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JDR@>- 1 dsy = - - [ ach gy ~ - [ hpa
+ 2f(dtrh)-(@s3) dy.

PROOF.
/22 R(@)-(. W = D ([ DRi) - dis) -b — [(DRGE)- YD) 1)
=D (j'(dcrh +88h — h-Ric(g)) dus,) -
- [(@r@)-» (DE)-H)
= — D([h-Ric(g) ds) -h - [(DR@)-AXDEp)-#)
since ((dtrh + 35h) dy, = O for all (g, k) by Stokes’ theorem. Since Ric(g) = 0,

all contributions due to the metric terms in the pointwise contraction &-Ric(g)
= g% g .. Ry are zero and so we have

{22 Re)- b, Rydp = — [-(DRic(e)-Wdu, — [(Ateh + 838) - trhdp,
- -%J‘h{dl,h—%‘c?h — Hess tr k) dy,
—-;—I(Auh + 33R) trhdy,
- .;..j'h.d,;,dp, + j(ah)za,;, +—;—I6h-dtthdp,
-1 I(duh)zdp, - 3 [on-dich g,
= =g fhdndu — - [ @echydy, + f@rrdu
where we have used D{dy,)-h = 1 (tr k) du, and have integrated several times by
pahrtf:;w suppose ge 7+, Ric(g) =0, and h = k + Lxg. Then from the proof

of 1.3.4, D Ric(g)-h = DRic(g)'ﬁ = 4 (4.h — Hess trﬁ), and similiarly DR(g)-h
= DR(g)-k = Atrh. Thus from (1) above,

IDQ R(g)-(h, ) dgg = — - j' h-(dch — Hesstr ) dy, — —;—I(Atr By(te By
= - -;—px-mjndp, + —;—j'(ah —ditrh)-d tch dy,

where we have used the fact that for Einstein spaces d o 4y = 4+ & (see [25]),
sz thii Ak € $272, and so by orthogonality of $5~2 and a(2**Y), fh-dch dp, =
§h-dih dg.

Since h = h + Lxg, 6h = 3Lxg = AX + (d6X) = (2d5X + ddX¥)tand tr h=
tr b — 25X. Thus (5hY® ~ dtrh = 4 d6X + 8dX® — dtr b and
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—;~j((ah)= —dtchy-d tr b dy, = —%—I(M&X%— 3dx® — dich)-dichdy,
= — 5 [ dichy duy + 2 faox-dich dp,

since 3 dX* and dtr h are L, -orthogonal. [J
The extra condition that a first order deformation of R(g) = 0 about a Ricci-

flat solution must satisfy for it to be tangent to a curve of exact solutions is now
easily computed.

1.4.2. THEOREM. Let g(R) € 41*, A€ (—0,8),0 >0, s> nf2 4 1 be a C?2 curve
with (2(0), £'(0)) = (g, k). Suppose g € .4*+, and let h = k + Lyg be the canon-
ical decomposition of h. If R(g(3)) = 0 and Ric(g) = 0, then tr k = constant and

IA'AL" dpg =0.
Ifg € &, then Vh = 0.
Proor. Differentiating R(g(1)) = O twice and evaluating at 2 = 0 gives

[0 R(s(l))‘ = DR(g()-4 (l)l = DR(g)-h
—Atrh+56h Atr/x 0,

o I8 (g(z))l = DR(e®) (% @, e @), * DR(ga»( 72|,
= D?R(g)-(h,h) + DR(g)-g" (0) = 0.

Here we are identifying T.4* with 4* x S}, so dg(1)/dA € S} and d?%g(R)/dA%e S}.
Integrating (2) over M (using the volume clement dy,) gwes the extra condmon

©) {2Reg)- (5 By sy = 0
since | DR(g)-g"(0) duy = [(4tr(g"(0)) + 36(g"(0))) dyg = O for all accelerations
2"(0).
From (1), tr k = constant, so that from 1.4.1, (3) becomes
— 3 [b-ach dyg ~ - [(areip duo + 2 [arei-doxs g,
@ = — 3 fh-ahay, =0,

If g is flat, 4, = 4, sothat O = [h-Ak dp, = [h-2k dp, = [ (VR? dp,= Vh
=0. D

REMARKS. 1. At a regular point g e .« where DR(g) is surjective (so that
Ric (g) # 0), equation (2), when integrated over M , gives

f2R@)- . 1 dsy — [Ric(e) 5@ de =0,
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an integrated condition on g”(0) in terms of 4, which at regular points g does not
give an extra condition on k. It is only when Ric(g) = O that the term involving
£°(0) drops out leaving an integrated extra condition on A.

2. That we get one extra condition on & when Ric(g) = 0 corresponds to the fact
that ker (DR(g))*= {constant functions on M} is l-dimensional, since as in §0,
Example 4, Remark 2, there is an extra condition for each dimension in
ker(DR(g))*. In the case at hand, the equation [DR(g)-g"(0) du, = O (which leads
to the extra condition on /) can be expressed as

I(DR(g)‘l)-g"(O) du, = 0 for all g7(0) iff 1 € ker (DR(g))".

That the extra condition on 4 is an integrated condition corresponds to the fact
that (DR(g))* is an L-adjoint; i.e. we do not get an extra condition on 4 until we
integrate (2) against an element of ker (DR(g))"*; cf. Example 4, Remark 1.

3. If g € .4, Ric(g) = 0, but g is not of class H*+1, k may not have a canonical
decomposition. In this case, by using the first order condition DR(g)-h = Atr h
+ 3d6h = 0 and equation (1) in the proof of 1.4.1, the extra condition (3) can be
expressed as

{02 R@)-(. By, = — [1-(DRicte)-B) due

—%Ih-(ddn-%‘&h— Hesstrh)dy, — ~

- —%Ih-/.h,h dus, +%_"(6h)2 dusy
+%55h-dtrh dtg = 0.

]

4. Considering third and higher order derivatives of R(g(2)) = 0, Ric (g(0)) =0,
does not lead to any extra condition on the first order deformations. For example,
differentiating

D?R(g(2)-(K(2), h(2)) + DR(g(2))-g"(2) =0
(where h(2) = g’(2)) and evaluating at 2 = O gives

©) D*R(g)-(h, h, h) + 3D?R(g)-(h, g"(0)) + DR(g)-g"(0) = 0.
Integrating over M, the last term again drops out, leaving

(D R(@)-(. 1.5 e + 3 [ DR(0)- (. "(ON) e = ©

as the extra integrated “third order” condition on g”(0) (beyond that implied by
the second order pointwise condition of equation (2)) that has to be satisfied for
£7(0) to be the acceleration of some curve of exact solutions of R(g) = 0. This of
course is the analog of the second order phenomenon. This situation repeats, and
in general there is an extra integrated condition on the nth order deformation that
comes from the (n + 1)st order equations. However, these higher order equations
do not provide any further conditions on the first order deformations in general.

™
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In special cases, however, it is possible that third order variations can lead to
extra conditions on first order deformations, as in § 0, Example 3.

5. We can also examine the linearization instability of the equation R(g) = p
= constant > 0 around a solution (S*, go), a standard sphere in R~+! of radius
ro = (n(n — 1)/p)V2. In this case, from Remark 2 of 1.2.1, ker (DR(go))* = {eigen-
functions of 4,,} so that if f € ker (DR(go))*,

§7 PR(80)-27@) dts = [(DREIN) 20 dte =0

for all g"(0). Thus multiplying (2) by fand integrating over M gives for each linearly
independent eigenfunction f of 4,, the extra condition

[ R0, ) dte, = 0

on a first order deformation 4. That this really is extra is shown in [18].

In the case that g, € &#*, the integrated extra condition j'it- ah du,, = 0 can
be converted to the very strong pointwise condition Vk = 0. This pointwise
condition signals an even greater type of instability, viz., that the flat solutions of
R(g) = 0 are isolated among all the solutions. This aspect of the map R(-) will be
examined in the next section.

In the flat space case, if the extra condition VA = 0 is satisfied, then we can
explicitly integrate up any deformation h = Ay + Ly gr, Vi = 0. Indeed, let
gr'-hy denote the 1-contravariant I-covariant form of Ay, let exp (gz! -4,) denote
the pointwise exponentiation of gz'- A, another tensor of type (}), and let g(2)
=gr exp(Agr! - In) denote the 2-contravariant form. In coordinates, gr exp(igg!- /)
= (gr)a exp(A ga)* (h);)- Then g(2) is a C*= curve in &}, ,, defined for all 1¢ R,
such that (g(0), g'(0)).= (gr, ). If p1 € D, @y = idyy, is the flow of the vector field
X,.then Q) = pf (D) € #*, §(0) = gr, and §'(0) = P} (') + Lxg(A))l10 =
h. + Lxgp.

In the next section we shall see that g(1) € % is quite necessary if g(2) e 4§ and
£(0) is flat.

If #* = @, and if there exist nonflat Ricci-flat metrics gy (so that dim M 2 4),
then we do not know if satisfaction of the extra condition [fx-AJx du, =0 is
sufficient to find a curve g(2) € ., g(0) = go, £'(0) = h. However, because third
and higher order deformations of R(g) = 0 do not lead to any new conditions on
h, we suspect that if the second order condition on # is satisfied, then there is a
curve g(2) € .4 which is tangent to A.

One of the difficulties here is that the structure of the set &= {ge.#*:
Ric(g) = 0}, if not empty, is unknown. In particular, we do not know if it is a mani-
fold. The formal tangent space of &} at g e .#**1is, from the proof of 1.3.4, given
by ker(D Ric(g)) = {h € §5: 4.k = 0} = {harmonic tensors of 4;}. Thus if &}
were a mauifold, any 4 such that 4, k = O is tangent to a curve in &3, This would
partially answer the question of whether the extra condition of 1.4.2 on a deforma-
tion 4 is sufficient to find a curve in .4 tangent to 4.



R - e - e b i = te il e s —

244 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

'We now give an example of the linearization instability of the equation R(g) = 0
on a flat 3-torus. Let A be the lattice generated by the standard basis {¢;} in R3,
- let T3 = R3/ A, and let g be the metric induced on T3 from R3. Let S1 be the circle
with unit circumference, and let /: S —+ R be any smooth function, f # constant.
Set

0 Sfix) 0
h=hj=|f(x) 0 0
o 0 0

Then 3k = 0 and tr & = 0 (taken with respect to gr), but VA # 0. Thus this 4,
although a solution to the linearized equations DR(gr)-h=dtr h+ 63k =0, is
not tangent to any curve g() € .¢/;, g(0) = gp, since Vi # 0.

If f{x;) = constant, then the extra condition VA = 0 is satisfied, and we can
integrate & up to a curve

cosh2f sinhAf
g(Q) =grexp(Agr!-h) =|sinh S coshif 0
0 0 1

of flat metrics on T3 with (g(0), 2'(0)) = (gr, 4). ,
ReMARKS. 1. The above expression for g(4) is also valid if f  constant, but the.’qh\
R{g(2)) need not be zero for A # 0.
2. On a flat 2-torus T2, 6k =0 and tr h =constant imply VA =0 so that we
cannot construct our example. This corresponds to the fact that R(g) = 0 is lineari-
zation stable if dim M = 2.

LS. Isolated solutions of R(g) = 0. In the flat space case, the emergence of a
pointwise condition from the integrated extra condition signals that the flat
solutions of R(g) = 0 may be isolated solutions. In this section we show that this
expectation is correct. We then use this result to work out the structure of .#, in
the case that & #@.

That R(g) = 0 implies that g is flat if g is in a neighborhood of a flat metric is
somewhat surprising in view of the fact that the scalar curvature is a relatively weak
measure of the curvature.

Fix an H* volume element du on M, and define

¥:.4° - R, g.-.jk(g)dy.
Note that ¥ is not the usual integrated scalar curvature (cf. I1.2), since in general
du # dp,. ..

1.5.1. THEOREM. A metric g € 4* is a critical point of ¥ if and only if Ric(g) =
O and dy = c dyy for some constant ¢ > 0. At a critical metric g. € 4%, the Hessian
a2 (g.): S3 x S;— Rof ¥ isgivenby

m\
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a2 0(g) - (h,h) = —-%—Ih-dnhccly& - —-%—I(dtrh)zcdyg, +I(ah)=cdp,,.
Proor. For g € .42, let pe H{(M; R), p > 0 be such that du = p dy,. Then
d¥(g) - h = IDR(g) - hdy =I(Atrh+66h-h-Rio(g))pdp,
= { (60 + Hess p — pRickg)) - hdp, = 0

forall he S3 iff

m 72(P) = gdp + Hessp — pRic(g) =0, p>0.

From the proof of 1.2.1, (1) = R(g) = constant = 0. Contracting (1) gives
2 (n—Ddp=R@gyp, p>0;

integrating (2) over M gives

0= —1) [ dpdy, = Re) [ p dp

If R(g) = constant > 0, then [ p dy, = 0, contradicting p > 0. Thus R(g) = 0, so
from (2), p = constant = ¢ > 0, so that du = ¢ dy,. Since p = constant > 0,
from (1), Ric(g) = 0.

Now suppose g. is a critical metric of ¥, so Ric(g) = 0, dy = cdy, Thus

V@) - ) = [ DRG) - (b dp = ¢ [ 2R - (B dp,

The theorem now follows from 1.4.1. [J

RemARrks. 1. In the above it is important that we hold the volume element fixed
and then let du = c du, after we take the derivatives; see 1.5.2, Remark 2.

2. That du = ¢ dju,, at a critical point of ¥ allows us to compute d2 ¥(g,) from
1.4.1. Otherwise, the computation of d2 ¥(g) - (h, h) = § D*R(g)-(h, k) du is
considerably more complicated than the computation of { D2R(g)-(h, h) dp,

(unless du = ¢ dpy), since | (4 tr h + 65h) dp does not vanish for all (g, k) as in
the proof of 1.4.1.

3. ¥ need not have any critical points; e.g. if dy is chosen so as not to be the
volume element of any Ricci-flat metric.

To second order, Brill [S] shows that the flat solutions of R(g) = 0 are isolated,
and Kazdan and Warner [21, §5] show that near a flat metric to second order

there are no metrics with positive scalar curvature. The following extends these
results to a full neighborhood of the flat metrics.

1.5.2. THEOREM. Let gr € %, s > n|2 + 1. Then there exists a neighborhood
U,, © 4 of gpsuch that if g € U,, and R(g) 2 O, then g is also in &>.

PRrOOF. Let dy,, denote the volume element of gg, and let [” denote its Levi-
Civita connection. Let ¥: .#* — R, ¥(g) = JR(g) du,,
If 8re Fp, by 1.3.5, dus, = ¢ du,,, ¢ = constant > 0, so that &} is a critical
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submanifold of ¥ (but not the entire critical submanifold), and at a critical point
greIp

UG - B) = ——5-{ VR capy, ~ 5 @ 10 B2 cdp, + [ @2 ey,

Let S;, be a slice at gr (see the remark preceding Theorem 1.3.4) and let ¥'s =
¥|S;, Since gp is a critical point for ¥, gris also a critical point for ¥, and the
Hessian of ¥'s is given by restricting the Hessian of & ; thus from L5.1., for he
T, S, = {he S§:8,h = 0},

e - B = PV - O ) =~ VP dpp, — [ @ e kP gy,

Thus 42 ¥'«(gr) is negative-definite on a complement to T, %4 = {he S3: VA= 0}
in T, S;,. Thus since &7 is critical there exists a neighborhood V < §}, of g¢
such that ¥s < Oon ¥, and if ¥s(g) = 0, then g € #4. Thus the critical submanifold
F4 is isolated among the zeros of ¥s.

Let Uy, = 211 (V) = {p* g€ 4*: p e D*11, g € V'} be the saturation of V. By
the slice theorem [13), U, fills out a neighborhood of gr. Thus if g € U, and
R(g) = 0, there exists a ¢ € 2*+1 such that p* ge Ve S}, and thus ¥s(p*g) < 0, since

s is negative on V. But R(p*g) = R(g) » ¢ 2 0 so that T(p®e) = { R(p*2) du, ™™

= | R(g) o ¢ dy,, 2 0. Thus ¥s(p"g) = 0 so that p*¢ € #% and g € (p~1)* F%
c iisflat. O

ReMaRKs. 1. For dim M = 2, we need not restrict to a neighborhood U,,.
Indeed, from the Gauss-Bonnet theorem, if &* # @, the Euler-Poincaré charac-
teristic yar = 0, so that for any metric g, [R(g) dy, = 0. Thus R(g) = 0= R(g) =
0= gisflat.

2. Usually one considers an integrated scalar curvature ®(g) = [ R(g) dy, with
volume element dg, induced from g rather than ¥(g) = [ R(g) du with fixed
volume element dy, as e.g. in [3]. One then has (see I1.2.2) at a critical flat metric

W 2oe) b= 4 [ Thrdu, + 5 [@ehrdy,
rather than

@ @) b = — 5 [ Oh2 d, — 5 (@i hy dg,

There is now an important sign change in the second term; see also I1.2.2, Remark
2. Brill {S] uses (1), together with the condition tr k = constant implied by the first
order equations DR(g) - h = dtr k = 0 to deduce Vk = 0 and hence his second
order result.

To extend this result to a full neighborhood of the flat metrics, one may not use
the first order condition tr & = constant. The indefinite sign in (I) now becomes
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a severe difficulty. We introduced the map ¥ with fixed volume element du since
this difficulty is not present in (2).
Note that if the first order condition tr & = constant is used, 42 ¥(gg) - (b, h) =
d2®(gg) - (h, H) = — % [ (VR dpg,, so that the two treatments are then equivalent.
As a consequence of 1.5.1, we have the following structure theorem for .#3:

1.5.3. THEOREM. Let s> n[2 + |, dim M = 3, and if dim M = 4, assume
Fs £ D. Then M} = (M) — F*) U F* is the disjoint union of C* closed submani-
Jolds, and hence 4t} is itself a C*= closed submanifold of 4¢*; similarly, 4o = (Mo

— &) U & isa C= closed submanifold of 4.

Notes. 1. If dim M = 2, ¢} = &+ is also a C* closed submanifold.

2. We are allowing the possibility that .« — $* is empty, and if dim M = 3,
we are also allowing the possibility that 5+ is empty.

3. .4} is a manifold since we are allowing different components of a manifold to
be modelled on different Hilbert spaces.

ProoF. If dim M = 3, Ric(g) = 0 = g isflat. If dim M = 4 and & # &, then
from 1.3.2 #* = &;. Thus in either case

My = (M3~ YU & = (M3 — F)U F*
_ which from 1.2.2 and 1.3.2 is the disjoint union of C* submanifolds, #* closed.

Let g, — g be a convergent sequence in 4 — &°. Then g € .4}, and if ge %3,
there exists a neighborhood U, ¢ .#* such that g e U, R(g) = 0= ge %> But
then for n sufficiently large, g, € U,, R(g,) = 0 = g, € & contradicting g, € 4
— 5. Thus g € My — F*, aclosed set. [J

REMARKS. 1. Therg are various topological conditions on M, dim M 2 4, that
imply a Ricci-flat metric is flat; see [19], [20]. If we adopt any of these conditions,
then we can drop the &#* # @ assumption. Of course, if it turns out that Ricci-
flat implies flat, then this assumption can be dropped.

2 Ifdim M = 4, 5* = @, then £} is still the union .4} = (4} — ) U
&5 with #3 — &3 a submanifold (1.2.2). But we do not know if &3, if nonempty,
is a submanifold.

3. if g(R), 2€(—6,0),8 > 0, is a continuaus curve in .#}, g(0) € #*, then g(2)
€ &7, an interesting consequence of [.5.3.

If g(2) were a C* function of 4, | £ k £ o, then we could conclude from the
method of 1.4.2 that all k& derivatives of g()at 2 = 0 are parallel, V(g®(0)) = 0.
Thus if g(2) is analytic, g(2) = 12, (A*/n))g)0), and V(g(0)) =0 for all
n, so that g() € %3, a conclusion from 1.4.2 alone.

4. Finally we remark that although .« is a manifold (under the hypothesis &*
# @), the equation R(g) = O is not linearization stable at a flat solution, as we
have seen from the example in 1.4. Here the difficulty can be traced to the fact
that .« is a union of closed manifolds of different “‘dimensionalities”, &* being
essentially finite-dimensional modulo the orbit directions; cf. Example I in §0.
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II. APPLICATION TO GENERAL RELATIVITY

IL1. The general set-up and main idea. We now turn our attention to the Einstein
empty-space field equations of general relativity. We apply the techniques used in
the previous sections to prove that solutions to these equations are linearization
stable if certain conditions are met; in certain exceptional cases, however, the solu-
tions are not linearization stable. ’

Let Wg be a smooth Lorentz metric (signature — + + +) on a 4-manifold V.
The Einstein empty-space field equations are that the Ricci tensor of Wg vanish:

()] Ric(Wg) = 0.

An infinitesimal deformation about a solution @g is then a solution Wk € S, of
the linearized equations
2 D Ric(Wg) - Wh =0,

where D Ric((¥g) is the derivative of the map Ric(-) at @Wg.

Assume that (V, @g) has a compact connected orientable spacelike hypersurface
M so that dim M = 3. Let g denote the induced riemannian metric on A and &
the second fundamental form of M. Our conditions for linearization stability
are as follows (see Note on p. 263):

Cx:ifk=0,gisnotﬂat; ' /za%\
Cs:if Lyg = 0 and Lyk = 0, then X = 0; |
C, : tr k = constant on M.

(The meaning of the subscripts ) and § will become clear.)

Our main result (I1.5.1) is that if a solution (V, ¢ g) of (1) has a compact spacelike
hypersurface M whose induced metric g and second fundamental form k satisfy
conditions Cy, Cs, and C,,, then every solution W4 of the linearized equations is
tangent at @g to a curve Wg(2) of exact solutions of (1); i.e., there exist a tubular
neighborhood V' of M and a curve Wg(2) of exact solutions of (1) on ¥’ such that
(“g(0), Wg'(0)) = (“Wg, Wk) on ¥’; see also [16], [17], [39] and [40].

This conclusion asserts the linearization stability on a small piece of spacetime
V' surrounding the Cauchy surface M. By standard arguments [12], V' can be
extended to a maximal common development of the spacetimes Wg(), 2 small,
which approximates the maximal development of “g(0).

The case where ¥ admits a noncompact spacelike hypersurface M is rather dif-
ferent. Here asymptotit conditions are necessary. For example, Xk = 0 and g the
usual flat metric on 3 is not excluded. Thus the usual Minkowski metric on Rtis
linearization stable in a tubular neighborhcod of the hypersurface M = R3. This
result was obtained independently using other methods by Choquet-Bruhat and
Deser [10), [12]. The treatment of the general noncompact case is in spirit similar,
although there are certain technical difficulties associated with elliptic operators
on noncompact manifolds which enter the problem in the nonflat case. We will
present the noncompact case elsewhere. For the remainder of Part II, M will be
compact.
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It is convenient to introduce the supplementary variables (g, =) instead of (g, k),
wherez = 7' @ ;€ S2 ® y, is a 2-covariant symmetric tensor density, z°' =
((tr k) g — k)? € S is the tensor part of x (k* means the contravariant form of
the tensor k € ;) and we write 4, interchangeably with dyu,. In local coordinates

= n% = ((tr k) g7 — k¥)(det gy)2.
As is easy to see, k =0< 7 =0, tr k = constant <> tr ' = constant, and
Lxg =0, Lyk = 0< Lxg =0, Lxyx = 0. Thus, in the conditions Cy, C;, and

Cu, k can be replaced by 7. Note that the divergence of X enters in the Lie deriva-
tive of a teusor density:

Lxn = (Lx7") @ pz + 7' @ Lxpg = (Lx7") @ ptz + 7' @ (div X),,
where div X = —§X. In local coordinates,
Lymw = X"Tt"’.[h — i X/ 12— 1:1")("“, + Xk ¥,

As is well known every spacelike hypersurface in a Ricci-flat Lorentz manifold
(1], {14]) satisfies the constraint equations

© #(@g )= {Jtra’P — =" - 7' + R} p = 0,
ign)=8x =0.
In local coordinates,

X(g,7) = (det g.-,-)“’z{i(g,,s )2 — gob ﬂ.‘@} + (det g;j)‘/z R(g)
and

. (g, 7) = Gn = —7n¥h; =0

(so that §; now maps S - & ® uy).
" We shall refer to s#(g, #) = 0 as the Hamiltonian constraint and 8, = = 0 asthe
divergence constraint.

Conversely, by means of existence of solutions to the evolution equations (see,
e.g., [15]), every solution (g, z) to the constraint equations (C) generates a Ricci-
flat spacetime in a tubular neighborhood of M. This spacetime is unique up to
diffeomorphism of the neighborhood.

For the compact hypersurface M, we let .#* denote the H* riemannian metrics
on M; throughout, s > nf2 + 1. For g € ¢, we have, as in Part I, T,4* = S,
and we let :

Ty 4 = S} ® u, the space of H* 2-covariant symmetric tensor densities,
and

T4 = |) Tha?, the “cotangent” bundle of .«>.
g
Note that here we take the dual in the L, inner product but use only the closed
subspace of such elements continuous in the H* topology, so the dual of §%is S ®
Hgs see also [14, p. 552].



250 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

The solutions (g, z) of the constraint equations may then be regarded as a
certain subset ¢ of T™.7°. We will, according to our general method, show that in
a ncighborhood of points (g, =) that satisfy conditions Cy, C; and Cy, € isa
smooth submanifold of T*.¢* and that if (h, @)€ T (T*.4%) = S5 x (52 ® p,)
is tangent to ¥, i.e., if (4, w) is a solution to the linearized constraint equations,
then there exist a & > 0 and a smooth curve (g(3), #(2)) € ¢, —6 < 1 < J, which
is tangent to (h, ) at (g, 7).

Now suppose 4 is a solution to the linearized equations, D Ric(@g) - Wh =
0. Then @A induces a solution (4, w) to the linearized constraint equations about
a solution (g, ) to the constraint equations. If (g, =) satisfies conditions C,,
C;, and C,,, then there exists a curve (g(A), z(2)) of solutions to the full constraint
equations. By using the existence theory for the Einstein equations this curve of
solutions to the constraint equations generates a curve @g(2) of Ricci-flat Lorentz
metrics (on a tubular neighborhood ¥’ of M). After possible adjustment by a curve
&(2): V' — V' of diffeomorphisms of V', Wg(2) will be tangent to 4 (Wg(2) will
be an H* spacetime and will be 2 differentiable in /:!); see also the end of §0.

I1.2. Solutions to the Hamiltonian constraint equation. For s > n/2 + 1, we con-
sider oZ: T*.45 —» A2, (g, ©) — (g, n) as a map from T*.#* to A*~2, the H+:-2
3-forms on M. For g € .#¢, A*~2 is isomorphic to H*~%M; R) ® u,(by identifying
A€ A2 with fu,, f€ H¥M; R)). ,

Let €% = #~10) = {(g, n) e T*.* : H#(g, n) = 0}, the solution set to the
Hamiltonian constraint. Note that the set ¢ x {0} is a subset of ¥ 7, and that sincc‘m\
dim M = 3, &} = &* (without the assumption that &#* # @). Thus, from 1.3.3,

&+ x {0} is a smooth submanifold of 7. (but is possibly empty). We will show
that #* x {0} is the singular set on which Ds#’(g, ) fails to be surjective. Thus

Cr=%e— 7 x {0)) U (F* x {0})

is the disjoint union of submanifolds. Thus ¥ 4 is somewhat similar to the structure
of .} (when &+ # @); however, because of the kinetic terms involving the variable
7, %* x {0} is not an isolated set of solutions of 5#(g, z) = 0 (I11.2.5); consequently,
€% — %+ x {0} need not be closed, and €3 itself nced not be a manifold.

To prove our result, the basic argument of 1.2.1 only has to be modified to take
into account the kinetic terms:

I1.2.1. THEOREM. Let (g, ©) € € 5, (g, n) ¢ F* x {0}. Then in a neighborhood of
(g, @), € & is a smooth submanifold of T*.//*, and ¢(g, =) = 0 is linearization stable
at (g, ©).

ProOF. We show that
D#(g, 7): Ty (TN = S; X (S;@ ) > ToA 22 A 2= H 2 Q

is surjective for(g, ) e €% — F* x {0}, i.e., that 5 is a submersion at those(g, z)
that satisfy condition Cy.
By a straightforward computation, for (h, w) € S} x (52 ® u,),
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7e0lh, 0) = DA (g, n)-(h, ®)
= {Atch + 83k — h-Ric(g) + ¥ tr k R(g)
+2(Mtrz)W — @’ x ) h— Y(Htr P — -2 Wb} g,
+ 2tr M 0 — 7' - @),

where 2’ x #’ = #’@ 77/ is the “product” of symmetric tensors.

Caution. D3¢(g, w)-(h, ) = DoP(g, 7)-h + D¢ (g, =)-m, so that one must
take the derivative of # with respect to xr (which is best dcre by using the coor-
dinate expression involving (det g;)~/2 and not ', although th= final expression is
in terms of 7).

The Lradjoint, 7. : H* @ g, — S372 x (S2 @ ) is then given by

70N ttg) = (gAN + Hess N — N Ric(g) + § NR(g)g
+ {AMr 2 — & x =) — ($(trz) — (2’ -GN,
2(i(tr z)g® — z)N)-
Since the symbol g¢, (7{;.00): R = (TiM ®uqyr, T M) X (T, M Quym T M) is given
by Ue.(T'('e—:)) = (‘E.(T;): 0) where T; = (DR‘X))‘r for 7= # 0, 0'5.(7'&.:)) is injme
by the first factor alone. Thus we must show that y{..) is injective. Thus, let
76(Npg) = 0, so that :
84N + Hess N — N'Ric(g) + } NR(g)g
@ + 2 — @ x Y — AR — 2N = 0;

®) 2(3(trz)gt — )N = 0.

Taking the trace of (b) gives (tr x)N = 0, and so again from (b), Nz = 0. Since
. X¥(g,n) = 0and Nz = 0, NR(g) = 0. Thus (a) simplifies to

© g4N + Hess N — N Ric(g) =0,
.

which; as in the proof of 1.2.1, implies that N = 0 unless Ric(g) = 0 <> g is flat for
dim M = 3. If g is flat, taking the trace of (¢) gives AN = Cso that N is a constant.
Thus from Nx =0, N =Ounlessz = 0. Thus, ifgisflatand x #0, N=0, so
that r{,.» is injective and 7.5 is surjective. O

Thus 52 is singular (in the sense that Ds#(g, x) is not surjective) on the set #* x
{0}, and on this set ker 7§y = {constant functions on A7}. Thus we expect the
equation 5#(g, z) = 0 to be linearization unstable in a neighborhood of a solution
(gr. 0)e F* x {0}. To find the extra condition implied ty this instability, we
introduce the integrated Hamiltonian density (= the Hami'tonian)

H:T*4*>R, (g, a)HIX(xm)=j{i(tm’)z—n’-rt’ + R(g)} dpy,
the total kinetic energy,
KT 4 >R (51~ I(v}(tnr')z - o) dug,
and the integrated scalar curvature
O: 4> R, gHj'R(g)dﬂg-
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Thus H(g, ) = K(g, 7) + 9(g), and O serves as a potential for the Hamiltonian;
see [14] for the geometrical consequences of this interpretation. First we consider
the map @ (see also [3]).

I1.2.2. THEOREM. Let dim M 2 3. Then a metric g € .4+ is a critical point of ® if
and only if Ric{(g) = 0. At a critical point g € .4, the Hessian of O is

1 1
#0(8)-(hy b) = —5 [ h-dehodpg + [ hy-3h dpy +5- [hi-dee by dpy
+yfdth-shdy + 5[ duh-dich g

If g€ 4*+) s0 that he Si can be decomposed ash = h + Lxg (where h € $3 is
the divergence free part of k), then

& D5, ) = ~ [ hu- B b g +5 f dich-dechydpe
If gre & (so that h e S has a decompositionh = k + Lxg) then 4th = 4h, and
& 0(gn) - By = ~5  (Vhvdpse +5-f (@t Be g

Jor a flat riemannian metric gr. .
Proor. First we find the critical points of ®. We compute the derivative of @: ™
d0(g)-h = DO(e)-h = [ DR()-hdps; + [ REIDp)-h
) =j'(zm:.+¢m—h.Rie(g))dp,+_[R(g)whdp,
= - [ Ricte) — $gR(e))-hdp;
since | (4 tr h + k) dp, = O for all (g, h) by Stokes’ theorem. Thus d®(g)-h =0
for all 1 e S5 <> Ric(g) — ¥ gR(g) = 0. Since dim M = 3, by considering the trace

of this we see that it is equivalent to Ric(g) =
From (1), the second derivative of @ is

() ) = | peRee)- . By dpsy
+2  (DR(g)-1) (D(dp)-B) + [ R(g) DXdp)-(h, ).

At a critical point g, Rlc(g) 0, R(g) = 0, and DR(g)-h = dtr h + 33h, and so
from 1.4.1, (2) becomes

&29(g) - (h, ) = -%51.-4,/, dpy —%j(dtrh)z dp + I(&h)’dpg
+ 2[(4 trh + 63K) (3 tr Bydp,

= —yfn-andy +—%-f(dtrh)2dp, + (@2 dy + [ dech-ohdp,
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If ge.&*+, Rio(g) = 0,and h = k + Lyg, then DR(g)-h = DR(g)-h = sk,
and so

8)- B) = — 5 [ h-dih dgy — 5§ @ bpdy,

+ 2_'duh-dax4p,+j(4uh)trhdp,
:h-d,}l dpg —-;—I(dtr,t)zdp,
dirh-2d5X + dtr k) dy,
| b-tih dpy +5 [ @by dp,

sincetrh = trh — 25X sothatdtrh = dtrh + 246X. [J

REMARKS. 1. The change to a positive sign of the 4 [(d tr h)? dy, term in d20(g)-
(h, k) = d2(JR(g) dps)-(h, h) as compared with {D2R(g)-(h, k) dp; comes about
because of the term 2 [(DR(g)- k)(D(dpy)- ) involving the derivative of the volume
element. Because of this sign change, a flat metric gr is a saddle point for 420(gr)
(even within a slice), whereas { D2 R(g)-(h, ) du, < 0 on aslice at gr. Thus because
of this sign change, the behavior of the integrated scalar curvature #(g) = R(g)d,
is somewhat different from the pointwise scalar curvature R(g) at gr.

2. That d2(g)-(h, k) = d?®(g)-(h, k) depends only on the divergence free part of |,
h follows from the invariance of @ by 9, so that d%(g)-(Lxg, Lxg) =0, and by
orthogonality of k and Lxg, so that d%0(g)-(k, Lxg) = 0.

We can now easily compute the critical points and the Hessian of the Hamil-
tonian H: T*.4° — R. From now on, dim M = 3.

11.2.3. THEOREM. A pair (g, ) € T*.4* is a critical point of H: T*.4* - R, (g, %)
~ [5#(g, 7) if and only if (g, 1) € F* x {0}.
At a critical point (gp, 0), the Hessian of H is

EH(gr,0)-(h o), () =5 | V2 dpy +5 @trhp dp

+2 _" Gltr o'P — &'-0) dp,.
Procr. From the computation in the proof of 11.2.1,

+

i

dH(g, 2)-(h, @) = [ D#(5, 2)-(h, ) _
= —I(RiO(g) —~ 4 gR(g))-hdu, + 2 I(i(tr ') —n' x x')-hdy,
——;—I('}(tr 2P — 2w h dpg+2 j' G(tr 7°) tr w—1' ) =0
for all (i, w) € S? x (52 ® p,). Thus

(@ — (Ric(g)— $gR(g)) +2(}tra’)n’ — a' x a') — $ ($(tr o' — «’-x')g=0,
(b) Hra)g—n"=0.
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Contracting (b) gives tr z’ = 0, and thus from (b) again, =’ = 0 (and so = = 0).
Thus, from (a), Ric(g) — 4 gR(g) = 0 = Ric(g) = 0= g is flat.
In the computation for

@ H(g, n)-Cu 1) = ([ Rie) dps)- . B
+ &(f o - 7 -2) dpg)- (. ), G, ),

the terms due to the kinetic part of H are straightforward to compute; since # = 0
and the kinetic part is quadratic in x,

(g, 0)-((h )Mt ) = d2([(er 27 — "7 dpg)- (t, @), (B )
= ZI(}(trw')z — o' o) dy,.

The expression for d¥(fR(g) du.)-(h, h) is given by IL2.2. O
Note that the critical points of H are exactly the set where & is singular; i.e.
where Do#¥(g, n) is not surjective. This “coincidence” follows from the fact that

dH(g, 7)-(h,a) = [ D#(8,7)-(h,0) = [ (DA, YD) @) = 0

for all (h, w) € Tga) (T°.4°) iff 1 € ker (Do (g, 1:))‘ iff D3#(g, =) is not surjective.

Around (gr, 0)€ $* x {0}, the equation (g, 7) = 0 is linearization unstable ™
The extra condition that a first order deformation (4, w) must satisfy for it to be
tangent to a curve (g(2), z(d)) of exact solutions of #*(g, =) = O is given by the
following:

I1.2.4. TueoreM. Let (g(d), n(A)e€s <= T2, 2€(—8,6),6 >0, be a C2
curve with (g(0), ©(0)) = (gr, 0)e & x {0}, (g'(0), ='(0)) = (h, w). Then (h, )
must satisfy tr k = constant and

——;—j Vhedu,, + 2j(§(uw')z - o' @) dp, =0

where h is the divergence free part of h.
Proor. Differentiating 5#°(g(1), z(2)) = 0 twice and evaluating at 1 = 0, we have

X @, 7@, = DA, 5D, ¥ Do

) = D#(gr, 0)-(h, ) = (dtrh + d3k) dp,
=(dtch)dp, =0
and

LE e x)| = Do, 70)-(F D, 7D, (€D, T Do

(2) + D2 (g(l)’ 7[(1)) (g ”(Z): ”(A))ll‘
= D2#(gr, 0)-((h, w), (h, w))
+ Ds#(gr, 0)-(g"(0), "(0)) = O.
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Integrating (2) over M gives
@ H(ER (o) (6) = [ D#(er 0)-(h o), (1 0) = 0
since (gr, 0) is a critical point of H, so that

dH(gr, 0)-(g"(0), z"(0)) = jDJf’(gr, 0)-(¢"(0), z"(0)) = 0.

From the first order condition (1), tr & = constant, so that from I1.2.3, the
second order condition (3) becomes

— 5 Ohpdy + 2 [0y - w0 dg =0. O

REMARKs. 1. The first order condition (1) does not give any restrictions on .
However in the next section we shall see that the first order deformation (4, ) of
the d;z = O constraint around = = 0 implies that 5w = 0.

2. As an example of a nonintegrable deformation, let (73, gr) and 4 be as in the
example of L.4. Then if w =0, (5, 0) satisfies the linearized Hamiltonian constraint
but not the second order condition, which for w = 0 reduces to V% = 0. Thus
(h, 0) cannot be tangent to any curve (g(4), (1)) € G-

Even though gy is flat, the integrated extra condition on a first order deforma-
tion (A, w) cannot be converted to a pointwise condition as in 1.4.2 or the above
remark since the kinetic term ((3(tr 02 — o’ - ') dyg is not negative-definite,
even if the condition dw = 0 is imposed. Not being able to convert to a pointwise
extra condition signals that although there is linearization instability of »#(g, z) =
0 at (gr, 0)e #"x {0}, these solutions are not isolated solutions. In fact, if we
ignore the 87 = 0 coastraint, we can construct solutions algebraically to )#(g, z) =
0,(g, #) ¢ #* x {0}, which are arbitrarily close to a solution (gr, 0) € #* x {0}.

This construction proceeds as follows: let AT S2 be any traceless tensor,
tr AT = 0,and let z, = (AT + ((2/3)AT- AT)V2gg) yg,; here the trace and point-
wise contraction *“-* are with respect to gr. Then

H(gr, 7o) = (R(gF) + ¥ (tr 7P — mi-7l) pag, = 0.

Thus for e small, 7, can be made arbitrarily close to 0.
In this construction, dz. # 0, and this situation cannot be remedied by choosing
AT to be transverse (i.e. 5AT = 0) as well as traceless, since ¢ = ((2/3)4T-AT)2
need not be constant, so that # = (47 + ¢gr) y,, need not be divergence free.
However, by being more subtle, we can still construct solutions to J#(g, ) = 0,
ogn = 0, (g, =) ¢ #* x {0}, which are arbitrarily close to the manifold of solutions
& x {0}.

I1.2.5. THEOREM. Let (gr, 0)€ & x {0}. Then in every neighborhood U}, <
T* 4 of (gr,0), there exists a (g, x) € Ul,, o, such that (g, ©) ¢ F* x {0}, #(g, n)
= 0,0,z =0, and tr x = cu,, ¢ = constant # 0.
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Proor. We use a stability argument based on the Lichnerowicz [24] and Choquet-
Bruhat [7), [8], [9] conformal method of constructing solutions to the constraint
equations.

For goe 4, let ATTe 82 be such that 3, A77T =0 and tr ATT = 0. Let M =
ATT. ATT (“.™ is with respect to go) and let ¢ = constant. Then from [8], [9] (see
also [33] for the case ¢ = constant % 0), if M # 0 (<> ATT £ 0), ¢ # 0, there
exists a unique ¢ € H*(M; R), ¢ > 0, that satisfies the Lichnerowicz equation

© 84¢ = — R(g) ¢ + M ¢~ — b2 4"
Moreover, if g = ¢* go,
7= (F AT+ (D ) o, = (70 AT + (D) ) b1

(where the last equality follows from g* = ¢4 gf and u, = ¢* u,), then (g, 7) =
0, 8,7 = 0, and tr x = cp,.
The stability theorem of [9], adapted to the case that ¢ # 0, proves that solutions
to (L) are stable with respect to g, M, and ¢2, if M # 0, and ¢ # 0;i.e. if welet
Y: T > H(M; R), (g 7)r¢
be defined for those (g, z) € T*.4* such that = is of the form z = (477 + (¢/3)g)u,,

ATT £ 0, ¢ # 0,and let ¢ = Y(g, n) € H(M; R), ¢ > 0, be defined as the unique
solution of (L), then Y is a continuous map. '

From the uniqueness theorem for (L), if ™

—R+M-%c2=0, M#0,c#0,

then ¢ = 1 is the unique solution of (L). But then from stability of solutions to
(L), it follows that if — R(g) + M — (1/6) 2 (M # 0, ¢ + 0) is H*~2 close to
0 e H*~%(M; R), then the unique solution ¢>0 of (L) is H*close to 1 € H* (M; R);
ie. if U c H*(M; R) is a neighborhood of 1, there exists a neighborhood
U2 < H*-2(M; R) of 0 such that if — R(g) + M —(1/6) c2e Uy, M # 0,c #0,
then the unique solution ¢ > 0 of (L) is in Uj.

Now let

o = (& )€Ul g if 7 = (477 + (c/3)g) pgand pe U}, ¢ > 0,
then (¢g, (9=* 477 + (c/3) &) 1) € Uy, 00}
and
Digorr = (8. 1) € Ulyoy: i m = (AT7 + (c/3) &) pr
. then — R(g) + M — } 2 U3™%},

so that U, o < Ul and U, o = Ui, are both neighborhoods of (gr, 0).

Now let (go, wa) € U, 5 N T, o) with 7 of the form 7o = (A7 + (c/3) &2) p,s
ATT £ 0, ¢ # 0, and let ¢ > 0 be the unique solution of (L) with coefficients
(g0, M, ¢). From the construction of ﬁim,, and U}, ¢ € U3, so from the con-
struction of Uy, q, if g = ¢4 g0, @ = (¢74 4™ + (c/3) ¢?£7) iy (8, 7)€ Uiy
and #(g, 1) = 0,8 =0, trr =gy =cP® py, = C g, c # 0, and (g, 7) ¢ .
F* x {0}.0

!

-
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Thus the set #* x {0} is not isolated among the solutions of (g, #) = O and
3,z = 0. In fact, in {6), Brill-Deser show by example that a flat 3-torus and = =
0 is not an isolated solution of the constraint equations.

As shall be apparent from 11.3.2, the divergence constraint also does not have
any isolated solutions. Thus because J#(g, =) = 0 is linearization stable at all
(g, ) ¢ F x {0}, we can conclude:

There are no isolated solutions of the empty-space constraint equations of general
relativity.

This result also holds for all physically reasonable stress-energy tensors.

Interestingly, if we look for solutions to the constraint equations that also satisfy
the condition tr © = 0, then &5 x {0} is an isolated manifold of solutions to
the Hamiltonian constraint (and hence to both constraint equations).

11.2.6. THEOREM. Let (gr, 0) € &+ x {0}. Then there exists a neighborhood U,
< T*4* of (gr, 0) such that if (g, z) € Ug.n, #(g, @) = 0, and tr x = 0, then
(8 ) e 7 x {0}.

ProOF. From 1.5.2 there exists a neighborhood U, = ¢ such that if g € U,
R(g) = 0, then ge &+ Let Uy, = T*U,, « T*.4*. Then if (g, 7) € Uy,
#(g, ) =0,trx = 0,then R(g) = n'-#’ = 0, and since g€ U,, g € F%, so R(g)
= 0,and hencexr = 0. J

ReMARKs. 1. In particular, the solutions #* x {0} are isolated among the time-
symmetric (x = 0) solutions to the Hamiltonian constraint.

2. The variation of the tr x = 0 condition is

Dtrz) - (hho)y=h-t+tro=0.

Thus if # = 0, a deformatior of tr x = 0 must satisfy tr @ = 0. Using this con-
dition, the second order condition of 11.2.4 reduces to the pointwise condition Vi
= 0 and @ = 0. This is the basis of the “‘second order” version of 11.2.6, proven
in [5).

Although I1.2.6 proves isolation in a full neighborhood of &+ x {0}, in light
of 11. 2.5, the isolation of this set is more a consequence of the tr # = 0 condition
than of the constraint equations.

I1.3. The divergence constraint. Now let : T*.4% — 2°-1 x ¥, (g,7) — Gy =
—a'h;, where ¥ is the set of H* volume elements on M. Let

€ =00 = {(g,n)eT*.«*: 6(g, ) = 0}
denote the set of solutions to the divergence constraint.
11.3.1. THEOREM. Let (g, %) € €} satisfy condition Cs: if Lxg = Oand Ly = 0,

then X = 0. Then in a neighborhood of (g, &), €} is a smooth submanifold of T*. {/*,
and 3,z = O is linearization stable at (g, ).

PrOOF. D3(g, 7): S3 % (S? ® ug) = Z*! ® u, is computed to give
ﬁ(x.t) + (h, w) = Di(g, 7) - (h, w) = 0w + % ™™ My'® — Pl 71
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with Ly-adjoint 8;-: 2* @ p — S37' x (SZ_, ® u,) given by

BloXz) = (— $(Lxx + X @ 3z + 67 ® X)*, $ (Lxg) 1)
((Lxm) means the tensor part of Lyx). Thus, since dx = 0, B8.(Xu) = 0=
Lxz =0 and Lxg = 0= X = 0, so 8, is injective. Also, 8. has injective
symbol (which it inherits from the second factor alone), so that 8¢, = Di(g, z)
is surjective and (-, -) is a submersion at (g, x). [J]

For (g, z) e TV.r1, let I, = {p € P*11: p*g = g}, the isometry group of g, and
I, = {p € P311: ¢*x = x}, the symmetry group of z (here p* 7 = ((p~V)e 7') ®
(p*us) is the pullback of the contravariant tensor density ). [, is a compact Lie
group; I, is clesed in 724! but may be infinite-dimensional (e.g., if 7 = 0, [, =
>, Let Lig = I, () I, a compact Lie group, and lct &, denote its Lie
algebra. Then ker .0 = Fom = (X € 3t1: Lyg = 0and Ly r= 0}.

If we consider th: action 4: 2511 x 5 — _* hifted to the cotangent bundle,

A @y T > T, (9, (g 7)) — (p*g, ¢* )

then the isotropy group of this action at a point (g, z) € T*.#* is I.). Thus the
map (g, 7) is singular (i.c., fails to have surjective derivative) precisely where the
action 4’ has isotropy greup Ji v which is nondiscrete. At these (g, %), 2**! does
not act frecly so that th? quotient space 7% #*/%*+1 js singular (i.c., is not a mani-
fold).

Ope(p*n) = 0 50 that (%8, ¢*x) € ;. Thus ¢ is invariant under 4’ so that we have
restricted action

B:271 x €5+ €.

Let €3/ 2¢*1 denote the quotient space of €} by this restricted action. Because the
singular points (g, 7) of ¢} (as a manifold) correspond to singularities in the action
B, and at these points (g, 7), ker 8f..) = F .0y, We conjecture that modulo the
presence of discrete isotropy groups, ¥3/ 2+ is a smooth submanifold as a subset
of the quotient space T*.4° [ 9**1, the singular points of ; precisely “cancelling
out” the singularities in the quotient space €3/ 2**! due to the presence of nondis-
crete isotropy. This possibility was pointed out to us by D. Ebin; cf. Marsden and
Fischer [28].

At those points (g, 7) € €3 for which Dj(g, ) is not surjective, there are extra
second order conditions that must be satisfied for a deformation (%, w)to be tangent
toacurvein ¢}

11.3.2. THEOREM. Let (g, ) € €3, X € 2*+1, X # Qsuchthat Lxg = Oand Lxn =
0. Let (2(R), 7() € €3, A €(—c¢, ©), ¢ > 0, be a C2 curve with (g(0), z(0)) = (g,%),
and(g’(0), '(0)) == (h, ). Then (h, w) satisfies

Dig, v) - (hw) = 60 + } '™ hyp!t — 2 By, =0
and
j' hLyw=0.

Note that if (g, ) 2 ¢ pulling back §;x = 0 by p e 2*1 gives p*(F,7) =

-

f
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Proor. Differentiating 6(g(2), n(1)) = 0 twice and evaluating at 2 = 0 gives

L (6@, 7)|_, = Dalg. 7) - tha) = 0,

and

d2j
T G, 2@)|,_ = Dog, ) - (1, @), (b, )
+ Dilg, 7) - (g"(0), x"(0)) = O.
Thus, if ker 8. # 0, then for each X e ker 8.2,

fx- o n - @)t )) + [ X- B - €O, @)
=[x 09 n) - (o) th o) + [ Gan 0 €O 5"O)

=[x 0o, m) - (), (o)) = 0.
A rather lengthy computation gives
D?(g, 7) - ((h, o), (h, w))
= 20" (3 hm' — W) — 208" B3 (% Bimia — Hatim)s
which, together with Dd(g, n) - (h, w) = 0, gives

fx- @t m - od o) = - [ Lew - h=0.

Thus, ]'wa - h = 0 is the necessary second order condition for each X € ker 8.
that must be satisfied for (h, @ ) to be tangent toacurvein ;. O

Thus at points (g, z) of linearization instability of the equation d 7 = 0, there is
an extra condition generated by each X € ker (Dd(g, m))* = {Xe 2*: Lyg = 0 and
Lyr = 0}, so that the number of linearly independent extra conditions is cqual
to dim ker (Dd(g, ))*. For the Hamiltonian constraint there was one extra second
order condition, corresponding to the fact that dim ker (Ds#(gr, 0))* = 1.

I1.4. The constraint manifold ¥*. We now consider the constraint set €* = &5 N
%}. To show that ¥* is a submanifold of T*.#*, we need additional restrictions in
order to ensure that the intersection is transversal. At this point it is necessary to
assume that tr 7 = constant. (See Note on p. 263.)

[1.4.1. THEOREM. Let (g, 7) € 6* = €% [\ €} satisfy the following conditions:

Cx:ifm =0, g is not flat;

C;: Lxg— QandLyr = 0= X = 0

Cy i tr ©* = constant.

Then, in a neighborhood of (g, ), 6* is a C* submanifold of T*.4¢°.
PROOF. Let ¥ = (07, 8): T*.4* = A2 x (T*' @ ), (g, 7) ~ (5#(g, 7). (g, ).
Then
D¥(g, n) - (h, w) = (D#(g, 7) - (h, w), Di(g, ) - (h, w))
= (r@o * (h @), B (b w))
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and the L,-adjoint of D¥(g, &) is
(DY (g, m))* - (N, X ® ptg) = 1 (Nitg) + Blaay(Xptg)-
Thus suppose (D¥(g, 7))*(N g, X ® 115) = 0. Then
gJN + Hess N — N Ric(g) + 4 NR(g)g

(a) +2(3¢ra) -2 x 7Y - (A (xR —z" - 2)g}IN
~ AUy + XQ®ox+ 0z @ X)Y>=0;

(b) 24(trm) g — W) N + (Lx gy pe=0.

Taking the trace of (a) and using (g, z) = 0 and dx = O gives

© 2AN -3 (X -dtra' —x' - Lyg — 0X)(tr z")) = 0,

and from the trace of (b),

(d) 6X = Ntrx.

From (b,

(e) Lxg =4(z — §(tr 7)g)N,

and, subsituting (d) and (e) into (c) gives

() 2UN + Az’ -7’ — Fr )N = 2 X - dtr 2’ = 0.

Since P(z' ) =" 7' ~3(tra’® = (z' — $(tr2')g) - (z' — $(tr z)g), the
coefficient of N is positive-definite, Thus, if tr 7' = constant,

24N + 2P(x’, z') N = 0,

so that N =0 unless 2" = 0. If N = 0, from (a) Lxz = 0 and from (b) Lxg = 0
so X =0.

If z' = 0, then 4N = 0o N is constant and so from (a), N(Ric(g) — 4 gR(g))
= 0= N = 0, since Ric(g) O in the case that ' = 0. Then, again, X = 0.
Thus, in either case, (D¥(g, 7))* is injective.

The symbol g (D¥'(g,7)*) is given by

O, (5 Y) = {(—g &2+ 6. ®E)s— (=7l & Y; =~ & Yi + w64 YD),
WY ® &+ & ® YV)u (%)

Thus if g¢, (5, ¥Y) = 0, §; # 0, from the second factor ¥ = 0 and so from the first
factor s = 0. Thus g¢, is injective, D¥'(g, =) is surjective, and ¥ is a submersion at
(gx). O :

It would be nice if the tr ' = constant condition could be dropped and we con-
Jjecture that it can. However, because of the coupling of equations (a) and (b) with-
out the tr 7 = const condition, it is possible that these cquations have nonzero
solutions (N, X) even at those (g, =) that satisfy conditions C, and C;.

I1.5. Integrating deformations of Ricci-flat spacetimes. As explained previously,
we can use I1.4.1 to prove the following result. We consider only the C* case here.

IL.5.1. THEOREM. Let @g be asmooth Lorentz metric on a 4-manifold V satisfying

»
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Einstein's empty-space field equations Ric({9g) = 0, and let Wh be a solution to the
linearized equation

D Ric(Wg) - Wh =0
about the solution Vg,

{Assume that V has a compact connected oriented spacelike hypersurface M with
induced riemannian metric g and second fundamental form k that satisfy conditions
Cy, C;s, and Cy,. Then there exist a tubular neighborhood V'’ of M, ad > 0, and a
smooth curve Wg(), — 8 < A < J, of exact solutions to Einstein’s equations defined
on V' tangent to Wh at Wg, i, Wg(0) = Wg Wg'(0) = Wh, and Ric(Wg(2)) =0
in a tubular neighborhood of M.

Proor. Let (g, 7) be the variables on M induced by @Wg. A deformation ¥4 of
Ric(*9g) = 0 induces a deformation (4, @) of the linearized constraint cquations,
Dy (g, 7) - (h, w) =0, Dé(g, =) - (h, w) = 0. Since (g, ) satisfies conditions
Cw, C;, and C,, by II. 4.1, % is a smooth submanifold with tangent space T@= @
= ker (Dx#(g, =), Di(g, x)). Since (h, @) is tangent to ¥, we can find a curve
(g(2), =(2)) € ¥ tangent to (A, w). By the evolution theory, this curve of solutions to
the constraint equations gives us a curve Wg(2) of spacetimes defined in a tubular
neighborhood V' of M. By a transformation of coordinates, Wg(1) can be made
tangent to WA. See [16] for details. [

Thus a solution of the linearized Einstein empty-space field equations actually
approximates to first order a curve of exact solutions to the nonlinear equations in a
tubular neighborhood of any compact spacelike hypersurface that satisfies condi-
tions Cyr, Cj,and C,,. Because these conditions are so weak, presumably most space-
times which have compact spacelike hypersurfaces have a hypersurface M satisfying
these conditions, and thus is linearization stable in a tubular neighborhood of M.
Moreover, by using standard arguments and by considering the maximal deve-
lopment (see [12]) of the Cauchy data of the curve of spacetimes Wg(2), there will
be a maximal common development (which approximates the maximal develop-
ment of @g(0)) for which the spacetime is linearization stable.
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