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Abstract—The transceiver optimization problem for MIMO
channels has been considered in the past with linear receivers as
well as with decision feedback (DFE) receivers. Joint optimization
of bit allocation, precoder, and equalizer has in the past been
considered only for the linear transceiver (transceiver with linear
precoder and linear equalizer). It has also been observed that
the use of DFE even without bit allocation in general results in
better performance that linear transceivers with bit allocation.
This paper provides a general study of this for transceivers
with the zero-forcing constraint. It is formally shown that when
the bit allocation, precoder, and equalizer are jointly optimized,
linear transceivers and transceivers with DFE have identical
performance in the sense that transmitted power is identical
for a given bit rate and error probability. The developments of
this paper are based on the generalized triangular decomposition
(GTD) recently introduced by Jiang, Li, and Hager. It will be
shown that a broad class of GTD-based systems solve the optimal
DFE problem with bit allocation. The special case of a linear
transceiver with optimum bit allocation will emerge as one of
the many solutions. 1

Index Terms — Decision Feed-Back, BER Optimization,
Generalized Triangular Decomposition, Bit Allocation, MIMO
Transceiver.

I. INTRODUCTION

In this paper we consider the optimization of the multiple-
input multiple-output (MIMO) communication systems with
perfect channel state information (CSI) at both sides of the
link. The focus of this paper will be on the system with deci-
sion feedback equalizer and linear precoding technique. The
designing method of the system with DFE and linear precoding
is considered by many authors when the bit constellations are
fixed and identical for each sub-stream [17] [9] [10] [12] [18]
[15] [11]. Similarly, when the channel and DFE are given, the
bit loading scheme is a well treated problem [4]. However,
to the best of the authors’ knowledge, the joint optimization
of transceivers with decision feedback and bit loading has not
been reported before. The main goal of this paper is to provide
the theoretical background for this problem.

For the linear transceiver case (which is a special case
of the system with DFE and linear precoding), several re-
searchers considered the joint optimization of bit loading and
the precoder/equalizer design. In [13] the authors considered
the joint design of the constellations and linear transceivers
under the zero-forcing condition. The multiuser quality of
service (QoS) problem, which is an extension of the problem
in [13], is treated in [2]. In [3] the authors considered the bit
loading scheme and the linear transceiver design with no zero-
forcing constraint. It is shown in all of those papers that the
diagonalized structure is optimal under the assumption that the
bit allocation formula is realizable.

1This work is supported in parts by the ONR grant N00014-06-1-0011, and
the TMS scholarship 94-2-A-018 of the National Science Council of Republic
of China, Taiwan.

It has also been observed that the use of DFE without
bit loading in general results in better performance than
linear transceivers [8], [9]. In [8] the authors showed that the
design based on the GMD (geometric mean decomposition) is
asymptotically optimal for high SNR in terms of both channel
throughput and bit error rate. In other words, GMD systems
can achieve the optimal performance when the number bits
assigned to each sub-stream are identical.

In this paper we consider the problem of minimizing the
total power when the error probabilities of the substreams and
the total bit rate are fixed. It is formally shown that when
the bit allocation, precoder, and receiver matrices are jointly
optimized, linear transceivers and transceivers with DFE have
identical performance (i.e., minimum power), assuming of
course that the bit loading formula is realizable. We then show
that the optimal system can be designed by representing the
channel in terms of the generalized triangular decomposition
(GTD) proposed recently by Jiang et. al [10], and choosing
the transceiver matrices appropriately in terms of the GTD.
While the GTD representation of the channel is not unique,
it is shown that the design based on any GTD is optimal,
with bit allocation appropriately adjusted. The ZF-VBLAST
system [1], the GMD system, and the SVD-based system [13]
are some special cases. Some novel special cases such as the
bi-diagonal representation and the Schur decomposition will
also be mentioned. We will see that the flexibility offered by
the GTD system is valuable. For example, it can often be
exploited to make the bit allocation realizable (i.e., ensure that
the optimal bk are nonnegative integers).

This paper is structured as follows. In Section II, we will
introduce the communication models and give explicit problem
formulations. In Section III, we will prove that systems with
DFE and linear precoding have the same performance as
linear transceivers, if optimal bit loading formula is realizable.
Section IV gives the transceiver structure based on the gen-
eralized triangular decomposition of the channel matrix, and
proves that this kind of systems always achieves the optimal
performance. Section V presents the numerical simulation
results related to the topics discussed in the paper. The final
conclusions of the paper are summarized in section VI.

II. PROBLEM FORMULATIONS

The transceiver considered in this paper is shown in Fig.
1, with the sizes of matrices indicated (e.g., F is P × M ,
etc.). The additive channel noise is assumed to have covariance
σ2

nI. Here F is the linear precoder, H is the channel, G is
the feedforward part of the equalizer, and B is the feedback
part. The decision device processes the vector ŝ bottom-up
sequentially, and the past decisions within a block are fedback
via B to correct future decisions in the block. This causality
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of decision feedback is ensured by restricting B to be strictly
upper triangular.
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s ŝ+

M P J M

yx
F H G decision

s~
MM B

Fig. 1. The MIMO transceiver with linear precoder and DFE.

In the following sections, we will focus on the problem of
minimizing the transmitted power subject to the total bit rate
and error probabilities in each sub-stream [4]. To understand
how the problems of bit allocation and power minimization
arise, we first examine the relationships between the error
probabilities, bit rates and user powers. Assume the input
signals are zero-mean uncorrelated processes representing
independent users with power Pk so that the input covariance
is

Λs = diag(P1, P2, · · · , PM ). (1)

Consider the situation where each user is represented with
a different constellation size. Let us say the kth user transmits
bk-bit QAM symbols with average power Pk. If the error at
the kth sub-stream has variance σ2

ek
, based on the low error

and high bit rate assumption, it can be shown [13] that when
the probability of error is given, we have

Pk

σ2
ek

≈ 2bk

3

(
Q−1

(
Pe(k)

4

))2

. (2)

The total power transmitted can be written as

Ptrans = Tr(FΛsF†) = Tr(F†ΛsF) =
M∑

k=1

Pk[F†F]kk.

Substituting from (2) we can rewrite this as

Ptrans =
M∑

k=1

dk2bkσ2
ek

[F†F]kk, (3)

where dk = 1
3 (Q−1(Pe(k)

4 ))2, , which is determined by the
specified probability of error.

It is usually assumed that the previous detected symbols s̃
in Fig. 1 are always correct. When we assume there is no error
propagation, the zero forcing constraint can be written as

GHF− B = I (4)

This means that the interference from other transmitted sym-
bols is canceled out completely. Under the zero-forcing con-
straint, the error before the decision device for each sub-stream
entirely comes from the channel noise. Since the channel noise
has covariance σ2

nI, the error variance before the kth input of
the decision device is given by

σ2
ek

= σ2
n[GG†]kk (5)

From (3) the transmitted power can then be written as

Ptrans =
M∑

k=1

ck2bk [F†F]kk[GG†]kk, (6)

where ck = σ2
ndk = σ2

n

3 (Q−1(Pe(k)
4 ))2. Therefore our first

problem is, given the specified QoS(probability of error), i.e.,
ck, how should we design the precoder, the equalizer, and the
bit loading scheme to minimize the transmitted power. This
problem can be written as follows:

min
F,G,B,{bk}

Ptrans =
M∑

k=1

ck2bk [F†F]kk[GG†]kk (7)

s.t. (a)
1
M

M∑
k=1

bk = b

(b) GHF− B = I

III. OPTIMAL BIT-LOADED DFE TRANSCEIVERS

To minimize the transmitted power, we first observe that

Ptrans =
M∑

k=1

ck2bk [F†F]kk[GG†]kk

≥ c2b(
M∏

k=1

[F†F]kk)
1

M (
M∏

k=1

[GG†]kk)
1

M

where we have used the AM-GM inequality. Here c =
M(

∏M
k=1 ck)

1
M , and we have used the fact that

b =
1
M

M∑
k=1

bk. (8)

Equality can be achieved in the AM-GM inequality if
and only if the terms are identical for all k, that is,
ck2bk [F†F]kk[GG†]kk = A for some constant A. Taking
logarithms on both sides we get

bk = D − log2 ck − log2[F
†F]kk − log2[GG†]kk (9)

where D is a constant, which is chosen such that (8) is
satisfied. Eq. (9) is called the optimum bit loading formula.

For any fixed precoder F and receiver {G,B}, and specified
probabilities of error Pe(k), the bit allocation that minimizes
the transmitted power is given by (9). With the bit allocation
so chosen the quantities Pk are computed from (2) where σ2

ek

is as in (5). With Pk so chosen, the specified probabilities of
error are met, and the total power Ptrans is minimized. This
minimized power is

Ptrans = c2b(
M∏

k=1

[F†F]kk)
1

M (
M∏

k=1

[GG†]kk)
1

M ), (10)

which depends only on F and G.
In the following we show how to minimize (10) further

subject to the zero-forcing constraint. First we derive the
optimal feedforward filter G when the precoder F and the
feedback filter B are given. The result is stated in the following
lemma.
Lemma 1: When the precoder F and the feedback filter B

are given, the optimal feed-forward filter G for minimizing
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the transmitted power subject to the zero forcing constraint
will be

Gopt = (I + B)(HF)�, (11)

where (HF)� = (F†H†HF)−1F†H†, which is the pseudo
inverse of (HF).

Proof: First note that the zero-forcing constraint is satis-
fied by (11):

GoptHF− B = (I + B)(HF)�HF − B = I.

Suppose there is another G′ satisfying the zero forcing con-
straint with the given F and B, i.e., G′HF = I + B. Define
Δ = Gopt − G′. Since both Gopt and G′ satisfy the zero-
forcing constraint, it follows that

ΔG†
opt = ΔHF(F†H†HF)−†(I + B)†

= (GoptHF − G′HF)(F†H†HF)−†(I + B)†

= 0.

Therefore

[G′G′†]kk = [(Gopt − Δ)(Gopt − Δ)†]kk

= [(GoptG
†
opt + ΔΔ†]kk

≥ [GoptG
†
opt]kk,

where we have used ΔG†
opt = 0 in these inequalities. There-

fore we have smaller sub-channel noise variances if we replace
G′ with Gopt, hence with given bit rate and probabilities of
error, the lower transmitted power can be achieved.

Therefore, when F and B are given, the best G is given as
(11). Also, we can easily calculate that

GoptG
†
opt = (I + B)(HF)�(HF)�†(I + B)†

= (I + B)(F†H†HF)−1(I + B)†.

Based on lemma 1, we can substitute Gopt to minimize the
transmitted power in (10). We can rewrite the transmitted
power as

Ptrans = c2b(
M∏

k=1

[F†F]kk)
1

M

×(
M∏

k=1

[(I + B)(F†H†HF)−1(I + B)†]kk)
1

M .

Using the Hadamard’s inequality for positive definite ma-
trices, we have

∏M
k=1[F

†F]kk ≥ det(F†F) and

M∏
k=1

[(I + B)(F†H†HF)−1(I + B)†]kk

≥ det((I + B)(F†H†HF)−1(I + B)†)
= det((F†H†HF)−1),

where we use the fact that the matrix I+B is upper triangular
and with diagonal terms all equal to unity. Thus det(I+B) =
1. Therefore, we have

Ptrans ≥ c2b

(
det(F†F)

det(F†H†HF)

) 1
M

.

This is exactly the form of equation (6) in [13]. We also prove
that Ptrans is no less than some constant times the Mth-root of
the product of the first dominant M channel singular values,
i.e.,

Ptrans ≥ Pmin = c2b(
1∏M

k=1 σ2
h,k

)
1

M . (12)

The proof is given in [19].
Note that Pmin in (12) is exactly equal to the form derived

for a linear transceiver with optimal bit loading [13]. This
means, the extra freedom provided by the decision feed-
back receiver structure does not reduce the power needed to
achieved the specified bit rate and probability of error. In other
words, when bit loading is allowed, DFE with linear precoding
systems has the same performance as linear transceivers!
To the best of authors’ knowledge, this fact has not been
formally proved in earlier work. However, the DFE with linear
precoding system actually provides more choices of possible
configurations that achieve the Pmin in (12). This interesting
observation will be discussed extensively in the following
sections.

IV. GTD-BASED SYSTEMS

The GTD (generalized triangular decomposition) was in-
troduced in [10] and used in [11] for the optimization of
transceivers under QoS constraints. We show how the GTD
of the channel can be used as a starting point to design
transceivers which jointly optimize bit allocation and the
matrices F, G, and B.
Theorem 1: The generalized triangular decomposition

(GTD): Let H ∈ Cm×n be a given rank K matrix with
singular values σh,1, σh,2, · · · , σh,K in descending order. Let
r = [r1, r2, · · · , rK ] be a given vector which satisfies

a ≺× h, (13)

where a = [|r1|, |r2|, · · · , |rK |] and h =
[σh,1, σh,2, · · · , σh,K ], and ”≺×” denotes the multiplicative
majorization relationship [14], [6]. Then there exist matrices
R, Q, and P such that

H = QRP†, (14)

where R is a K × K upper triangular matrix with diagonal
terms equal to rk , and Q ∈ Cm×K and P ∈ Cn×K both have
orthonormal columns.

Proof: See [10].

This decomposition is the extended version of the results
by Weyl in 1949 [16] and Horn in 1954 [6], which give the
complete relationship between the matrix singular values and
eigenvalues. Special instances of the GTD include:

(a) The singular value decomposition (SVD) H = UΣV †
where Σ is a diagonal matrix containing the singular values
on the diagonal [7].

(b) The Schur decomposition H = QΔQ† where Δ is an
upper triangular matrix with eigenvalues of a square matrix H
on the diagonal [7].

(c) The QR decomposition H = QR where R is an upper
triangular matrix (here P = I) [7].

(d) The complete orthogonal decomposition H = Q 2R2Q
†
1

[5], where H† = Q1R1 is the QR factorization of H† and
R†1 = Q2R2 is the QR factorization of R†

1.
(e) The geometric mean decomposition (GMD) H =

QRP† where R is an upper triangular matrix with the
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diagonal elements equal to the geometric means of the positive
singular values [8].

(f) The bi-diagonal decomposition (BID) H = QRP†,
where R is a bi-diagonal and upper triangular matrix [5].

In all these cases, the majorization property (13) can be
verified to be true. In the following sections we will discuss
those systems induced from the GTD concept, and show that
each one of those systems can achieve the optimal minimized
power in the problem considered in Section III. We observe
that many existing systems are actually special cases of the
GTD-based system, such as SVD systems [13], ZF-VBLAST
systems [1], and GMD systems [8]. Furthermore, many novel
systems, such as Schur transceiver, and bi-diagonal (BID)
transceiver can also be conceived.

n White noise

yx ŝ+s
M P J M

yx
F P+ R

K
G0Q

K J
diag([R]MxM) 1

s+

s~
MM

B

HH

Fig. 2. The system with orthonormal linear precoding and DFE.

With the channel decomposed using the GTD as in (14)
we now describe a method to construct the matrices F,G,B.
This design, with appropriate bit allocation, will be optimal
in the sense described in Theorem 2 below. In (14) the
matrix R is a K ×K upper triangular matrix with the vector
{[R]M+1,M+1, · · · , [R]K,K} equal to some permutation of
the vector {σh,M+1, · · · , σh,K}, which contains the smallest
K − M singular values of H. The first M diagonal elements
of R, r = {[R]1,1, · · · , [R]M,M} ∈ R+, is multiplicatively
majorized by the vector σ = {σh,1, · · · , σh,M}, which contains
the first M dominant singular values of H. Here we assume
the rank of the channel matrix H is K , and K ≥ M . Note
that this decomposition is possible because of the GTD theory
[10]. Also we want to point out that with this decomposition
we have

M∏
k=1

[R]2kk =
M∏

k=1

σ2
h,k, (15)

which is a direct consequence of the multiplicative majoriza-
tion relationship. This fact will be useful in later discussions.

Now consider Fig. 2. Suppose we choose the precoder F to
be such that

P†F =
(

IM
0

)
.

i.e.,

F = [P]P×M . (16)

Since P has orthonormal columns, F has orthonormal columns
as well. The transmitted power will be

Ptrans =
M∑

k=1

Pk[F†F]kk =
M∑

k=1

Pk.

The matrix G0 will be chosen so that

G0Q = ( IM 0 ) ,

i.e.,

G0 = [Q†]M×J . (17)

Since Q has orthonormal columns, G0 has orthonormal rows,
therefore the noise covariance after the filter G0 will be

E[G0nn†G†
0] = G0E[nn†]G†

0 = σ2
nI.

Thus the noise remains white after passing through the filter
G0. The signal sub-streams then will pass through some multi-
pliers {[R]−1

ii } before the decision devices. Those multipliers
can be equivalently viewed as a diagonal matrix multiplied
with the signal vector. Thus the feedforward filter can be
written as

G = (diag([R]M×M ))−1 G0. (18)

Therefore the signal transfer function without the decision
feedback will be

GHF = (diag([R]M×M ))−1 G0QRP†F

= (diag([R]M×M ))−1 ( IM 0 )R
(

IM
0

)
= (diag([R]M×M ))−1 [R]M×M

The feedback filter B is the one that makes the zero-forcing
constraint satisfied, i.e.,

B = GHF − I = (diag([R]M×M ))−1 [R]M×M − I. (19)

Since R is an upper triangular matrix, it can be seen that B
in (19) will be strictly upper triangular. In this scenario, the
noise variance in the k-th substream will be

σ2
ek

=
σ2

n

[R]2kk

(20)

Substituting this into equation (3), the transmitted power
needed to satisfy the specified QoS and bit rate constraints
can be expressed as

Ptrans =
M∑

k=1

dk2bk [F†F]kkσ2
ek

=
M∑

k=1

dk2bk

[R]2kk

σ2
n =

M∑
k=1

ck2bk

[R]2kk

In the following, we will prove that the system in Fig. 2 with
F as in (16) and G as in (18) achieves the optimality.

Theorem 2: With bk chosen as the following for k =
1, 2, · · · , M :

bk = log2

(
c

M
2b(

1∏M
k=1 σ2

h,k

)
1

M

)
(21)

− log2(ck) + log2([R]2kk),

the system in Fig. 2 with F as in (16) and G as in (18),
achieves the minimized power with the given QoS and bit rate
constraint. This means, the system is the optimal solution to
the problem discussed in Section III. ♠

The proof can be found in [19]. It may be a little bit
counter-intuitive to know that systems with DFE and linear
precoding perform no better than linear transceivers when bit
loading is allowed. However, as we shall point out, systems
with DFE and linear precoding actually offer lots of flexibility
in designing the transceivers. Firstly, the bit loading formula

1313

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 17:37:28 UTC from IEEE Xplore.  Restrictions apply. 



for the linear transceiver to achieve the minimum transmitted
power is implicitly given in [13], and we reproduce it here:

bk = D − log2 ck + log2(σ
2
h,k), (22)

where D is some constant that satisfies the average bit rate
constraint. The meaning of this formula is: allocate more bits
to the better channel eigen-modes. The main drawback of this
formula is that, it ignores the fact that the bits bk are required
be nonnegative and discrete. For the GTD-based system, the
bit loading scheme is as in (21). The formula (21) tells us we
should allocate more bits for the sub-stream with higher [R]kk.
The freedom of the GTD-based system is that, we can re-shape
the value of [R]kk as long as the multiplicative majorization
property is satisfied. The minimum transmitted power is still
achievable by that specific GTD system. Those extra freedoms
may be used to ensure that the bit loading scheme in (22) is
realizable.

V. NUMERICAL RESULTS

In this section we consider a wireless communication sys-
tem with multiple antenna at both sides of the link with perfect
channel state information. We use 100 randomly generated
MIMO channels for the simulation. The matrix channel is of
size 5 × 4, and normalized so that E[|[H]i,j |2] = 1.

22 24 26 28 30 32 34 36 38 40
10 7

10 6

10 5

10 4

10 3

10 2

10 1

Tx Power (dB)

B
E

R

GB
GMD
SVD
QR
BID

Fig. 3. BER versus Tx-Power when 32 bits are transmitted.

We implement five methods in the numerical results.
“SVD”, “GMD”, “QR”, and “BID” stand for the each one
of the special cases of GTD-based transceiver structures
discussed in Section IV, respectively; “GB” stands for the
following method: first we compute the ideal bit loading
formula (22). If bk is less than zero, we will drop this sub-
stream without allocating any bits for it. Then we allocate
the bits uniformly to the remaining sub-streams. With the
bit allocation scheme fixed, we then compute the GTD-based
precoder/equalizer structure for “GB” (using the equality (21)
to find the required [R]kk with same ck for each sub-stream).
Note that with this chosen GTD-based precoder/equalizer
structure, the system is optimal for the integer bits being allo-
cated in the remaining sub-streams according to the theorems
developed in the paper. Therefore, the “GB” method actually
suffers no problem due to integer constraints on bits. This
is the freedom we have from the GTD-based system. Since
the bit loading formula (9) is not realizable due to finite
constellation granularity, we adopt the optimal bit loading

algorithm in [4] under the given precoder/equalizer realization
for the other four methods.

The additive noise is complex circulant Gaussian with
average power normalized to 0 dB. The results are given in
terms of bit error rate versus transmitted power. In Fig. 3
we consider the high bit rate case. There are 40 bits to be
allocated into the four signal sub-streams. It can be observed
that each systems performs about the same. This is consistent
with theorem 1 and theorem 2. Notice in particular that the
SVD system without DFE is almost as good as the systems
with DFE.

VI. CONCLUDING REMARKS

We have presented a method for the joint optimization of
the matrices {F,G,B} and the bits {bk} in a transceiver with
DFE. It is formally shown that when the bit allocation, pre-
coder, and equalizer are jointly optimized, linear transceivers
and transceivers with DFE have identical performance in the
sense that transmitted power is identical for a given bit rate and
error probability. We also proved that any GTD-based system
achieves the optimal performance. Many existing systems are
identified to be special cases of the GTD-based system, while
many novel GTD-based transceivers are also proposed in the
paper. Both the theoretical analysis and numerical simulations
have been provided to validate the effectiveness of our result.
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