multiple decoders, where
channel side information determines the channel in use. The
expected capacity is a generalization of capacity versus outage
since codes designed for capacity versus outage decode at one of
two rates (rate zero when the channel is in outage and the target
rate otherwise) while codes designed for expected capacity can
decode at many rates. Expected capacity equals Shannon capacity
for channels governed by a stationary ergodic random process
but is typically greater for general channels. The capacity versus
outage and expected capacity definitions relax the constraint that
all transmitted information must be decoded at the receiver. We
derive channel coding theorems for these capacity definitions
through information density and provide numerical examples to
highlight their connections and differences. We also discuss the
implications of these alternative capacity definitions for end-to-end
distortion, source-channel coding, and separation.

Index Terms—Capacity versus outage, composite channel,
expected capacity, information density, separation, Shannon
capacity.

I. INTRODUCTION

C HANNEL capacity has a natural operational definition
associated with reliable communication: the highest rate

at which information can be sent over the channel with arbi-
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trarily small probability of error. Channel coding theorems and
their converses prove that the capacity associated with a given
channel model equals a formula that depends on the channel’s
probabilistic description. In his landmark paper [1], Shannon
proved that the formula

(1)

equals the capacity of a memoryless channel, where is the
channel input, is the channel output, and is the av-
erage mutual information between and . The formula (1),
extended to the limiting expression

(2)

has been shown, when it exists, to equal the capacity of cer-
tain channels with memory, where now the input is the sequence

of length with corresponding output sequence . In par-
ticular, Dobrushin proved that channel capacity is given by (2)
for information stable channels. Channels for which the formula
(2) does not converge to a limit are called information unstable
channels, and for these channels this formula does not in gen-
eral equal capacity. Examples of information unstable channels
include the stationary regular decomposable channels [2], the
stationary nonanticipatory channels [3], and the averaged mem-
oryless channels [4].

In [5], Verdú and Han showed that the formula

(3)

equals capacity for general channels, where is the
liminf in probability of the normalized information density be-
tween input sequence and output sequence . In particular,
they showed that this formula equals capacity of very general
channels without any assumptions such as memorylessness,
information stability, stationarity, or causality on the channel’s
probabilistic description.

The focus of this paper is on one class of these general in-
formation unstable channels, the composite channel. A com-
posite channel, formally defined in Section III, is a collection
of channels parameterized by , with each
channel in the collection con-
sisting of a sequence of -dimensional conditional output dis-
tributions mapping from a common input alphabet to a common
output alphabet. The channel input-output distribution is deter-
mined by the random variable , independent of the channel
input, which is chosen according to some channel state distri-
bution at the beginning of transmission and then held
fixed. Thus, composite channels have an input-output distribu-
tion taken from a collection of possible channels . A
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compound channel [6] or class of channels [7], [8] is a similar
model in that it also consists of a collection of possible chan-
nels . However, these channel collections do
not assume any distribution over the channels in the collection.
Without this distribution, a transmission strategy can be unre-
liable with high probability unless it is designed to work reli-
ably for all possible channels in the collection, since a “worst-
case” channel may be realized with arbitrary probability. An-
other channel model associated with a collection of channels is
the average channel defined by Ahlswede [4]. This channel, also
called the mixed channel by Han [9], has a single input-output
distribution associated with mixing over a composite channel
distribution, i.e., the mixed channel has conditional distribution

. While the mixed channel is
defined over a collection of channels, its input-output distribu-
tion , as a weighted sum, has the same or similar charac-
teristics as each input-output distribution in the collection.
Hence, if the capacity of each channel in the collection is known,
the capacity of the mixed channel is usually straightforward to
determine (e.g., for discrete channel collections [4] or general
channel collections [9]). Composite channels also differ from
the arbitrarily varying channel [6], [10], where the channel state
changes on each transmission in a manner that depends on the
channel input, since the state of a composite channel is in-
dependent of its input. The Shannon capacity for all of these
channels has been explicitly characterized. In particular, the ca-
pacity of the composite channel is a special case of the general
channel capacity derived by Verdú and Han. However, the distri-
bution over the collection of channels is not used in this capacity
calculation, since the definition of Shannon capacity requires re-
liable communication for all channels in the collection. Hence,
the Verdú–Han (Shannon) capacity of a composite channel will
be the same as the Shannon capacity of a compound channel
over the same collection of possible channels ,
regardless of the distribution over the composite channel
states. Our outage and expected capacity definitions take advan-
tage of this distribution to allow unreliable transmission over
the composite channel with some known probability. These ca-
pacity definitions are not possible for any of the other channel
models described above, since either their channel state distri-
bution is unknown, there is only a single channel state based on
mixing, or the channel state depends on the channel input.

The composite channel model approximates many commu-
nication systems of practical interest, for instance, applications
with fixed delay constraints such that a codeword may not expe-
rience all possible channel states. In particular, communications
systems designed for slowly fading wireless channels typically
have the channel coherence time much longer than the codeword
duration. Hence, a codeword will experience one or just a few
fading realizations out of all possible fading values. The com-
posite channel model can also be generalized to channels for
which the optimal input distribution induces a joint input-output
distribution on which the ergodic decomposition theorem [11,
Theorem 1.8.2] holds, e.g., stationary distributions defined on
complete, separable metric spaces (Polish spaces). In this case
the channel index becomes the channel’s ergodic mode.

In general, the capacity of a channel is formally defined as
the maximal rate at which information can be reliably trans-

mitted over it (see, e.g., Definition 1.1 of [6]). Reliability is
here used to mean that the maximum decoding error, over all
codewords, can be made arbitrarily close to zero. Reliability
is generally achieved by allowing the code blocklength (and,
therefore, the delay) to grow without bound. This definition
holds for all channels and has enabled great insight and design
inspiration in communication systems. However, since the
definition requires that all transmitted information be correctly
decoded, for composite channels the capacity is dominated by
the performance of the “worst” component channel, no matter
how small its probability. This highlights the pessimistic nature
of this capacity definition, which requires arbitrarily small error
probability. An alternate capacity definition that allows errors
is -capacity, denoted , which is given in Definition 1.1 of
[6] as the maximal rate at which information can be transmitted
over a channel such that the maximum decoding error, over
all codewords, does not exceed . The relationship between
a channel’s -capacity and its capacity, denoted , is thus

. Several alternate capacity definitions have
been considered that incorporate a notion of channel outage.
In particular, outage capacity has been applied to channels that
vary over multiple channel states with perfect state information
available at the transmitter(s) and receiver(s). The traditional
definition of capacity for this model, also called the ergodic or
Shannon capacity, equals the maximum mutual information for
each channel state averaged probabilistically over all channel
states. This average capacity is achieved by adapting the
transmission rate to approach capacity in each channel state.
Outage capacity is typically applied to systems where a variable
transmission rate is not possible or desirable, for example in
fixed-rate delay-constrained applications such as voice. In this
setting, the transmitter declares an outage for certain states
and transmits at the same fixed rate in nonoutage states. The
outage capacity defines the maximal (fixed) rate achievable in
all nonoutage states with asymptotically small error probability
[12], [13]. For an outage probability of zero, this definition
reduces to zero-outage or delay-limited capacity [14]. For
the same channel model with state information available only
at the receiver, capacity versus outage is a common metric,
whereby the transmitter sends at a fixed rate, and the receiver
declares an outage when the channel cannot support this rate
with asymptotically small error probability [15]. These outage
notions in capacity definitions are most commonly applied to
wireless channel models [16], [17], as they reflect common de-
sign practice, where some loss of data is tolerated in exchange
for higher overall data rates. Our definition of capacity versus
outage given below extends these ideas to composite channels
with receiver knowledge of the channel state.

Throughout this paper we assume the channel state informa-
tion (CSI) is revealed to the receiver (CSIR), but no channel
state information is available at the transmitter (CSIT). We as-
sume CSIR since otherwise capacity analysis must be based on
mismatch capacity, where the decoding rule is mismatched to
the actual channel realization, as we discuss in more detail in
Section III. Typically CSI is measured at the receiver to obtain
CSIR and, when a feedback link is available, sent back to the
transmitter to obtain CSIT. A downlink satellite communica-
tion system is an example where this feedback link is not avail-
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able since the terrestrial receivers do not typically have suffi-
cient transmit power to feed back the channel knowledge to the
satellite transmitter. In other cases, the feedback channel may
be available but incur too much delay to be useful, or too much
overhead to utilize. Alternatively the transmitter may opt for
simplified strategies which do not implement any adaptive trans-
mission based on channel state, and, therefore, CSIT becomes
irrelevant.

The first alternative definition we consider is capacity versus
outage. Under this definition, without CSIT the transmitter is
forced to use a single code, but the decoder may decide whether
the information can be reliably decoded based on CSIR. Ca-
pacity versus outage assumes that the transmission works well
most of the time, but with some maximal probability , the
decoder sees a bad channel and declares an outage; in this
case, the transmitted information is lost. The encoding scheme
is designed to maximize the capacity for nonoutage states.
Capacity versus outage was previously examined in [15] for
single-antenna cellular systems, and later became a common
performance criterion for multiple-antenna wireless fading
channels [17]–[19]. In this work we formalize the operational
definition of capacity versus outage and show via a coding
theorem and converse that the formula for this capacity is based
on the distribution of the normalized information density.

Another method for dealing with channels of variable quality
is to allow the receiver to decode partial transmitted informa-
tion. This idea can be illustrated using the broadcast strategy
suggested by Cover [20]. The transmitter views the composite
channel as a broadcast channel with a collection of virtual re-
ceivers indexed by channel realization . The encoder uses a
broadcast code and encodes information as if it were broad-
casting to the virtual receivers. The receiver chooses the appro-
priate decoder for the broadcast code based on the channel
in action. The goal is to identify the point in the broadcast rate
region that maximizes the expected rate, where the expectation
is taken with respect to the state distribution on . The
expected capacity for Gaussian slowly fading channels was first
obtained in [21], and these results were later extended to MIMO
fading channels in [22]. The formal definition of expected ca-
pacity was introduced in our earlier work [23], where upper and
lower bounds were also derived for the expected capacity of any
composite channel. Details of the proofs together with a numer-
ical example of a composite binary symmetric channel (BSC)
appeared in [24]. Application of the broadcast strategy to min-
imize the end-to-end expected distortion is also considered in
[25]–[27].

The alternative capacity definitions are of particular interest
for applications where it is desirable to maximize average re-
ceived rate even if it means that part of the transmitted infor-
mation is lost and the encoder does not know the exact deliv-
ered rate. In this case the receiver either tolerates the informa-
tion loss or has a mechanism to recover the lost information.
Examples include scenarios with some acceptable outage prob-
ability, communication systems using multiresolution or mul-
tiple description source codes such that partial received infor-
mation leads to a coarse but still useful source reconstruction
at a larger distortion level, feedback channels where the re-
ceiver tells the transmitter which symbols to resend, or appli-

cations where lost source symbols are well approximated by
surrounding samples. The received rate averaged over multiple
transmissions is a meaningful metric when there are two time
horizons involved: a short time horizon at the end of which de-
coding has to be performed because of stringent delay or de-
coder complexity constraints, and a long time horizon at the end
of which the overall throughput is evaluated. For example, con-
sider a wireless service subscriber billed based on usage. When-
ever the user requests a voice or data transmission over the net-
work, he usually expects the information to be delivered with
small delay, i.e., the short time horizon. However, the service
charge is typically calculated on a monthly basis depending on
the total or average throughput within the entire period, i.e., the
long time horizon.

The remainder of this paper is structured as follows. In
Section II, we provide background on channel capacity def-
initions leading up to the generalized capacity definition of
Verdú and Han. Composite channels are defined in Section III.
Shannon capacity of composite channels is considered in
Section IV, where we show that this capacity only depends
on the support set of the component channel distribution. In
Section V, we give a formal definition of the capacity versus
outage and compare it with the closely-related concept of
-capacity. In Section VI, we introduce the expected capacity

and establish a bijection between the expected-rate code and the
broadcast channel code. In Section VII, we compare capacity
definitions and their implications through two examples: the
Gilbert–Elliott channel and the BSC with random crossover
probabilities. The implication of these alternative capacity
definitions for end-to-end distortion, source-channel coding
and separation is briefly discussed in Section VIII. Conclusions
are given in Section IX.

II. BACKGROUND

Shannon in [1] defined the channel capacity as the supremum
of all achievable rates for which there exists a sequence of

codes such that the probability of error tends to zero as
the blocklength approaches infinity, and showed the capacity
formula (1)

holds for memoryless channels. Although the capacity formula
(1) is a single-letter expression, the direct channel coding the-
orem requires coding over long blocklengths to achieve arbi-
trarily small error probability. The receiver decodes by joint typ-
icality with the typical set defined as [28, pp. 195]

(4)

which relies on the law of large numbers to obtain the asymp-
totic equipartition property (AEP).
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For channels with memory, the formula (1) generalizes to the
limit (2) when it exists

This formula equals capacity for information stable channels.
This class of channels, which includes memoryless channels as
a special case, can be roughly described as having the property
that the input maximizing the mutual information
and its corresponding output behave ergodically. In a sense, an
ergodic sequence is the most general dependent sequence for
which the strong law of large numbers holds [28, p. 474]. The
coding theorem of information stable channels follows similarly
as that of memoryless channels.

However, the joint typicality decoding technique cannot be
generalized to information unstable channels. For general chan-
nels, the set defined in (4) does not have the AEP. As evi-
dence, the probability of does not approach 1 for large .
Thus, we may not construct channel codes which have small
error probability and meanwhile have a rate arbitrarily close
to (2). Therefore, the right-hand side of (2), although still a
valid upper bound for channel capacity, is not necessarily tight.
In [5], Verdú and Han presented a tight upper bound for gen-
eral channels and showed its achievability through Feinstein’s
lemma [29]. As discussed in Section IV, achievability can also
be shown based on an appropriately-modified notion of typical
sets.

This information stable condition can be illustrated using the
concept of information density.

Definition 1 (Information Density): Given a joint distribution
on with marginal distributions and ,

the information density is defined as [30]

(5)

The distribution of the random variable is
referred to as the information spectrum of . It is observed
that the normalized mutual information

is the expectation of the normalized information density

with respect to the underlying joint input-output distribution
, i.e.,

Denote by the input distribution that maximizes the mu-
tual information and by the corresponding
output distribution. The information stable condition [31,

Fig. 1. Empirical distribution of normalized information density.

Definition 3] requires that the normalized information density
, as a random variable, converges in distribu-

tion to a constant equal to the normalized mutual information
as the blocklength approaches infinity.

In [5], Verdú and Han proved that the largest rate achievable
for general channels with asymptotically small error probability
is given by the formula (3)

where is the liminf in probability of the normalized
information density. In contrast to information stable chan-
nels where the distribution of converges to
a single point, for information unstable channels, even with
infinite blocklength the support set1 of the distribution of

may still have multiple points or even contain
an interval. The Shannon capacity equals the infimum of this
support set.

The information spectrum of an information stable channel is
demonstrated in the upper plot of Fig. 1. As the blocklength in-
creases, the convergence of the normalized information density
to the channel capacity follows from the weak law of large num-
bers. In the lower plot of Fig. 1, we show the empirical distri-
bution of for an information unstable channel.
The distribution of the normalized information density does not
converge to a single point, so (2) does not equal the capacity,
rather it is given by in (3).

III. COMPOSITE CHANNELS

We now formally define a composite channel.

Definition 2 (Composite Channel): A channel is a
composite channel if it is statistically modeled as a parame-
terized sequence of -dimensional conditional distributions

. The channel input-output
distribution for a given is determined by the random
variable , independent of the channel input, which is chosen
according to some channel state distribution at the
beginning of transmission and is hence constant for all .
Thus, for any integer , is the conditional distri-
bution from the input space to the output space . Let

and denote the input and output processes, respectively,

1The smallest closed set of which the complement set has probability measure
zero.
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for the given sequence of channels. Each process is speci-
fied by a sequence of finite-dimensional distributions, e.g.,

.
The composite channel model is a useful model (and

well-models practical channels) regardless of assumptions
about CSIR and CSIR. Indeed, the general capacity formula
of Verdú and Han makes no assumptions about CSI at either
the transmitter or receiver. Note, however, that without CSIR,
capacity analysis must be based on mismatch capacity, i.e.,
capacity when the decoding rule is mismatched to the ac-
tual channel (see, e.g., [32] and the references therein). The
Verdú–Han generalized capacity is a special case of mismatch
capacity, where the decoding rule is based on the worst-case
channel. To avoid the pessimistic nature of this capacity
formula, our generalized capacity definitions are based on
decoding rules matched to the channel, i.e., when CSIR is
available. These generalized capacity definitions could be ex-
tended to mismatch capacity, in which case exact CSIR would
not be needed and, in the limit of no information at all about
the channel, capacity would revert to that of the Verdú–Han
formula. To consider composite channels with CSIR but no
CSIT, we represent the channel side information as an addi-
tional output of the channel. Specifically, we let ,
where is the channel side information and is the output of
the channel described by parameter . Throughout, we assume
that is a random variable independent of and unknown to
the encoder. Thus, for each

and the information density (5) can be rewritten as

(6)

In the following, we see that the generalized capacity definitions
of composite channels depend crucially on information density
instead of mutual information. We also denote by the
limit of the cumulative distribution function (cdf) of the nor-
malized information density, i.e.,

(7)

where the subscript emphasizes the input process .

IV. SHANNON CAPACITY

We now proceed to define the Shannon capacity of composite
channels with CSIR.

Definition 3 (Shannon Capacity): Consider a sequence of
codes for channel , where for any , a

code is a collection of blocklength- channel codewords
and the associated decoding regions. The Shannon capacity is
defined as the supremum of all rates for which there exists a
sequence of codes with vanishing error probability [1].

By this definition, the Shannon capacity measures the
rate that can be reliably transmitted from the encoder and also
be reliably received at the decoder. We simplify this notation to

if the channel argument is clear from context.
The achievability and converse theorems for the Shannon ca-

pacity formula of a general channel, given by

(8)

are proved, respectively, by Theorems 2 and 5 of [5], using Fe-
instein’s lemma [29] and the Verdú–Han lemma [5, Theorem
4]. The special case of a composite channel with CSIR follows
immediately from this result. Achievability can also be proved
with a modified notion of typical sets [9], [23], as follows (no-
tation is simplified here by removing the explicit conditioning
on the side information ):

Encoding: For any input distribution , , and
, generate the codebook by choosing

i.i.d. according to the distribution
.

Decoding: For any , the typical set is defined as

(9)
Channel output is decoded to where is the unique
index for which . An error is declared if
more than one or no such index exists.

Error Analysis: We define the following events for all indices

(10)

Conditioned on codeword being sent, the probability of
the corresponding error event

can be bounded by

Since we generate i.i.d. codewords, and , ,
do not depend on the specific indices , . Assuming equiprob-
able inputs, the expected probability of error with respect to the
randomly generated codebook is

(11)
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where by definition of we have approaching 0 for
large enough. The last inequality uses (6), (9), and the fact that

implies

and consequently

From (11)

for all and arbitrary , which completes
our proof.

Although a composite channel is characterized by the collec-
tion of component channels and the associated
probability distribution on , the Shannon capacity of a
composite channel is solely determined by the support set of the
channel state distribution . In the case of a discrete channel
state set , we only need to know which channel states have
positive probability. The exact positive value that the probability
mass function assigns to channel states is irrelevant in view
of the Shannon capacity. In the case of a continuous channel
state set , we only need to know the subset of channel states
where the probability density function is strictly positive. This is
formalized in Lemma 1. Before introducing the lemma we need
the following definition [33, Appendix 8], which characterizes
as equivalent probability measures for which the support set of
one measure is the same as the support set of the other.

Definition 4 (Equivalent Probability Measures): A proba-
bility measure is absolutely continuous with respect to ,
written as , if implies that for
any event . Here , , is the probability of event
under probability measure . and are equivalent proba-
bility measures if and .

Lemma 1: Consider two composite channels and
with component channels from the same collection

. Denote by and , respectively, the
corresponding channel state distribution of each composite
channel. Then implies . Further-
more, if and are equivalent probability measures, then

.
Intuitively speaking, if the support set for is a

subset of the support set for , so any input distribution that
allows reliable transmission on also allows reliable trans-
mission on . In other words, if has a larger support set
than then its capacity (8) cannot be larger. If and are
equivalent probability measures then they share the same sup-
port set, and this guarantees that the corresponding composite
channels have the same Shannon capacity. Details of the proof
are given in Appendix A.

The equivalent probability measure is a sufficient but not
necessary condition for two composite channels to have the
same Shannon capacity. For example, consider two slow-fading
Gaussian composite channels. It is possible that two probability

measures have no support below the same channel gain, but
one assigns nonzero probability to states with large capacity
while the other does not. In this case, the probability measures
are not equivalent; nevertheless the Shannon capacity of both
composite channels are the same.

V. CAPACITY VERSUS OUTAGE

The Shannon capacity definition imposes the constraint that
all transmitted information be decoded at the receiver with van-
ishing error probability, while in some real systems it is accept-
able to lose a small portion of the transmitted information as
long as there is a mechanism to cope with the packet loss. For
example, in systems with a receiver complexity constraint, de-
coding over finite blocklength is necessary but in the case of
packet loss, ARQ (automatic repeat request) protocols are im-
plemented where the receiver requests retransmission of the lost
information [34], [35]. If the system has a stringent delay con-
straint, lost information can be approximated from the context,
for example the block-coded JPEG image transmission over
noisy channels where missing blocks can be reconstructed in the
frequency domain by interpolating the discrete cosine transfor-
mation (DCT) coefficients of available neighboring blocks [36].
These examples demonstrate a new notion of capacity versus
outage: the transmitter sends information at a fixed rate, which
is correctly received most of the time; with some maximal prob-
ability , the decoder sees a bad channel and declares an outage,
and the transmitted information is lost. This is formalized in the
following definition:

Definition 5 (Capacity Versus Outage): Consider a composite
channel with CSIR. A channel code for consists
of the following:

• an encoding function ,
where is the message index set and is the input al-
phabet;

• an outage identification function , where
is the set of channel states;

• a decoding function ,
which only operates when .

Define the outage probability

and the error probability in nonoutage states

A rate is outage- achievable if there exists a sequence
of channel codes such that and

. The capacity versus outage of the
channel with CSIR is defined to be the supremum over all
outage- achievable rates.

In the above definition, is the probability that the de-
coder, using its side information about the channel, determines
it cannot reliably decode the received channel output and de-
clares an outage. In contrast, is the probability that the re-
ceiver decodes improperly given that an outage is not declared.
The following theorem provides a formula for capacity versus
outage as defined by Definition 5.
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Fig. 2. Capacity versus outage.

Theorem 1 (Capacity Versus Outage): The capacity versus
outage of a composite channel with outage probability is given
by

(12)

The achievability proof follows the same typical-set argument
given in Section IV. The converse result likewise follows [5].
Details are given in Appendix B. Notice that , so the ca-
pacity versus outage is a generalization of the Shannon capacity.
We give an example of the capacity
versus outage with respect to its information density in Fig. 2.

The concept of capacity versus outage was initially proposed
in [15] for cellular mobile radios. See also [37, Ch. 4] and ref-
erences therein for more details. A closely-related concept of
-capacity applicable to composite channels was defined in [5]

and, in fact, the formula for this -capacity is identical to the ca-
pacity versus outage formula (12). However, despite having the
same formula for both, -capacity and capacity versus outage
have fundamentally different definitions and have different as-
sumptions about CSI. Specifically, in the definition of -capacity
the nonzero error probability accounts for decoding errors
undetected at the receiver, i.e., does not ap-
proach zero with asymptotically large blocklength. In contrast,
in the definition of capacity versus outage the receiver declares
an outage when the channel state does not allow the receiver
to decode with vanishing error probability. Asymptotically, the
probability of outage is bounded by some fixed constant

and all outages must be recognized at the decoder, while in
nonoutage states approaches zero with asymptotically large
blocklength. As a consequence, no decoding is performed for
outage states. If the power consumption to perform receiver
decoding becomes an issue, as in the case of sensor networks
with nonrechargeable nodes or power-conserving mobile de-
vices, then we should distinguish between decoding with error
and no decoding at all in view of energy conservation.

The difference in these capacity definitions also has impor-
tant consequences when we consider end-to-end communica-
tion performance using source and channel coding. When the
outage states are recognized by the receiver, it can request a
retransmission or simply reconstruct the source symbol by its
mean – giving an expected distortion equal to the source vari-
ance. In contrast, if the receiver cannot recognize the decoding
error as in the case of an -capacity channel code, the recon-
struction based on the incorrectly decoded symbol may lead to
not only large distortion but also loss of synchronization in the
source code’s decoder.

We can further define the outage capacity
as the long-term average rate of an extension of the com-
posite channel to a quasi-static composite channel, where the
composite channel code is used repeatedly over sufficiently
long blocklengths to achieve a rate arbitrarily close to
(in nonoutage) with negligible error and, on each use, the
channel state is drawn independently according to . In
this quasi-static composite channel the transmitter uses a single
codebook and sends information at rate on each channel use;
the receiver can correctly decode the information a proportion

of the time and turns itself off a proportion of the
time. The outage capacity is a meaningful metric if we are
only interested in the fraction of correctly received packets and
approximate the unreliable packets by surrounding samples. In
this case, optimizing over the outage probability to maximize

guarantees performance that is at least as good as the
Shannon capacity and may be far better. As another example,
if all information must be correctly decoded eventually, the
packets that suffer an outage have to be retransmitted. This
demands some repetition mechanism that is usually imple-
mented in the link-layer error control of data communication.
The number of channel uses to transmit a packet of size

bits has a geometric distribution

and the expected value is , which also illustrates
as a measure of the long-term average throughput.

Next, we briefly analyze the capacity versus outage from a
computational perspective. We need the following definition be-
fore we proceed.

Definition 6 (Probability- Compatible Subchannel): Con-
sider a composite channel with state distribution , .
Consider another channel where the channel state set is
a subset of ( ). is a probability- compatible sub-
channel of if .

Note that is not exactly a composite channel since we
only specify the state set but not the corresponding state
distribution over . However, we will only be interested in
the Shannon capacity of , and as pointed out by Lemma 1,
the exact distribution over is irrelevant to determine this ca-
pacity. The capacity versus outage as defined in (12) requires a
two-stage optimization. In the first step, we fix the input distri-
bution and find the probability- compatible subchannel that
yields the highest achievable rate. In the second step, we opti-
mize over the distribution of . This view is more convenient if
the optimal input distribution can be easily determined. We then
evaluate the achievable rate of each component channel with
this optimal input and declare outage for those with the lowest
rates. As an example, consider a slow-fading MIMO channel
with transmit antennas. Assume the channel matrix has
i.i.d. Rayleigh fading coefficients. The outage probability asso-
ciated with transmit rate is known to be [38]

and the capacity versus outage is .
Although the optimal input covariance matrix is unknown in
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general, it is shown in [19] that there is no loss of generality in
assuming in the high SNR regime and the corresponding
capacity versus outage simplifies to

for SNR’s in the high SNR regime. By reversing the order of
the two optimization steps, we have another interpretation of
capacity versus outage

(13)

Here, we first determine the Shannon capacity of each proba-
bility- compatible subchannel, then optimize by choosing the
one with the highest Shannon capacity. This view highlights
the connection between of a composite channel and the
Shannon capacity of its probability- compatible subchannels,
and is more convenient if there is an intrinsic “ordering” of
the component channels. For example consider a degraded
collection of channels where for any channel states and
there exists a transition probability such that

The degraded relationship can be extended to the less noisy and
more capable conditions [39]. The more capable condition re-
quires

(14)

for any input distribution . It is the weakest of all three but
suffices to establish an ordering. The optimal probability- com-
patible subchannel has the smallest set of channel states
such that any component channel within is more capable than
a component channel not in . The Shannon capacity of
equals the capacity versus outage- of the original channel .

VI. EXPECTED CAPACITY

The definition of capacity versus outage in Section V is essen-
tially an all-or-nothing game: the receiver may declare outage
for undesirable channel states but is otherwise required to de-
code all transmitted information. There are examples where par-
tial received information is useful. Consider sending a multires-
olution source code over a composite channel. Decoding all
transmitted information leads to reconstruction with the lowest
distortion. However, in the case of inferior channel quality, it
still helps to decode partial information and get a coarse recon-
struction. Although the transmitter sends information at a fixed
rate, the notion of expected capacity allows the receiver to de-
cide in expectation how much information can be correctly de-
coded based on channel realizations.

Next, we introduce some notation which is useful for the
formal definition of the expected capacity. Conventionally, we
represent information as a message index, cf. the Shannon ca-
pacity definition [28, p. 193] and the capacity versus outage def-
inition in Section V. To deal with partial information, here we

represent information as a block of bits , where is the
set of bit indices. Denote by

the set of all possible blocks of information bits with bit indices
from the set . Each element in is a bit-vector of length

, so the size of the set is . If another index set
is a proper subset of ( ), then represents some
partial information with respect to the full information .
This representation generalizes the conventional representation
using message indices.

Definition 7 (Expected Capacity): Consider a com-
posite channel with channel state distribution . A

code consists of the following:
• an encoding function

where is the index set of the trans-
mitted information bits and is the input alphabet;

• a collection of decoders, one for each channel state ,

where is the set of indices of the decodable
information bits in channel state . .

Define the decoding error probability associated with channel
state as

and the average error probability

A rate is achievable in expectation if there exists a
sequence of codes with average error proba-
bility . Each such rate is associated with a
collection of rates . The expected capacity is
the supremum of all rates achievable in expectation.

We want to emphasize a few subtle points in the above defini-
tion. In channel state , the receiver only decodes those informa-
tion bits with indices . Decoding error occurs if any
of the decoded information bits is different from the trans-
mitted information bit . No attempt is made to decode infor-
mation bits with indices out of the index set ; hence, these
information bits are irrelevant to the error analysis for channel
state . The transmitted rate , for which not all bits are de-
coded with vanishing error probability, has subscript to differ-
entiate it from the rate , received with vanishing error proba-
bility when the channel is in state .

The cardinality of the index set depends only on the
blocklength and the channel state . Among the transmitted

information bits, the transmitter and the receiver can agree
on the set of decodable information bits for each channel state
before transmission starts, i.e., not only the cardinality of ,
but the set itself is uniquely determined by the channel state
. Nevertheless, for the same channel state , the receiver may
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choose to decode different sets of information bits depending on
the actual channel output , although all these sets are of the
same cardinality . In this case the set of decodable infor-
mation bits for each channel state is unknown to the transmitter
beforehand.

We first look at the case where the transmitter and the re-
ceiver agree on the set of decodable information bits for each
channel state. In a composite channel, the transmitter can view
the channel as a broadcast channel with a collection of virtual
receivers indexed by channel realization . The encoder uses a
broadcast code to transmit to the virtual receivers. The receiver
uses the side information to choose the appropriate decoder.
Before we proceed to establish a connection between the ex-
pected capacity of a composite channel and the capacity region
of a broadcast channel, we state the following definition of the
broadcast capacity region, which is a direct extension from the
two-user case [28, p. 421] to the multiuser case.

Consider a broadcast channel with receivers. The receivers
are indexed by the set with cardinality , which is reminiscent
of the index set of channel states in a composite channel. The set

(or simply ) is the set of all subsets of . The cardinality
of the power set is .

Definition 8 (Broadcast Channel Capacity Region): A
code for a broadcast channel consists of the fol-

lowing:
• an encoder

where is the empty set, is a nonempty subset
of users, and is the message set
intended for users within the subset only. The short-hand
notation denotes the Cartesian product of the cor-
responding message sets;

• a collection of decoders, one for each user

where is the channel output for user .
Define the error event for each user as

(15)

and the overall probability of error as

A rate vector is broadcast achievable if there exists
a sequence of codes with . The
broadcast channel capacity region is the convex closure of
all broadcast achievable rate vectors.

In the above definition, we explicitly distinguish between pri-
vate and common information. The message set contains
information decodable by all users but no others. For
instance, in a three-user BC we have private information ,

, , information for any pair of users , , ,

and the common information . The total number of mes-
sage sets is since the empty set is excluded.

We now establish a connection between the expected capacity
of a composite channel and the capacity region of a broadcast
channel through the following theorem. Specifically, the the-
orem establishes that for composite and broadcast channels re-
lated by certain properties, the capacity-achieving code for the
broadcast channel achieves the expected capacity of the com-
posite channel, and vice versa. For ease of notation, we state
the theorem for a finite number of users (channel states). The
result can be generalized to an infinite number of users (contin-
uous channel state alphabets) using the standard technique of
[40, Ch. 7], i.e., to first discretize the continuous channel state
distribution and then take the limiting case, assuming there are
no discontinuities in the limit.

Theorem 2: Consider a composite channel characterized by
the joint distribution

and the corresponding BC with the channel for each receiver
satisfying

Denote by the expected capacity of the composite channel
and by the capacity region of the corresponding BC, as in
Definitions 7 and 8, respectively. If the set of decodable infor-
mation bits in the composite channel is uniquely determined by
the channel state , then the expected capacity satisfies

(16)

where the supremum on the right side is taken over all vectors
in the broadcast channel capacity region . The proof, whose
details are given in Appendix C, establishes a two-way mapping
between codes for the corresponding broadcast and composite
channels; any code for the broadcast channel can
be mapped to a expected-rate code for the
composite channel and vice versa, where the mapping satisfies

for channel state . With this mapping, we
have

(17)

Although we have introduced a new notion of capacity,
the connection established in Theorem 2 shows that the tools
developed for broadcast codes can be applied to derive cor-
responding expected capacity results, with the addition of an
optimization to choose the point on the BC rate region boundary
that maximizes the expected rate. For example, in [22] some
suboptimal approaches, including super-majorization and 1-D
approximation, were introduced to analyze the expected ca-
pacity of a single-user slowly fading MIMO channel. After the
full characterization of the MIMO BC capacity region through
the work [13], [41]–[44], the expected capacity of a slowly
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Fig. 3. Gilbert–Elliott channel.

fading MIMO channel can be obtained by choosing the optimal
operating point on the boundary of the dirty-paper coding
(DPC) region.

The connection in Theorem 2 also shows that any expected-
rate code designed for a composite channel can be put into the
framework of BC code design. Strategies like layered source
coding with progressive transmission, proposed in [45], imme-
diately generalize to the broadcast coding problem. Assuming
there are only two channel states and , this strategy di-
vides the entire transmission block into two segments. The in-
formation transmitted in the first segment is intended for both
states, and that in the second segment is intended for the better
channel state only. This strategy can be easily mapped to a
BC code with individual information and common infor-
mation , and orthogonal channel access. Furthermore, the
complexity of deriving a single point on the BC region boundary
is similar to that of deriving the expected capacity under a spe-
cific channel state distribution. The entire BC region boundary
can be traced out by varying the channel state distributions.

We want to emphasize that in Theorem 2 the condition that
the transmitter knows the set of decodable information bits in
advance is not superfluous. If the receiver chooses to decode dif-
ferent sets of information bits depending on the actual channel
output , and consequently the transmitter does not know the
set of decodable information bits for each state , then the map-
ping between expected-rate codes and BC codes may not exist.
In the following we give an example where the expected ca-
pacity exceeds the supremum of expected rates achievable by
BC codes. Consider a binary erasure channel (BEC) where the
erasure probability takes two equiprobable values

. In Appendix D we show that the maximum expected
rate achievable by BC codes is

(18)

However, we can transmit uncoded information bits directly
over this composite BEC. In the limit of large blocklength ,
the receiver can successfully decode bits for channel
states , , by simply inspecting the channel output, al-
though these successfully decoded information bits cannot be
determined at the transmitter a priori. Overall the expected ca-
pacity

exceeds the maximum expected rate achievable by BC codes.
Notice, however, these two channel codes are extremely dif-
ferent from an end-to-end coding perspective. The broadcast
strategy may be combined with a multiresolution source code.
In contrast, the source coding strategy required for the uncoded
case is a multiple description source code with single-bit de-

scriptions. Due to this difference, it is not obvious which sce-
nario yields the lower end-to-end distortion. The comparison
depends on the channel state distribution and the rate-distortion
function of the source.

Regardless of the transmitter’s knowledge about decodable
information bits, we show that satisfies the lower bound

and the upper bound

(19)
The lower bound is achieved using the channel code for capacity
versus outage- , which achieves a rate a proportion
of the time and zero otherwise. For the upper bound, we assume
channel side information is provided to the transmitter (CSIT)
so it can adapt the transmission rate to the channel state. In this
case, the achievable expected rate can only be improved and
the tightness of the bound depends on the channel characteris-
tics. For example, in fading channels the lack of transmitter side
information does not significantly decrease capacity at typical
SNRs [37, Chapter 4.2]. However, we will illustrate in the next
section that this side information can significantly increase the
capacity of the Gilbert–Elliott channel. The proof of the upper
bound (19) is given in Appendix E.

VII. EXAMPLES

In this section, we consider some examples to illustrate var-
ious capacity definitions.

A. Gilbert–Elliott Channel

The Gilbert–Elliott channel [46] is a two-state channel gov-
erned by a Markov chain, where each state is a BSC as shown
in Fig. 3. The crossover probabilities for the “good” and “bad”
BSCs satisfy . The transition probabili-
ties between the states are and , respectively. The initial state
distribution is given by and for states and . We let

, , and denote the channel
input, output, and error on the th transmission. We then study
capacity definitions when the channel characteristics of station-
arity and ergodicity change with the parameters.

Example 1: Ergodic Case, Stationary, or Nonstationary:
When and , the Gilbert–Elliott
channel is stationary and ergodic. In this case the information
density under uniform inputs converges
to a -function at the average mutual information, so ca-
pacity equals average mutual information as usual. Therefore,
the Shannon capacity is equal to the expected capacity

, where ,
and is the binary entropy
function.

This is a single-state composite channel; hence, the composite
channel CSIR is constant and known, although the state of the
Gilbert–Elliott channel varies. Since any transmission may ex-
perience either a good or a bad channel condition, and the re-
ceiver does not know the state of the Gilbert–Elliott channel, it
has no basis for choosing to declare an outage on certain trans-
missions and not on others. Thus, capacity versus outage equals
Shannon capacity in this case.
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Fig. 4. BSC broadcast channel with auxiliary channels for random coding.

If but and are nonzero, then the
Gilbert–Elliott channel is ergodic but not stationary. However,
the distribution on the states and converges to a stationary
distribution under uniform inputs. Thus, the channel is asymp-
totically mean stationary, and the definitions of capacity have
the same values as in the stationary case.

Example 2: Stationary and Nonergodic Case: We now set
. So the initial channel state is chosen according to

probabilities and then remains fixed for all time. This
is a two-state composite channel and we assume the CSIR is
known at the receiver. The Shannon capacity equals that of the
bad channel . The capacity versus outage-
if the outage probability and otherwise.
The loss incurred from lack of side information at the encoder
is that the expected capacity is strictly less than the average of
individual capacities and is equal to [20]

(20)

where . The interpretation here is
that the broadcast code achieves rate for the bad
channel and an additional rate for the good
channel, so the average rate is the expected capacity. Using the
Lagrangian multiplier method, we can obtain which maxi-
mizes (20). Namely, if we define

then if ; if and
solves otherwise. With this solution
we can determine the looseness of the upper bound (19) for this
particular channel model. Specifically, for ,

and , we get an expected capacity of .0974.
With transmitter side information this becomes .2655, more than
2.5 times larger than the expected capacity without the encoder
knowledge of the channel state.

B. BSC With Random Crossover Probabilities

In the nonergodic case, the Gilbert–Elliott Channel is a two-
state channel, where each state corresponds to a BSC with a dif-
ferent crossover probability. We now generalize that example to
allow more than two states. We consider a BSC with random
crossover probability . At the beginning of time,

is chosen according to some distribution and then held
fixed. We also use to denote the cumula-
tive distribution function. Like the nonergodic Gilbert–Elliott
channel, this is a multistate composite channel provided

has cardinality at least two. The Shannon capacity is
where

and the capacity versus outage- is where
.

We consider a broadcast approach on this channel to achieve
the expected capacity, assuming CSIR, i.e., knowledge of , at
the receiver. The receiver is equivalent to a continuum of or-
dered users, each indexed by the BSC crossover probability
and occurring with probability . If the set
is infinite, then the transmitter sends an infinite number of layers
of coded information and each user decodes an incremental rate

corresponding to its own layer. Since the BSC broadcast
channel is degraded, a user with crossover probability can also
decode layers indexed by larger crossover probabilities; there-
fore, we achieve a rate of

(21)

for a receiver associated with crossover probability . The
problem of determining the expected capacity then boils
down to the characterization of the broadcast rate region
and the choice of the point on that region that maximizes

.
In the discrete case with users, assuming

, the capacity region is shown to be [47]

(22)
where . Since the orig-
inal broadcast channel is stochastically degraded it has the same
capacity region as a cascade of BSC’s. The capacity region
boundary is traced out by augmenting auxiliary chan-
nels [47] and varying the crossover probabilities of each. For
each , equals the overall crossover probability for auxiliary
channels 1 up to . See Fig. 4 for an illustration. The resulting
expected capacity is

We extend the above result to the continuous case with an
infinite number of auxiliary channels. In this case, we define
a monotonically increasing function equal to the overall
crossover probability of auxiliary channels up to that indexed
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by . In the following, we use and interchangeably. For
the layer indexed by , the incremental rate is

Using the first order approximation and
for small , we obtain

Note here is a small variation, and we do not
explicitly address the problematic limiting case as

approaches zero.2

Overall the expected rate is

(23)

The optimal maximizing the expected rate can be solved
through calculus of functional variation. Define as

(24)

The optimal should satisfy the Euler equation [48]

(25)

where

After some algebra (25) simplifies to

(26)
In general, (26) has no closed-form solution but there exist ob-
vious numerical approaches.

As an example, suppose that the crossover probability is uni-
formly distributed on . The Shannon capacity is limited

2The achievable rate ���� for any state is bounded by one; therefore,
����������, as a function of �, is right continuous at � � �. We can

avoid the problematic limiting case by focusing on strictly positive � and obtain
the expected capacity (23) by continuity.

Fig. 5. Capacity under different definitions of BSC with random crossover
probability.

by the worst channel state , giving . The ca-
pacity versus outage- is . To approximate
the expected capacity, we solve for in (26) for each . It
is seen that only for , where the
two cutoff probabilities satisfy and .
For the uniform distribution case, and ,
which demonstrates that it is unnecessary to use the channel all
the time to achieve the expected capacity. In fact, no informa-
tion is sent for .

In Fig. 5 we plot the expected capacity, the outage- capacity,
and the capacity versus outage- . Although the capacity versus
outage- exceeds the expected capacity for some values of ,
the outage- capacity is always dominated by the expected
capacity , since an outage- code is one of many possible
codes for the expected capacity. Define cutoff outage probabil-
ities and . Note that for all

. In this range, an outage code gives almost the same
expected rate as a broadcast code.

In Fig. 6, we plot the rate used in each state by the expected
capacity code and the capacity versus outage codes at outage
probabilities , and 1/2. We see that the code for outage ca-
pacity achieves a constant rate for nonoutage states and a rate 0,
otherwise. For this example, the incremental rates are
nonzero only for . Therefore, the code for expected
capacity achieves a rate 0 when . As decreases from

to , the rate gradually increases from 0 to 0.38 bits per
channel use, and stays at this constant level for . Since
all channels are equally probable, the area under each curve is
the expected rate of that strategy. The area under the expected
capacity curve is the largest. The expected capacity curve is, in
some places, lower than the curve for outage- capacity. Al-
though the outage- code achieves a rate higher than the broad-
cast code for expected capacity when , the same code
has decoding rate 0 for all other channel states , giving a
lower area under the total curve.

A potential advantage of the outage code is its simplicity. The
transmission rate is fixed, so the code may be coupled with a
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Fig. 6. Achievable rate for each channel state.

conventional source code. The advantage of the expected ca-
pacity code is its higher expected rate. The code may be cou-
pled with a multiresolution source code. It is not obvious which
strategy yields better end-to-end coding performance in this ex-
ample. In general, an expected rate code is required to achieve
the optimal end-to-end distortion, but this code may use a rate
vector on the boundary of the BC capacity region which is dif-
ferent from the rate vector used by the code that achieves the ex-
pected capacity [26]. The procedure to solve for the expected ca-
pacity is computationally intensive. In the above example, when
looking for the optimal which leads to the expected ca-
pacity, we first identify the cutoff probabilities and then
solve (26) for each in this range. We want to emphasize that
the correct cutoff range, although seemingly a very coarse char-
acterization of the optimal solution, is crucial to the expected
rate. Consider the following closed-form suboptimal solutions
for based on approximating the solution to (26).

• Optimal cutoff with suboptimal

otherwise.
(27)

• Cutoff range [0, 1/2]

(28)

The first solution assumes the optimal cutoff range has been
determined and approximates as a function of this range.
The second solution does not assume the optimal cutoff range
is known. The choice of in both cases makes convex
( ), linear ( ) or concave ( ) in both ap-
proaches. In Fig. 7, for ranging between zero and four, we
plot the achievable expected rate using the optimal cutoff range

and suboptimal from (27), the expected rate using
the cutoff range [0, 1/2] and suboptimal from (28), and the
expected capacity of this channel based on the optimal ,
which upper bounds these other plots. We observe that the op-
timal cutoff range with heuristic (27) yields an expected
rate very close to , but the expected rate is clearly subop-
timal if we use the heuristic (28) based on the generic cutoff
range [0, 1/2]. While it may be possible to find better heuris-
tics under both assumptions about the cutoff range to close the

Fig. 7. Effect of cutoff range.

gap with the expected capacity, we see that the simple heuristic
(27) based on optimizing the cutoff range captures most benefit
of the expected-rate code as compared to the conventional code
for Shannon capacity.

VIII. SOURCE-CHANNEL CODING AND SEPARATION

Channel capacity theorems deal with data transmission in a
communication system. When extending the system to include
the source of the data, we also need to consider the data com-
pression problem. For the overall system, the end-to-end dis-
tortion is a well-accepted performance metric. When both the
source and channel are stationary and ergodic, codes are usu-
ally designed to achieve the same end-to-end distortion level
for any source sequence and channel realization. However, if the
channel model is generalized to such scenarios as the composite
channel above, it is natural to introduce generalized end-to-end
distortion metrics such as the distortion versus outage and the
expected distortion [49], similar to the development of alterna-
tive capacity definitions. These alternative distortion metrics are
also considered in prior works [25]–[27], [50]–[53].

The renowned source-channel separation theorem [6, The-
orem 2.4] asserts that a target distortion level is achievable if
and only if the channel capacity exceeds the source rate dis-
tortion function , and a two-stage separate source-channel
code suffices to meet the requirement.3 This theorem enables
separate design of source and channel codes and guarantees the
optimal performance. However, there are a few underlying as-
sumptions: a single-user channel; a stationary ergodic source
and channel; a single distortion level maintained for all trans-
mission. It is known that the separation theorem fails if the first
two assumptions do not hold [31], [54]. In fact, the end-to-end
distortion metrics also dictate whether the source-channel sep-
aration holds for a communication system. In [49], we showed
the direct part of source-channel separation under the distortion
versus outage metric and established the converse for certain
systems. On the contrary, source-channel separation does not
hold under the expected distortion metric.

3The separation theorem for lossless transmission [1] can be regarded as a
special case of zero distortion.
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Source-channel separation implies that the operation of
source and channel coding does not depend on the statistics of
the counterpart. Meanwhile, the source and channel do need
to communicate with each other through an interface, which
is a single number in the classical separation theorem. For
generalized source/channel models and distortion metrics, the
interface is not necessarily a single rate and may allow multiple
parameters to be agreed on between the source and channel
encoders and decoders. For example, under capacity versus
outage, the source encoder might require knowledge of both
the transmission rate and the outage probability to be robust
against that percentage of lost data. If the source encoder also
incorporated a rate versus outage metric, then both of these
parameters should be made known to the channel encoder so
that, for example, it could optimize its average power based
on no transmission during source outages. Under expected ca-
pacity, the transmission strategy might utilize a multiresolution
channel code that can be matched to a multiresolution source
code to minimize expected end-to-end distortion. In this case,
the source code must know the rates associated with each com-
ponent channel in the composite channel. Since we expect a
performance enhancement when source and channel exchange
more information through more sophisticated interface, an
interesting topic for future research would be to characterize
the tradeoff between interface complexity and the achievable
end-to-end performance [55].

IX. CONCLUSION

In view of the pessimistic nature of Shannon capacity for
composite channels with CSIR, we propose alternative capacity
definitions including capacity versus outage and expected ca-
pacity. These definitions lend insight to applications where side
information at the receiver combined with appropriate source
coding strategies can exploit these more flexible notions of ca-
pacity. We prove capacity theorems or bounds under each def-
inition, and illustrate how expected achievable rates can be im-
proved through examples of Gilbert–Elliot channels and a BSC
with random crossover probabilities. While the use of capacity
definitions inherently focuses our attention on achievable (ex-
pected) rates, we note that the existence of other meaningful
measures of performance in the given coding environment. For
example, since outage- codes are compatible with conventional
source codes while expected capacity codes require multireso-
lution or multiple description codes, depending on whether or
not the corresponding broadcast channel is degraded, the fact
that the expected rate of the expected capacity code exceeds that
of the outage- code does not guarantee lower end-to-end ex-
pected distortion. Furthermore, since a nonergodic channel ex-
periences a single ergodic mode for all time, there is some jus-
tification for performance measures that take the probability of
suffering a very low-rate state into account. These topics pro-
vide a wealth of interesting questions for future research with
some initial work presented in [25], [26], and [49].

APPENDIX A
PROOF OF LEMMA 1

We prove if , and vice versa.
Therefore, equivalent probability measures of and imply

identical Shannon capacity. The result is intuitive but we
need to address a subtle technical issue: note that and
are channel state distributions, while the Shannon capacity is
defined through the information density distribution (7), which
depends on both input and channel statistics.

Recall the Shannon capacity formula (8)

Denote by the input distribution that achieves the supremum
in (8), and by the corresponding information density dis-
tribution. For arbitrary , we define

Notice that

(29)

where we exchange the order of integral and limit according
to dominated convergence theorem. From (29), we see that

implies

Assuming , it follows that

Now assuming , define as the information den-
sity distribution of channel when evaluated at input , i.e.,
see the equation shown at the bottom of the next page. Since is
arbitrary, we see that implies , therefore

APPENDIX B
PROOF OF CAPACITY VERSUS OUTAGE THEOREM (12)

We first prove the achievability of the capacity versus outage
theorem (12). Consider a fixed outage probability .

1) Encoding: For any input distribution , ,
and , generate the codebook by choosing

i.i.d. according to the distribution
.

2) Decoding: Define, for , the typical set as
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For any channel output , we decode as follows:
1) if for all , declare

an outage;
2) otherwise, decode to the unique index

such that . An error is declared if more
than one such index exists.
3) Outage and Error Analysis: We recall the definition of

events in (10) as

Assuming equiprobable inputs, the expected probability of an
outage using the above scheme is

where by definition of we have approaching zero
for large enough. Likewise, when no outage is declared the
expected probability of error is

(30)

where the last inequality is obtained by noticing that
implies

or equivalently

From (30) we see that for all and
arbitrary , which completes our proof.

Next, we prove the converse of the capacity versus outage
theorem (12). Consider any sequence of codes
with error probability and outage probability

. Let represent the
th code in the sequence, and assume a uniform input distribu-

tion

otherwise.

For each , let represent the decoding region
associated with codeword and equal an analogy of the
typical set, defined as

where is arbitrary. Then we have
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since the decoding regions cannot overlap. Thus

which goes to zero if and only if by definition
of .

APPENDIX C
PROOF OF THEOREM 2

1) Mapping Broadcast Code to Expected-Rate Code: We
first show that any broadcast code can be mapped to an ex-
pected-rate code, so

(31)

for any .
Given a BC code as defined in Definition 8, we

represent each message in a binary format consisting
of bits and concatenate these bits to form an overall repre-
sentation of bits, where

(32)

These information bits are indexed by the index set
. We denote by the set of indices of the

bits that correspond to the message set in the BC code. Note
that may be empty for some , for different these
index sets are mutually exclusive and

(33)

The BC code can be mapped to the following
expected-rate code with transmit rate given by (32). For any

, the bits with define a
corresponding message in the message set of the BC
code. The encoder for the expected rate code satisfies

where the superscript and distinguishes the encoder of the
expected-rate code and the broadcast code. For a state in the
composite channel, the receiver decodes those information bits
with indices in the set

(34)

and the decoding rate is . For the composite
channel, the decoder output

is obtained by concatenating the binary representations
of each , where and

is the decoder output of receiver in the broadcast channel. The
decoding error probability for the expected-rate code in channel
state is

where the error event for the broadcast code is defined in
(15). Notice that

so the expected error probability

as , according to the BC code definition. Therefore, the
rate

is an achievable expected rate and (31) is proved.
2) Mapping Expected-Rate Code to Broadcast Code: Next

we show that for any fixed ,

(35)

According to the definition of the expected capacity, there exists
a sequence of codes such that

(36)

and . The transmitted information bits are in-
dexed by . Since the transmitter and the
receiver agree on the index set of those information bits
that can be reliably decoded in each channel state , the trans-
mitter can define, for each subset of channel states, the
index set of those information bits decodable exclusively
for channel states within , i.e.,

where

is the complement index set of . Denote by the cardi-
nality of . We observe that are mutually exclusive, the
relationship (33) and (34) still hold and the decoding rate satis-
fies .
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The expected-rate code can be mapped
to the following BC code. Define the message set of the BC code
as

in the sense that each message has the corresponding
binary representation . The encoder for the BC code
satisfies

where is obtained by concatenating the binary
representations of each . When the composite channel is in
state , the decoder output is

Since for any satisfying , we define the
decoder output for receiver in the BC to be

where the binary representation of each can be
obtained by the corresponding bits in .

The error event for receiver of the BC is defined in (15)
with the error probability

and the overall error probability

By definition of the expected-rate capacity

Assuming each channel state occurs with strictly positive
probability, i.e., , then implies

Therefore, the code constructed above is a valid BC code, i.e.,
, and we conclude

(37)

From (36) and (37) we see the inequality (35) is established.
Since is arbitrary, Theorem 2 is a result of (31) and (35).

Fig. 8. Degraded binary erasure broadcast channel.

APPENDIX D
PROOF OF (18)

Consider a two-user BC where the channel to each user is a
BEC with erasure probability , , i.e., the conditional
marginal distribution satisfies

.

Assuming , we observe that the BC is stochastically
degraded since

where and for

.

Therefore, the capacity region of the BEC-BC is the convex hull
of the closure of all satisfying

(38)

for some joint distribution . Since
the cardinality of the random variable is bounded by

[28, p. 422] and the channel
is symmetric with respect to the alphabet 0 and 1, we can take

and as the transition probability
of a binary symmetric channel with crossover probability .
This stochastically degraded BEC-BC together with the auxil-
iary random variable is illustrated in Fig. 8.

The capacity region (38) is evaluated to be

(39)

where is the binary entropy
function. Assuming the two ergodic components are equally
probable in the composite channel, the achievable expected rate
using a broadcast code is then
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APPENDIX E
PROOF OF UPPER BOUND FOR EXPECTED CAPACITY

Denote by and
the set of codewords and decoding regions corresponding to
channel . We fix and define for each and

(40)

where (40) follows from (6). Notice that for any with

(41)

Furthermore, we have

where the chain of inequalities follows from Fatou’s lemma,
(41), and the code constraint . Since the prob-
ability must be non-negative, we conclude

almost surely (a.s.) in . Thus, for any

occurs infinitely often a.s. Assuming is
bounded by , we then have

also occurs infinitely often a.s. Since is arbitrary, we see that

occurs infinitely often for arbitrary , which gives us the upper
bound (19) for expected capacity. Note that the expectation in
the upper bound (19) is indeed , so the upper
bound can also be proved using the standard technique of Fano’s
inequality.
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