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It is interesting that a variation of the Ricci equations around a flat metric is 
already enough to imply that = O. This fact, discovered by Berger [21. is 
essentially the first order version of 1.3.2; if 90' :1= 0. then 91" = 

Note that fi'l is an invariant subset under tbe action of !?JS+1 (i.e .• ,,-gFe fi"). 
whereas fi'} is not, since if g e.'F}, rp-g e That Tg fi" contains 
whereas Tg S"} does not is the infinitesimal version of this remark. 

We also remark that since Tg fi';' = S;H C Si+1, is, in a neighborhood of g. 
orthogonal in the Lz metric on .h' (see [13D to the orbit through g. Nonetheless. 
we have seen (after 1.3.2) that §} bends back to intersect at metrics 
"e/."H, rp II 1;+1. 

In 1.5 we will need the following result regarding the volume elements of flat 
metrics: 

1.3.S. THEOREM. Let g, g e §}, s > nl2 + 1, and let dJlg and dPI be the volume 
elements of g and g, respectively. Then there exists a constant c > 0 such that 
dpg = cdp,. 

PROOF. Let (U, t/Ju) be a chart on M such that the Christoffel symbols of r = 
r(g) = reg) = O. Thus 'iJgij(Or: = o and 'iJg;il'iJr: = 0 on Uso that (gtU);j 
= Cq and (g r U);j = cij are matrices of constants. In this coordinate cbart dpg t u 
= (det C;j)L'Z dx1 1\'" 1\ dx- and dPk r U = (det C;j)1I2 dx1 1\ ••• 1\ dx". so that dpg t u 
= cu(dp,r U), = where Cu = (det cij)1I2/(det cij)l12 is constant on U. 

Now suppose (Y, t/Jv) is another coordinate chart for whicb Un V:I= 0. 
Then dpg t Y = Cv (dp, t V) and on the intersection U n V, dpe rUn V = 
cu(d"" tUn V) = Cv (dpl tUn y), so that Cu = ev. Thus there exists a global c = 
constant > 0 sllcb that dpg = C dPii' 0 

L4. LinearizatioD-instability around Ricci-flat metrics. If g e is Ricci-flat, then 
the map R( .)- H·-2 is singular at g in the sense that DR(g) : -+ H·-2 is not 
surjective. The failure of DR(g) to be surjective suggests the equation R(g) = 0 is 
linearization unstable in a neighborhood of a Ricci-Oat solution for dim M 3; 
i.e. there will be first order deformations h e Si that will not be tangent to any 
curve g(l) of exact solutions of R{g) = O. In this section we analyze tbe structure 
of the map R( .) at Ricci-flat (and Oat) metrics, and work out the extra condition 
that a first ower deformation must satisfy in order that it be tangent to a curve of 
exact solutions of R(g) = O. . 

Our main computation is contained in the following: • 

1.4.1. THEOREM. Let g e _"', S > n/2 + I, Ric(g) = O. Then/or he Tit-"' = S;. 

JJ)2R{g).(h, h)dpg = - + J(h . .1t.h) dpg - + J(dtrh)2 dpg + f<tlh)2dpg 

where .1t.h = ,dh - 2Rfl hali;s the Lichnero .... icz Laplacian [2S]for a Riccillat space. 
If g e ..111 +1 and h = " + Lxi," e X e fl".+1 is the canonical decomposition of 

h, then 
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ID2R(g)·(h, h) dpg = - + I"'ilJ, dpe - + I(dtr")2dpg 

+ 2I(dtrh)'(dOX)dpg. 

PilooF. 

ID2R(g)·(h,h)dpg = D (JDR(g).h dpg).h - J(DR(g).hXD(dpg).h) 

= D (J(iltrh + Jah - h.Ric(g»d.ur,).h 

- I(DR(g) ·h) (D(dpg) ·h) 

= - D ~hoRic(g) d.ur,) ·h-f(DR(g).hXD(dpJoh) 

since J(iI tr h + Mh) d.ur, == 0 for all (g. h) by Stokes' theorem. Since Ric(g) = O. 
an contributions due to the metric terms in the pointwise contraction h· Ric(g) 
= gd gd haeRt,., are zero and so we have 

fl)%R(g)'(h, h)d.ur, = - Ih.(DRic(g).h)d.ur, - J(iltrh + JJh)+trhd.ur, 

= - + fh'(ilLh - 2r'~h - Hess tr h) dpg 

-+ f(dtrh + aah)trhdpg 

= - + fh.iltlIdpg + j(ah)2dpg + + Iah.dtrhdpg 

- ~ J(dtrh)2d.ur, - ~ JJh.dtrh dpg 

= - + Jh.iltlIdpg - + I (dtrh)2d.ur, + I(Jh)2dpg 

where we have used D(d.ur,)· h = ! (tr h) dpg and have integrated several times by 
parts. 

Now suppose ge .BaH. Rie(g) =0, and h = " + Lxg. Then from the proof 
ofI.3.4. D Ric(g)·h = DRic(g)·" = HilLh - Hess tr">, and similiarly DR(g)·h 
= DR(gl'" = dtr". Thus from (1) above. 

JD2R(g).(h,h) dpg:e: -+ fh.(AJ, - Hesstrh) dpg - ~ f(AtrTt)(trh)dpg 

= - + Ih.AJdpe + ~ J (Jh - dtrh)·d tr" dpe 

where we have used the fact that for Einstein spaces J 0 ilL = iI 0 J (see [25]), 
so that ilIft e $~-2. and so by orthogonality of ~~-2 and aa<~·+1), Ih.ilJ, dpg = 
f"·ilJ, dpll' 

Since h = h + Lxg. ah = aLxg = ilX + (daX)' = (2daX + odX~)' and tr h = tr" - 'lOX. Thus (6h)' - dtr h = 4 doX + adX. - dtr" and 
.. 
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+ J«oh)' - dtr h)·d tr h dpg = + J(4dOX + odX~ - dtrh).dtrhdpg 

= - + J (dtrh)2 dpg + 2 JdOX.dtrh dpg 

since a dX~ and d tr hare Lz -orthogonal. 0 
The extra condition that a first order deformation of R(g) = 0 about a Ricci­

flat solution must satisfy for it to be tangent to a curve of exact solutions is now 
easily computed. 

1.4.2. ThEoREM. Let g(l) E "",6, 1 E ( - 0, 0), 0 > 0, s > nl2 + 1 be a C2 curve 
with (g(0), g'(O» = (g, h). Suppose g E ""P+1, and let h = , + Lxg be the canon­
ical decomposition of h. If R(g(l» = 0 and Ric(g) = 0, then tr' = constant and 

J Iz . ~LIz dpe = O. 

If g E §6, then vI. = o. 

PROOF. Differentiating R(g(l» = 0 twice and evaluating at 1 = 0 gives 

(1) ~ R(g(l»I.~=o = DR(g(l»· ~1 (1)1 .. =0 = DR(g)·h 

= ~trh + ooh = ~trlz = 0, 

(2) ~~~ (g(l»t=o = JJ2R(g(1»'(~1 (1), ~1(1) )1 .. =0 + DR(g(l»'( ~~~)<1)1 .. =0 
= JJ2R(g)·(h,h) + DR(g)·g"(O) = O. 

Here we are idenPfying T..I/$ with.us x S;, so dg(J..)/dl E S2 and tPg(1)/d12 E S;. 
Integrating (2) over M (using the volume element dpg) gives the extra condition 

r 

(3) J JJ2R(g) .(h, h) dpg = 0 

since J DR(g)·g"{O)dpg = J(~tr(g"{0» + oo(g"(O»)dpg = 0 for all accelerations 
g"{O). 

From (I), tr Iz = constant, so that from 1.4.1, (3) becomes 

-+J'.~tft dpg - + J(dtrh)2.d/lu + 2 Jdtr,;.dOX~dPI/ 
(4) = - + p.~Jz d/lu = O. 

If g is flat, ~L = ~, so that 0 = f Iz .Jh dpg = J h.J" dpg = J (V1z)2 dpg =- V, 
=0. 0 

REMARKS. 1. At a regular point g E ""'0 where DR(g) is surjective (so that 
Ric (g) :F 0), equation (2), when integrated over M , gives 

J JJ2R(g). (h, h) dpg - J Rie(g)· g"{O) dpg =0, 
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an integrated condition on g"CO) in terms of h, which at regular points g does not 
give an extra condition on h. It is only when Ric(g) = 0 that the term involving 
g"CO) drops out leaving an integrated extra condition on h. 

2. That we get one extra condition on h when Ric(g) = 0 corresponds to the fact 
that ker (DRCg»·= {constant functions on M} is l-dimensional, since as in §O. 
Example 4, Remark 2, there is an extra condition for each dimension in 
ker{DRCg»·. In the case at hand, the equation JDR(g). g"CO) dPtr = 0 (which leads 
to the extra condition on h) can be expressed as 

I(DR(g)·I).g"(O) dPtr = 0 for all g"(O) iff 1 e ker (DR(g»·. 

That the extra condition on h is an integrated condition corresponds to the fact 
that (DR(g»· is an J..z.adjoint; i.e. we do not get an extra condition on h until we 
integrate (2) against an element of ker (DRCg»-; cf. Example 4, Remark 1. 

3. If g e J/$, Ric(g) = 0, but g is not of class H·+I, h may not have a canonical 
decomposition. In this case, by using the first order condition DR(g)· h = LI tr h 
+ 66h = 0 and equation (1) in the proof of 1.4.1, the extra condition (3) can be 
expressed as • 

JD2R(g)'(h, h)dPtr = - Ih.(D RicCg).h) dPtr 

= -+ Jh.{4cJ,..- Woh - Hess trh) dpg ~ 

= - + Ih. 4rJa dpa + + J (oh)? dPtr 

+ + Joh.dtrh dPtr = O. 

4. Considering third and higher order derivatives of R(g(l» = 0, Ric (g(O» = 0, 
does not lead to any extra condition on the first order deformations. For example. 
differentiating 

J)2R(g(l»·(h(l), h(l» + DR(g(l»'g"Cl) = 0 

(where hCl) = g'Cl» and evaluating at 1 = 0 gives 

(5) lJ3R(g)·(h,h,h) + 3D2RCg)·(h,g"(O» + DR(g).g"'(O) = O. 

Integrating over M. the last term again drops out, leaving 

flJ3R{g}'{h,h.h) dJlg + 3 IlJ2R(g)'Ch,g"(O» dpg = 0 

as the extra integrated .. third order" condition on g"CO) (beyond that implied by 
the second order pointwise condition of equation (2» that has to be satisfied for 
g"(O) to be the acceleration of some curve of exact solutions of RCg) = O. This of 
course is the analog of the second order phenomenon. This situation ~ts, and 
in general there is an extra integrated condition on the nth order deformation that 
comes from the (n + l)st order equations. However, these higher order equations 
do not provide any further conditions on the first order deformations in general. 
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In special cases, however, it is possible that third order variations can lead to 
extra conditions on first order deformations, as in § 0, Example 3. 

5. We can also examine the linearization instability of the equation R(g) = P 
= constant> 0 around a solution (S". go), a standard sphere in R"+lofradius 
ro = (n(n - 1)/p)lI2. In this case, from Remark 2 of 1.2.1, ker (DR(go»* = {eigen­
functions of .::1e.} so that iff E ker(DR(go»*, 

Jf DR (go)·g"(O) dpg = J(DR(go)*.n.g"(O) dpg = 0 

for all g "(0). Thus multiplying (2) by f and integrating over M gives for each linearly 
independent eigenfunctionf of .::1e• the extra condition 

JflJ2R(go).(h, h) dpg. = 0 

on a first order deformation h. That this really is extra is shown in [18]. 
In the case that g, E !P, the integrated extra condition fir. J Ir dpg, = 0 can 

be converted to the very strong pointwise condition vir = O. This pointwise 
condition signals an even greater type of instability, viz., tbatthe flat solutions of 
R(g) = 0 are isolated among all the solutions. This aspect of the map R( .) will be 
examined in the next section. 

In the flat space case, if the extra condition vir = 0 is satisfied, then we can 
explicitly integrate up any deformation h = h. + Lx gF, Vh. = O. Indeed, let 
g;l·h. denote the l-contravariant l-covariant form of hit let exp (g;l ·h.) denote 
the pointwise exponentiation of gil.hlt another tensor of type (D, and let gel) 
= gF exp(lg; I • hi) denote the 2-contravariant form. In coordinates, gF exp(Ag;l. h.) 
= (gF)a expel gF'P (h,)lj). Then g(l) is a Coo curve in !Free')' defined for all A E R, 
such that (g(0), g'(0)1 = (gF, h.). If tpJ. E ~. (jJo = idM, is the flow of the vector field 
X,. then gel) = q>i (g(l» E !Fs, e(O) = gF. and e'(O) = rp!(x'(l) + Lxg(l»I.l=o = 
hi + LxgF. 

In the next section we shall see that g(l) E!fi' is quite necessary if g(l) E JI~ and 
g(0) is flat. 

If :;;s = (2), and if there exist nonflat Ricci~flat metrics go (so that dim M ~ 4), 
then we do not know if satisfaction of the extra condition flr'Lhlr dpg. = 0 is 
sufficient to find a curve gel) E J/~, g(O) = go. g'(O) = h. However, because third 
and higher order deformations of R(g) = O· do not lead to any new conditions on 
h, we suspect that if the second order condition on h is satisfied, then there is a 
curve g(l) E Jlo which is tangent to h. 

One of the difficulties here is that the structure of the set Co = {g E .,II' : 
Ric(g) = O}. if not empty, is unknown. In particular, we do not know ifit is a mani­
fold. The fonnal tangent space of C~ at g E .,11,1-1 is, from the proof of 1.3.4, given 
by ker(D Ric(g» = {h E S2: Lhlr = O} = {harmonic tensors of .::1L}. Thus if tf~ 
were a mauifold, any h such that.::1L h = 0 is tangent to a curve in 8~. This would 
partially answer the question of whether the t"xtra condition of 1.4.2 on a deforma­
tion h is sufficient to find a curve in J10 tangent to h. 
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We now give an example of the linearization instability of the equation R(g) = 0 
on a flat 3-torus. Let 11 be the lattice generated by the standard basis lei} in.R3. 
let 'J'3 = Rl/ A. and let g,be the metric induced on T3 from Jl3. Let $I be the circle 
with unit circumference, and letf: $1-. B be any smooth function,f =I: constant. 
Set 

( 

0 f(X3) 

h=/zq= f(x~ 0 

o 0 

Then ah = 0 and tr h = 0 (taken with respect to g,), but Vh =I: O. Thus this h, 
although a solution to the linearized equations DR(g,)·h = d IT h + aah = 0, is 
not tangent to any curve g(l) e .Ito. g(0) = gp, since Vh =I: O. 

If /(x~ = constant, then the extra condition Vh = 0 is satisfied, and we can 
integrate h up to a curve 

sinh If 
cosh If 

o 

of flat metrics on 'J'3 with (g(0), g'(O» = (gp, h). • ~ 
REMARKS. 1. The above expression for g(l) is also valid iff:F constant, but the. ) 

R(g(l» need not be zero for 1 :F O. 
2. On a flat 2-torus Tl, oh = 0 and tr h =constant imply Vh = 0 so that we 

cannot construct our example. This corresponds to the fact that R(g) = 0 is lineari­
zation stable if dim M = 2. 

1.5. Isolated soladons of R(g) = O. In the flat space case, the emergence of a 
pointwise condition from the integrated extra condition signals that the flat 
solutions of R(g) = 0 may be isolated solutions. In this section we show that this 
expectation is correct. We then use this result to work out the structure of ..Ito in 
the case that ~ :F 0. 

That R(g) = 0 implies that g is flat if g is in a neighborhood of a flat metric is 
somewhat surprising in view of the fact that the scalar curvature is a relatively weak 
measure of the curvature. 

Fix an Hs volume element dp on M. and define 

1/1: ..ItS -+ R. g .... j R(g) dp. 

Note that 1$ is not the usual integrated scalar curvature (cf. 11.2), since in general 
dp :F dpg. 

1.5.1. THEOREM. A metric g e..ll' is a critical point of IjJ if and only if Ric(g) = 
o and dp = c dpgfor some constant c > O. At a critical metric ge e ..I(s, the Hessian 
J2 1/I{ge): S~ x SZ -+ B ofi/l ;s given by 
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tJ2lT(g,,)· (h,h) = - + J h· 11£hcdpg. - + J (dtr h)2cdpg. + J(ah)2 cdpg •• 

PRooP. For g e JI',let p e H-(M; B), p > 0 be such that dl' = p dAr Then 

dIT(g) • h = J DR(g) • h dp = J(11 tr h + lah - h . Ric(g»p dpg 

= J (g11p + Hessp - p Ric(g» • h dpg = 0 

for all h e ~ jft" 

(I) r;(P) = giJp + Hess p - p Ric(g) = 0, p>o. 

From the proof on.2.I, (I) ~ R(g) = constant ~ O. Contracting (I) gives 

(2) (n - I) iJp = R(g)p, p > 0; 

integrating (2) over M gives 

0= (n - I) J iJp dpg = R(g) J p dpg. 

If R(g) = constant > 0, then I p d pg = 0, contradicting p > O. Thus R(g) = 0, so 
from (2), p = constant = c > 0, so that dp = c dpg. Since p = constant> 0, 
from (I), Ric(g) = O. 

Now suppose g" is a critical metric of W, so Ric(g) = 0, dl' = c dpg, Thus 

tJ2 W(g,,) • (h, h) = J lJ2R(g,,)· (h, h) dl' = c J lJ2R(g,,) • (h, h) dpg •. 

The theorem now follows from 1.4.1. 0 
REMARKS. 1. In the above it is important that we hold the volume element fixed 

and then let dl' = c dpg after we take the derivatives; see 1.5.2, Remark 2. 
~ That dp = c tfJlg, at a critical point of Wallows us to compute tJ21Jf(g,,) from 

1.4.1. Otherwise, the computation of tJ2 W(g) . (h, h) = I lJ2R(g)· (h, h) dl' is 
considerably more complicated than the computation of I lJ2R(g)· (h, h) dpg 
(unless dp = c dfJll), since I (iJ tr h + ooh) dp does not vanish for all (g, h) as in 
the proof of 1.4.1. 

3. ur need not have any critical points; e.g. if dl' is chosen so as not to be the 
volume element of any Ricci-flat metric. 

To second order, Brill [5] shows that the flat solutions of R(g} = 0 are isolated, 
and Kazdan and Warner [21, §5] show that near a flat metric to second order 
there are no Metrics with positive scalar curvature. The following extends these 
results to a full neighborhood of the flat metrics. 

1.5.2. THEOREM. Let gF e:F', s > n/2 + l. Then there exists l! neighborhood 
Ug, C ../I' of gF such that if g e Ug, and R(g) ~ 0, then g is also in :F'. 

PROOF. Let dpg, denote the volume element of KF. and Jet r denote its Levi­
Civita connection. Let l/f: "'I' -+ R, W(g) = JR(g) dpg,. 

If KF e:Fj., by 1.3.5, d Pe, = c d PI,. C = constant > 0, so that :F} is a critical 
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submanifold of 1T (but not the entire critical submanifold). and at a critical point 

K,e'}. 

tfl W(K,) . (h, h) = - ~ I (Vh" alp" - +J (d lr h" alp" + J (6h..,. cdp,,. 

Let S;, be a slice at g, (see the remark preceding Theorem 1.3.4) and Jet 1Jf s = 
1T t s; .. Since g, is a critical point for 1T. g, is also a critical point for 1§ So and the 
Hessian of 1JT s is given by restricting the Hessian of W; thus from 1.5.1.. for h e 

Te,.s:;, = {heSi: 6g,h = O}. 

Rs{g,)· (h. h) = tfl1JT(g,)· (I •• h) = -+J(Vh..,.dPe, - +J (dtrh..,.dJlg,. 

Thus tfl1ff s(g,) is negative-definite on a complement to Te,} = {h e Si: Vh = O} 

in Te, .s:;,. Thus since §} is critical there exists a neighborhood V c S;, of g, 

such that 1JTs ~ 0 on Y. and if1§ sCg) = 0, then g e $}. Thus the critical submanifoJd 

§j. is isolated among the zeros of,. s-
Let UB, = ~'+1 (Y) = {,* geJl': ,e~+l,ge Y} be the saturation of V. By 

the slice theorem [13]. Ug, fills out a neighborhood of g,. Thus if g e Ug, and 
R(g)~ 0, there exists a, e ~+1 suchthat,* ge Y,e: S;,and thus1JTs(,*g)~O,since 
1ffs is negative on Y. But R(,*g) = R(g) 0 'P ~ 0 so that 1JfJ..tp*g) = J R(,*g) dpB~ 
= J R(g) 0, dill, ~ o. Thus UfS<'P*g) = 0 so that 'P*g E §} and g e (,-I)*:Fi-
e: $' is Oat. 0 

REMARKs. 1. For dim M = 2. we need not restrict to a neighborhood Ug,. 
Indeed. from the Gauss-Bonnet theorem. if fF' =F 0, the Euler-Poincare charac­
teristic XM = O. so that for any metricg. JR(g) dpg = o. Thus R(g) ~ 0 ==- R(g) = 
o ==- g is Oat. 

2. Usually one considers an integrated scalar curvature 0(g) = J R(g) d pg with 
volume element dpg induced from g rather than Uf(g) = f R(g) dp with fixed 
volume element dp, as e.g. in [3). One then has (see 11.2.2) at a critical Oat metric 

(I) tJ2 t/J(g,) • (1., Iz) = -+ J (Viz..,. dill, + + J (dtr 1." dill, 

rather than 

(2) d216(gp) • ('. i) = - + J CY')2 dpg, - + f (d tr /,)2 dJlg,. 

There is now an important sign change in the second term; see also U.2.2. Remark 
2. Brill [5] uses (I). together with the condition tr' = constant implied by the first 
order equations DR(g) • h = & tr Iz = 0 to deduce viz = 0 and hence his second 
order result. 

To extend this result to a full neighborhood of the flat metrics, one may not use 
the first order condition tr" = constant. The indefinite sign in (1) now becomes 
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a severe difficulty. We introduced the map 1/f with fixed volume element dp since 
this difficulty is not present in (2). 

Note that if the first order condition tr" = constant is used. tfl1JT(gF) • (h, h) = 
tP 0{gF) • (h, h) = - ! J CYh)2 dpg., so that the two treatments are then equivalent. 

As a consequence of 1.5.1. we have the following structure theorem for .1'10: 

1.5.3. THEoREM. Let s > n /2 + I, dim M ~ 3, and if dim M ~ 4, assume 
5' #: 0. Then .1'/0 = (.1'10 - 5') U fF' is the disjoint union of coo closed submani­

folds. and hence .1'10 is itself a Coo closed submanifold of .1'1'; similarly, Jlo = (.Ko 
- §') U 5 is a Coo closed submonifold of .I'f. 

Notes. I. If dim M = 2 • .1'10 = :;;, is also a Coo closed submanifold. 

2. We are allowing the possibility that .1'10 - §' is empty, and if dim M = 3, 
we are also allowing the possibility that:;;, is empty. 

3. Jlo is a manifold since we are allowing different components of a manifold to 
be modelled on different Hilbert spaces. 

PROOF. If dim M = 3, Ric(g) = 0 => g is OaL If dim M ~ 4 and 5' :F 0, then 
from 1.3.2 F' = 8 0, Thus in either case 

..110 = (Jlo - &6) U 8 0 = (.1'(0 - §') U 5' 

which from 1.2.2 and 1.3.2 is the disjoint union of Coo submanifolds, /F' closed. 
Let gil -. g be a convergent sequence in Jlo - /F'. Then g e Jlo, and if g e /F', 

there exists a neighborhood Ug C j(' such that g e Ug , R(g) = 0 => g e :;;'. But 
then for n sufficiently large, g" e Ug , R(g,,) = 0 => g,. e /F' contradicting gn e ..1(0 
- !F'. Thus g e ..((0 - §', a closed set. 0 

RI!MARK.s. I. Thellf are various topological conditions on M, dim M ~ 4. that 
imply a Ricci-flat metric is flat; see [19}. [2O}. If we adopt any of these conditions, 
then we can drop the:;;' #: 0 assumption. Of course, if it turns out that Ricci­
flat implies Oat, then this assumption can be dropped. 

2. If dim M ~ 4, !F' = 0, then .1'(0 is still the union .lfo = (..1(0 - 86) U 
80. with .1'(0 - 80 a submanifold (1.2.2). But we do not know if 80. if nonempty. 
is a submanifold. 

3. If g(A), A e.( - 0, 0), 0 > 0, is a continuQus curve in Jlo. g(0) e !F', then g(A) 
e :;;', an interesting consequence of 1.5.3. 

If g(A) were a e" function of A, I ~ k ~ co, then we could conclude from the 
method of 1.4.2 that aU k derivatives of g(A) at A = 0 are parallel, V(g<II)(O» = o. 
Thus if g(A) is analytic, g(A) = I;:'o (.lD/n!)gC")(O). and V(gc,,)(O» = 0 for all 
n, so that g(A) e 5'. a conclusion from 1.4.2 alone. 

4. Finally we remark that although JI~ is a manifold (under the hypothesis 5' 
::P 0), the equation R(g) = 0 is not linearization stable at a lIat solution, as we 
have seen from the example in 1.4. Here the difficulty can be traced to the fact 
that .1'(0 is a union of closed manifolds of different "dimensionalities", :;;, being 
essentially finite-dimensional modulo the orbit directions; cf. Example I in §O. 
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IL A,ppuCAnoN TO GENERAL RELAnvtrY 

B.1. Tbe geaeral set-ap aDd maiD idea. We now tum our attention to the Einstein 
empty-space field equations of general relativity. We apply the techniques used in 
the previous sections to prove that solutions to these equations are linearization 
stable if certain conditions are met; in certain exceptional cases, however, the solu-
tions are not linearization stable. . 

Let «(Jg be a smooth Lorentz metric (signature - + + +) on a 4-manifold V. 
The Einstein empty-space field equations are that the Ricci tensor of(C)g vanish: 

(1) Ric«C)g) = O. 

An infinitesimal deformation about a solution (C)g is then a solution (4)h e Sz of 
the linearized equations 

(2) D Ric«C)g) • (C)h =0, 

where D Ric(C)g) is the derivative of the map Ric(·) at (C)g. 
Assume that (V, (C)g) bas a compact connected orientable spac:eJike hypersurface 

M so that dim M = 3. Let g denote the induced riemannian metric on M and k 
the second fundamental form of M. Our conditions for linearization stability 
are as follows (see Note on p. 263): 

CI : if k = 0, g is not flat; 
C, : if Lxg = 0 and Lxk = 0, then X = 0; 
Car : tr k = constant on M. 

(1be meaning of the subscripts.Jft' and 6 will become clear.) 
Our main result (11.5.1) is that if a solution (V, ~ g) of (I) has a compact spacelike 

hypersurface M whose induced metric g and second fundamental form k satisfy 
conditions CI , C" and Car. then every solution (C)h of the linearized equations is 
tangent at (C)g to a curve (C)g(A) of exact solutions of (I); i.e., there exist a tubular 
neighborhood V' of M and a curve (C)g(A) of exact solutions of (1) on V' such that 
«.)g(0), (C)g'(O» = «4>g, (C)h) on V'; see also [l6], [17], [39] and [40]. 

This conclusion asserts the linearization stability on a small piece of spacetime 
.". surrounding the Cauchy surface M. By standard arguments [12], V' can be 
extended to a maximal common development of the spacetimes (4)g(A), A small, 
which approximates the maximal development of (4)g(0). 

The case where V admits a noncompact spacelike hypersurface M is rather dif­
ferenL Here asymptoti~ conditions are necessary. For example, k = 0 and g the 
usual fiat metric on B3 is not excluded. Thus the usual Minkowski metric on R' is 
linearization stable in a tubular neighborhood of the hypersurface M = W. This 
result was obtained independently using other methods by Choquet-Bruhat and 
Deser [10J, [U]. The treatment of the general noncompact case is in spirit similar, 
although there are c::ertain technical difficulties associated with elliptic operators 
OD noncompact manifolds which enter the problem in the nooftat case. We will 
present the noncompact case elsewhere. For the remainder of Part II, M will be 
compact. 

.. 
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It is convenient to introduce the supplementary variables (g. n) instead of (g, k), 
where n = n' ® I'll e S2 ® I'll is a 2-<:avariant symmetric tensor density, n' = 
{(tr k) g - k)= e S2 is the tensor part of n (kl means the contravariant form of 
the tensor k e ~ and we write I'll interchangeably with dpg. In local coordinates 

n = nil = (tr k)gii - k iJ)(detgii)JI2. 

As is easy to see. k = 0 <:> n = 0. tr k = constant <:> tr n' = constant, and 
Lxg = 0, Lxk = 0 <:> Lxg = 0, Lxn = O. Thus, in the conditions CI. C" and 
Cw. k can be replaced by n. Note that the divergence of X enters in the Lie deriva­
tive of a teusor density: 

Lxn = (Lxn') ® I'll + n' ® LxPIl = (Lxn') ® I'll + n' ® {div X)fJtp 

where div X = -oX. In local coordinates, 

Lxn = X" niil" - nil' Xi ,,, - ni" XiI" + X"I" nil. 

As is well known every spacelike hypersurface in a Ricci-flat Lorentz manifold 
([1]. [14)) satisfies the constraint equations 

(C) Jf'(g. n) = n(tr n')2 - n' . n' + R(g)} I'll = 0. 
o(g.n) = ocn = O. 

In local coordinates, 

and 

o(g, n) = OIl1C = - nilli = 0 

(so that 011 now mAps SZ -+ tr ® I'll) . 
. We shall refer to Jf'(g. n) = 0 as the Hamiltonian constraint and all n = 0 as the 
divergence constraint. 

Conversely. by means of existence of solutions to the evolution equations (see, 
e.g., [15]), every solution (g, n) to the constraint equations (C) generates a Ricci­
flat spacetime in a tubular neighborhood of M. This spacetime is unique up to 
diffeomorphism of the neighborhood. 

For the compact hypersurface M, we let .,lIS denote the Hs riemannian metrics 
on M; throughout. s > nl2 + I. For g e .As, we have, as in Part I, T~s = Si, 
and we let . 

~ ..lIS = S; ® Pg, the space of H' 2-covariant symmetric tensor densities, 

and 
r.,llS = U T;J{', the "cotangent" bundle of .AS. 

IJE.. •• 

Note that here we take the dual in the L,. inner product but use only the closed 
subspace of such elements continuous in the Hs topology, so the dual of Si is S; ® 
J.lg; see also [14, p. 552]. 
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The solutions (g, n) of the constraint equations may then be regarded as a 
certain subset ~ of ~ ..lIS. We wiD, according to our general method, show that in 
a neighborhood of points (g, no) that satisfy conditions C1 , C" and Ctr, rc is a 
smooth submanifold of ~ ..II' and that if (h, (I) e TCg.lt) (1'* ..II') ~ S~ x (~ ® p,) 
is tangent to rc, i.e., iC (h, (I) is a solution to the linearized constraint equations, 
then there exist a 8 > 0 and a smooth curve (g(il), no(il» e rtf, -8 < it < 8, which 
is tangent to (h, (I) at (g, no). 

Now suppose (4lh is a solution to the linearized equations, D Ric«(4lg) . (4)h = 
O. Then (4lh induces a solution (h, (I) to the linearized constraint equations about 
a solution (g, no) to the constraint equations. If (g, no) satisfies conditions Cx, 
C", and Crr. then there exists a curve (g(il), 1t(il» of solutions to the full constraint 
equations. By using the existence theory for the Einstein equations this curve of 
solutions to the constraint equations generates a curve (4)g(il) of Ricci-flat Lorentz 
metrics (on a tubular neighborhood V' of M). After possible adjustment by a curve 
¢(l): V' -fo V' of diffeomorphisms oC V', (4)g(il) will be tangent to (4) h (Wg(l) will 
be an H' spacetime and will be 1 differentiable in H,-I); see also the end oC §O. 

ll.l. Solutions to the HamUtonian constraint equation. For s > n/2 + I, we con­
sider.Jf': ~.A' - A,-2, (g, no) .... .Jf'(g, no) as a map Crom ~ ..tl' to A,-2, the H'-2 
3-forms on M. For g e ..II', A,-2 is isomorphic to H'-2(M; R) ® JIg (by identifying 
).e A·-2 withfpg,fe H'-2(M; R». • 

Let ~;. = .Jf'-l(O) = {(g, no) e ~ ..II' : .Jf'(g, no) = OJ, the solution set to the 
Hamiltonian constraint. Note that theset:F' x {O} is a subset ofttf';', and thatsinQ~ 
dim M = 3, 8~ = 5' (without the assumption tbat $" #: 0). Thus, from 1.3.3. 
'-' x {OJ is a smooth submanifold of T" .,II (but is possibly empty). We will show 
that /F' x {OJ is tbe singular set on which D.J't'(g, no) fails to be surjective. Thus 

~;. = {re;. - fP x {O}) U (!F' x {OJ) 

is the disjoint union of submanifolds. Thus W,;. is somewbat similar to the structure 
of ..If: (when 5' =F 0); however, because of the kinetic terms involving the variable 
no,:I" x {OJ is not an isolated set of solutions of .J't'(g, no) = 0 (11.2.5); consequently. 
Cif';' - §' x {OJ need not be closed, and~':' itselCnced not be a manifold. 

To prove our result, the basic argument of 1.2.1 only has to be modified to take 
into account the kinetic terms: 

11.2. f. THEOREM. Let (g. tr) e W,;., (g, no) ¢ §i' x {O}. Then in a neighborhood of 
(g, no), W,;. is a smooth suhmonifold ofT".!I'. and .Jf'(g, no) = 0 is linearization stable 
at (g. tr). 

PROOF. We show that 

D.tt'(g, no): T~~) (r .,II') ::::: S~ x (S~ ® Ilg) -+ ToA,-2 ::::: A,-2 ::::: H,-2 ® Jig 

is surjective for(g, no) EtC;' - §. x {O}. i.e., that .J't' is a submersion at those(g, no) 
that satisfy condition C1 . 

Bya straightforward computation, for (h, cu) e S~ x (~® p.g), 
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TCa.tt)(h, (I) = DJt'(g, 7E')·(h. OJ) 
= {.duh + ~ah - h·Ric(g) + itrhR(g) 

+ 2(!(tr7E''Ft' - rt X 7£"). h - i(!(trr.')Z -7£".7r')trh}p. 
+ 2( l(tr 2t')tr (I) - rt .(1), 

where 1c' X rt = 1&'- 1C'i is the ··product" of symmetric tenso!s. 
Caution. D3'I'{g, 7E').(h. CI) = Dgft'(g, 1C)·h + Dtl .7t'(g, ,.)·ro, so that one must 

take the derivative of.;t' with respect to 7E' (which is best dcre by using the coor­
dinate expression involving (det gq)-1IZ and not 1C', althounh t!l~ final expression is 
in terms of 1E"). 

The Lradjoint, T~ .... ): H· ® Pn --. Szz X (~® Pc) is the'D given by 

rtofl)(N Pc) = (gAN + Hess N - N Ric(g) + ! NR(g)g 
+ {2(!{trr.')7r' - rt x 7r')~ - !(i(tr1t'):! - (1C'.1E")g}N, 

2(!(tr1C)g' - 1&)N). 

Since the symbol tie. Crtrofl»: B --. (T!M ®A7D T!M) x (TaM ®.,... TsM) is given 
by tle.Crc,ofl» = (tle.Cr:>,O) where r: = (DR(g»·, for 1}% #= O. qe.(T~ofl» is injective 
by the first factor alone. Thus we must show that rtcofl) is injective. Thus. let 
r(,ofl)(N p,) = 0, so that 

gAN + Hess N - NO, Ric(g) + 1 NR(g)g 
+ {2(l(trtr'}%' -1l' x 1C')~ - !(i(tr1C')2 -1:' ·,()g}N = 0; (a) 

(b) 2(!{tr 7E')gI - 7E')N = o. 
Taking the trace of (b) gives (tr1C)N = 0, and so again from (b), N7E' = O. Since 

Jf'(g,1&) = 0 and N" = 0, N R(g) = o. Thus (a) simplifies to 

(c) gL1N + Hess N - N Ric(g) = 0, 
f". 

which; as in the proof on.2.I, implies that N = 0 unless Ric(g) = 0 <> g is flat for 
dim M = 3. If g is flat, taking the trace of (e) gives L1N = 0 so that N is a constanL 
Thus from N1& = 0, N = 0 unless 7E' = o. Thus. if g is &t and 7E' :f; 0, N = 0, so 
that r(gofl) is injective and T0ofl) is surjective. 0 

Thus Jt' is singular (in the sense that DJf'(g, 7E') is not surjective) on the set's x 
to}, and on this set kef TC&..s) = {constant functions on M}. Thus we expect the 
equation 8(g, 1C) = 0 to be linearization unstable in a neighborhood of a solution 
(g" O)e" x to}. To find the extIa condition implied by this instability, we 
introduce the integrated Hamiltonian density (= the Hami!to~an) 

H: r.H- --. R, (g, 1C) .... J Jf'(g,1C) = J {l(tr 1C')2 - 1c'·tt + R(g)} dp,. 

the total kinetic energy, 

K: r../ls --. B. (g,1C) .... f (!(tr1&')2 - 7£" .~') dpg. 

and the integrated scalar curvature 

til: ..II- --. R. g .... J R(g) dJlg. 



252 AR.1lIUR Eo FISCHER AND JERROLD Eo MARSDEN 

Thus B(g, %) = K(g, %) + 0(g), and f) serves as a potential for the Hamiltonian; 
see [14] for the geometrical consequences of this interpretation. First we consider 
the map f) (see also [3]). 

ll.2.2. THEoREM. Let dim M ~ 3. Then a metric g e JI- is a critical point of 0 if 
and only ifRic(g) = O. At a crllicQJ point g e ..1/-, the Hessian of0 is 

tJ20(g)·(hb hi) = - ~f hl ·4£hzdpg + J oh1·ollzdpg + ~Iohl·dtrllzdP6 
+ ~ j dtr hi ·ollz dpg + i J dtr hi ·dtr hI dpg. 

If g e ..1/-+1 so that he S; can be decomposed as h = It + Lxg (where It e of; is 
the divergence free part of h), then 

dZ tfJ(g)·(hb JW = - ~J /',·4£/,z dpa + ~f dtr /'l· dtr ~dpg. 
If gpe 9'- (so that he S; has a decomposition h = /, + Lxg) then 4r.h = .ah, and 

dZ0(gp).(h,h) = - ~J CY/')Zdpg+ ~J (dtr/,)Zdpg 

for ajIaJ riemannian metric gF. 
• 

PROOF. rust we find the critical points off). We compute the derivative of0: ~ 

d0(g)·h = DtfJ(g).h = I DR(g)·hdpg + J R(g)D(dpJ.h 

(I) = I (4tr h + 60h - h·Ric(g» dpg + I R(g)! tr h dJig 

= - J (Ric(g) - !gR(g».hdpg 

since I (4 tr h + Doh) dpg = 0 for all (g, h) by Stokes' theorem. Thus dtfJ(g)·h = 0 
for all h e S; ~ Ric(g) - i gReg) = O. Since dim M ~ 3, by considering the trace 
of this we see that it is equivaJent to Ric(g) = O. 

From (1), the second derivative of f/J is 

d'4/J(g)·(h, h) = J J)2R(g).(h, h) dpa 

(2). + 2 I (DR(g).h)(D(dpe)·h) + J R(g)lJ2(dpa)·(h,h). 

At a critical point g, Ric(g) = 0, R(g) = 0, and DR(g)· h = 4 tr h + Doh, and so 
from 1.4.1, (2) becomes 

c/4IJ(g) • (h, h) = - ~ J h· AJJ dpg - ~ J (d tr h)2 dpg + f (6h)2 dpg 

+ 2 J (4 tr h + 66h){! tr h)dpg 

= - ~J h·AJJdpg + ~I (dtrh)2dpg + I (6h)2dp8 + J dtrh·6hdpg .. 
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H ge..ll·+J, Ric(g) = 0, and h = ,+ Lxg, thenDR(g)·h = DR(g)·Tr = .dtrTr, 
and so 

tMJ(g)·(Jt.h) = - ~J la·tfJr dpg - ~I (dtrTr)2dpg 

+ 2 J dtr' ·doX dl'B + J (.dtr Tr) tr h dpg 

= - ~J Tr·AJ, dpg - ~J (dtrTr)2dl'B 

+ J dtrTr·(ldoX + dtr h)dpg 

= - ~J Tr·AJ, dpg + ~J (dtrTr)2dpg 

sincetrh = trTr - lOX so that dtr' = dtrh + ldoX. 0 
REMARKs.I. The change to a positive sign of the! J(dtr Ia)2 dpg term in tP4J(g). 

(h, h) = d2(JR(g) dpg)·(h, h) as compared with JDZR(g).(h, h) dpg comes about 
because of the term 2 J(DR(g).h)(D(dl'B).h) involving the derivative of the volume 
element. Because of this sign change, a Oat metric gF is a saddle point for d¥J(gF) 
(even witbin a slice), whereas JDZ R(g)·(h, h) dpg ~ 0 on a slice atgF. Thus because 
of this sign change. the behavior of the integrated scalar curvature 0(g) = JR(g)dp. 
is somewhat different from the pointwise scalar curvature R(g) at gF. 

2. That d20(g).(h, h) = tMl(g).(Tr. ') depends only on the divergence free part of • 
h follows from the invariance of t1J by ~. so that tMJ(g)·(Lxg, Lxe) = 0, and by 
orthogonality of' and Lxg. so that tJ2t1J(g).(Tr. Lxe) = o. 

We can now easily compute the critical points and the Hessian of the Hamil­
tonian H: T* .1/' -+ B. From now on. dim M = 3. 

ll.2.3. THEOREM. A pair (g, 2r) e T* .II' is a critical point of H: T* ..II' -+ B, (g, 2r) 
..... J~(g, 2r) if and only if (g, 2r) e" x {O}. 

At a critical point (gFt 0), the Hessian 0/ His 

d2H(gF. O).«h, 0), (h. 0)) =- ~J CYTr)2dpg + ~J (dtrTr)2dpg 

+ 2 J (!(tr 0)')2 - 0)' .0)') dpg. 

PROOf. From the computation in the proof of 11.2.1. 

dH(g.2r).(h~ro) = JD3t'(g, 2r)·(h,ro) • 

= - J(Ric(g) - ! gR(g».h dpg + 2 JU(tr 2r')1r' - 2r' x 2r')·h dpll 

- ~ J(!(tr 2r')2 - 11:' ·1I:')tr h dpg+2 JU(tr 11:') tr 0)-:,11:' ·co)=O 

for all (h. co) e S: x (S~ ® pg). Thus 

(a) - (Ric(g) - ! gReg»~ + 2(!(tr 2r') 2r' - 2r' x 2r') - ! (!(tr 11:')2 - 2r'. 2r')g=O. 

(b) !(tr 2r') g - 2r' = O. 
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Contracting (b) gives tr 1C' = 0, and thus from (b) again. 1t' = 0 (and so tt = 0). 
Thus, from (a), Ric(g) - ! gReg) = 0 => Ric(g) = 0 => g is flat. 

In the computation for 

dZH(g,tt)·(h. h) = dZ(JR(g)dfJg)'(h. h) 

+ dZ(J(!(tr tr')Z - 1C' .1C') dfJg }«h, ru), (h, ru». 

the terms due to the kinetic part of H are straightforward to compute; since 1t = 0 
and the kinetic part is quadratic in 1t, 

dZK(g, 0)· «II. ru)(h, ru» = dZ(f(!(tr tt')2 - 1C' .1C') dfJg)' «h, ru), (h, ru» 

= 2 J (!(tr ru')2 - ru' 'ru') dpg. 

The expression for dl(JR(g) dPtJ·(h, h) is given by ILU. 0 
Note that the critical points of H are exactly the set where JfF is singular; i.e .. 

where DI(g, tt) is Dot surjective. This "coincidence" follows from the fact that 

dH(g, 1t).(h, (1) = J D.;t'(g,1t).(h, ru) = J «D.;t'(g, %»*l).(h, (1) = 0 

for all (h, ru) e T(g.a) (r .Ha) iff 1 e ker (D-"'(g, tt»* iff D.7l'(g,1t) is not surjective. 
Around (gF, 0) e'- x {O}, the equation .;f'(g,' %) = 0 is linearization unstable_~ 

The extra condition that a first order deformation (h, ru) must satisfy for it to be . 
tangent to a curve (g(l), 1l(1» of exact solutions of -"'(g, tt) = 0 is given by the 
following: 

ll.2.4. THEoREM. Let (gel), 1t(1» e ttr ~ c: T* Jls, 1 e ( - a, ~, a > 0, be Q C2 
curve with (g(O), n(0» = (gF, O)e"- x {OJ, (g'(O), 1C'(0» = (h, ru). Then (h, ru) 
must satisfy tr " = constant and 

-~J &"'PdfJg, + 2 I (!(trru')2 - ru'·ru')dfJg, = 0 

where" is the divergence free port 0/ h. 

PROOF. Differentiatingl(g(l), n(l» = 0 twice and evaluating at 1 = O. we have 

(I) 

and 

(2) 

d.;f' . I en: (g(l),1l(l» 1;;0 = D8(g(1), n(l»·(g'(l), 1C'(1»!A=0 

= D8{gF. 0)· {h. ru) = (.::ltr h + aoh) dpg 
= (Atr/,)dpg = 0 

~fz (g(l), n(l»I 1:0 = .D2K(g(l), n(l»·«g'(l), tt'(l», (g'(l), 1t'(l»)Il~o 
+ DA"'(g{l), n(l»·(g"(l),tt"(l»Il=o 

= .D2A"'(gF, O)·«h, ru). (h, ru» 
+ DA"'{gF, O)·(g"(O), %"(0» = o. 

.. 

.. 
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Integrating (2) over M gives 

(3) cJ2H(gF. 0)· «h, CII), (h. CII» = J [)2J't'(gF, O)·«h, CII), (h, CII» = 0 

since (gF. 0) is a critical point of H. so t~at 

dH(gF, O)·(gn(o). 1t"(0» = j DJ't'(gF. O)·(g"(O).1t"(O» = O. 

From the first order condition (1). tr h = constant, so that from 11.2.3. the 
second order condition (3) becomes 

- ~ J (Vh)2 dpg + 2 I (!(tr CII')? - CII' 'CII') dpg = O. 0 

REMARKS. 1. The first order condition (1) does not give any restrictions on CII. 
However in the next section we shall see that the first order deformation (h. CII)of 
the Og1t = 0 constraint around 11: = 0 implies that OCII = O. 

2. As an example of a nooiotegrable deformation. let (1'3, gF) and h be as in the 
example ofl.4. Then if CII = O. (h, 0) satisfies the linearized Hamiltonian constraint 
but not the second order condition, which for CII = 0 reduces to via = O. Thus 
(h. 0) cannot be tangent to any curve (g(.:t). 1I:(.:t» EreA" 

Even though gF is fiat, the integrated extra condition on a first order deforma­
tion (h. CII) cannot be converted to a pointwise condition as in 1.4.2 or the above 
remark since the kinetic term J(i(tr CII')'I. - CII' . CII') dpg is not negative-definite, 
even if the condition OCII = 0 is imposed. Not being able to convert to a pointwise 
extra condition signals that although there is linearization instability of J't'(g. 1t) = 
o at (gF. 0) e fI--x {O}, these solutions are not isolated solutions. In fact, if we 
ignore the 011: = 0 constraint, we can construct solutions algebraically to J't'(g. 11:) = 
O.(g. no) ;:1" x {O}, which are arbitrarily close to a solution (gF, 0) e:l" x {O}. 

This construction proceeds as follows: let ATe S2 be any traceless tensor. 
tr AT = O. and let 11:, = e(AT + «2/3)AT. AT)ll'ZgF) Pg,; here the trace and point­
wise contraction ..... are with respect to gF. Then 

Thus for e small. 11:, can be made arbitrarily close to O. 
In this construction, 011:, :# 0, and this situation cannot be remedied by choosing 

AT to be traosverse(i.e. OAT = 0) as well as traceless, shice ifJ = «2/3)AT·AT)1I'I. 
need not be constant. so that 11: = (AT + ifJgF) pg, need not be divergence free. 

However, by being more subtle, we can still construct solutions to K(g, 11:) = 0, 
Og1l: = 0, (g, 11:) ;:1" x {O}, which are arbitrarily c1.ose to the manifold of solutions 

. :JF' x {O}. 

11.2.5. THEOREM. LeI (gF. 0) E;Y;S X {O}. Theil ill every neighhorhood U:g1•01 C 

r* ""I' ol(gF,O), there exists a (g. 1t) E Ufg,,(I) such that (g, 11:) ; /7' x {OJ, J't'(g, 11:) 
= 0, Og1l: = 0, and tr 1t = Cpg, C = constant >F O. 
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PROOF. We use a stability argument based on the Lichnerowicz [24] and Cboquet­
Bruhat [7], [8].[9] conformal method of constructing solutions to the constraint 
equations. 

For go e JI', let ATT e.f~ be such that Og. ATT = 0 and tr ATT = o. Let M = 
ATT·ATT ( ..... is with respect to go) and let e = constant. Then from [8], [9] (see 
also [33] for the case C = constant #: 0), if M #: 0 (~ATT #: 0), e:f. O. there 
exists a unique 4/1 e HS(M; R),4/I > O. that satisfies the Licbnerowicz equation 

(L) Silq, = - R(g) 4/1 + M 4/1-7 - !cZ t/fo. 
Moreover, if g = tfJ4 go. 

te = (4/1-4 ATT + (eI3) tP ro> fJg. = (;-10 ATT + (eI3) gI) fJg 

(where the last equality foUows from g' = ;-4 gg and fJg = t/P PsJ, then K(g, 1r) = 
0, Og'tt = 0, and tr 1C = CPs. 

The stability theorem of[9]. adapted to the case that c #: 0, proves that solutions 
to (L) are stable with respect to g. M. and cZ, if M ::p 0, and e :f. 0; i.e. if we Jet 

Y: T* J(' ... H'(M; R), (g, 'tt) .... q, 
be defined for those (g. 'tt) e T* .fI' such that 1r is of the fonn 1r = (ATT + (eI3)g)pg, 
ATT ::p 0, c :F 0, and let; = Y(g, 7r) e H'{M; R), q, > 0, be defined as the unique 
solution of (L), then Y is a continuous map. 

From the uniqueness theorem for (L), if ~ 
- R{g) + M - ! cZ = 0, M :f. 0, c :f. 0, 

then q, 5 I is the unique solution of (L). But then from stability of solutions to 
(L), it follows that if - R{g) + M - (I/6) cZ (M :f. 0, c oF 0) is H,-2 close to 
o e H·-2{M; R), then the unique solution ;>0 of (L) is H' close to 1 e H' (M; Il); 
i.e. if U: c: H' (M; R) is a neighborhood of I, there exists a neighborhood 
U~-2 c: H'-2 (M;R) of 0 such that if - R(g) + M -(1/6) c2e U~-2, M::p 0, e ::p 0, 
then the unique solution; > 0 of (L) is in U;. 

Now let 

and 

0Cs,.O) = {(g. 1r) e Uc,."O): if 1r = (ATT + (eI3) g) Ps and r/J e U:. q, > 0, 
then (r/J'Ig, (q,-4 ATT + (eI3) tP g') fJg) e U Cs .. O)}' 

0",.0) = ({g. te) e Uk .. 0) : if te = (ATT + (eI3) g) JJg. 

then - R(g) + M - ! c2 e U~-2}. 

so that O(s"O) c: U,g,.o) and O(s"O) c:: Ucs"O) are both neighborhoods of (gF, 0). 
Now Jet (go, teo) e 0'8,.0) n O(s"O) with 1ro of the form 1ro = (ATT + (e13) ro) Ps., 

ATT ::p 0, e ::p 0, and let r/J > 0 be the unique solution of (L) with coefficients 
(go. M, e). From the construction of O,g"O) and U~-2, q, e U~. so from the con­
struction of 17cs,.o). if g = r/J'I go. te = (r/J-4 ATT + (e/3) tP ~ fJg., (g, te) e UCg,.o). 
and .1f'(g, 1r) = 0, Og'tt = 0, tr 1r = ?,go·te = c r/fo Pu. = C I'll' e :f. 0, and (g, 1r) tI. " 
§. x {o}.O 
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Thus the set 5' x {OJ is not isolated among the solutions of .1('(g. 1r) = 0 and 
Og1r = O. In fact, in [6], Brill-Oeser show by example that a Oat 3-torus and 1r = 
o is not an isolated solution of the constraint equations. 

As shall be apparent from 11.3.2, the divergence constraint also does not have 
any isolated solutions. Thus because .1('(g, 1r) = 0 is linearization stable at all 
(g, 1r) ¢§ x {OJ. we can conclude: 

There are no isolated solutions of the empty-space constraint equations of general 
relativity. 

This result also holds for all physically reasonable stress-energy tensors. 
Interestingly, if we look for solutions to the constraint equations that also satisfy 

the condition tr 1r = 0, then §. x {OJ is an isolated manifold of solutions to 
the Hamiltonian constraint (and hence to both constraint equations). 

11.2.6. THEoREM. Let (gp, 0) e fF' x to}. Then there exists a neighborhood UCg,.O) 

c: T· ..II' of (gp, 0) such that if (g, 1r) e U Cg,.o), .1('(g, 1r) = 0, and tr 1r = 0, then 
(g,1r)e5' x (OJ. 

PROOF. From I.S.2 there exists a neighborhood Ug, c: 11' such that if g e Ug" 

R(g) ~ 0, then g e !F'. Let UCg .. O) = ~Ug, c: ~ ..II'. Then if (g, 1r) e U(g,.oh 

Jf'(g, :77:) = 0, tr 1r = 0, then R(g) = 1C' '1r' ~ 0, and since g e Ug" g e !F', so R(g) 
= 0, and hence 1C = O. 0 

REMARKs. 1. In particular, the solutions §. x {OJ are isolated among the time­
symmetric (1r = 0) solutions to the Hamiltonian constraint. 

2. The variation of the tr 1r = 0 condition is 

D(tr 1r) • (h. CI.I) = h • 1r + tr CI.I = O. 

Thus if 1C = 0, a deformation of tr 1r = 0 must satisfy tr CI) = O. Using this con­
~tion, the second older condition of 11.2.4 reduces to the pointwise condition vir 
= 0 and CI) = O. This is the basis of the "second order" version of 11.2.6, proven 
in [5]. 

Although 11.2.6 proves isolation in a fuD neig:.borhood of §' x to}. in light 
of 11.2.5, the isolation of this set is more a consequence of the tr 1r = 0 condition 
than of the constraint equations. 

D.3. The di!ergeace coastraiot. Now let 0: r· 11' -+ fr-1 x -r', (g,1C) .... Og1C = 
-nill;. where -r' is the set of H' volume elements on M. Let 

~; = 0-1(0) = {(g,1C) E ~j(l: o(g. 1r)' = O} 

denote the set of solutions to the divergence constraint. 

11,3.1. THEoREM. Let (g,1r) e l6'; satisfy condition C,: if Lx g = 0 and Lx 1r = 0, 

then X = O. Then in a neighborhood o/(g, 1C). 1"6'; is a smooth submanifold of~. fI', 
and Og1C = 0 is linearization stable at (g, 1C). 

PROOF. Do(g,1r): Si x (5'; ® pg) -+ fl'.-t ® 1'[( is computed to give 

fJCg~) • (h, CI.I) = Do(g, 1C) . (h, (0) = Ow + i tcbtI h,m li - r-li"tn 



258 ARTHUR E. FISCHER AND JERROLD E. MARSDEN 

with L:radjoint p~il'.r.): !is ® /Jg .... S;-1 X (S;-I ® /lg) given by 

p~,,,)(X/~) = (- i (Lxzr + X ® ozr + Iln: ® X)'~, i (Lxgr 1'6) 

«Lxn:)' means the tensor part of Lxn:). Thus, since Iln: = 0, P{g ... )(XPg) = 0 => 

Lxn: = 0 and Lxg = 0 => X = 0, so ~ .... is injective. Also, P~.It. has injective ~ 
symbol (which it inherits from the second factor alone), so that Pw.c> = DIl(g, zr) 
is surjective and l(·, .) is a submersion at (g, n:). 0 

For (g, :r.) e T(:J/', let 'n = {f> e ~s+I: fJ*g = e}, the isometry group of g, and 
I" = {fJ e !llSt I: <r--:r = zr}, the liymmetry group of n: (here fJ* n: = «fJ-1)* n:' ) ® 
(fJ* pg) is the puUbck of the contravariant tensor density zr). 19 is a compact Lie 
group; I" is clcscC: in !2"! 1 but may be infinite-dimensional (e.g., if n: = 0, I .. = 
~+1). Let l(g.,,' = II! n Jr., a '~()mpact Lie group, and let J (g.... denote its Lie 
algebra. Thenkerf.t~,,,,, = J(f(.r.) = {Xe trs H : Lxg = o and Lxzr= OJ. 

If we consider t~ ~ action A: !,'t,+1 x ..II' -. .,lIS hfted to the cotangent bundle, 

A': !?sH >: T*.ll' -+ T*JI', (fJ, (g, n:» .... (fJ*g, fJ-tt) 

then the isotropy r,t'{'up of this action at a point (g, tt) e T*.H' is l(g ... ). Thus the 
map Il(g, tt) is ~'!ng\lhr (i.e., fails to have surjective derivative) precisely where the 
action A' has isotropy gr(~UP l(g.,,) which is nondiscrcte. At these (g, n:), ~+1 does 
not act freely 51) that th: qllotient space T-.II'/[jl,H is singular (i.e., is not a mani­
fold). 

Note that if (g.oI) IS '0';, pulling back Ogzr = 0 by fJ e ~H gives fJ*(llctt) = ~ 
1l".J.V'*n) = 0 so t!lat (~( .• g. ~.r.) e 0';. Thus t{:; is invariant under A'so that we havt 
restricted action 

Let 'tl'i I gl~·1 dellote the ql!otient space of lCfi by this restricted action. Because the 
singular points (g, n) of'tl'~ (as a manifold) correspond to singularities in the action 
B, and at these points (g, r.), ker {3~ ... ) = J (g ... " we conjecture that modulo the 
presence of discrete isotropy groups, ~ I !?p+1 is a smooth submanifold as a subset 
of the quotient space T* viP I ~H, the singular points oft:G~ precisely "cancelling 
out" the singularities in the quotient space ~~ I !tJS+l due to the presence of nondis­
crete isotropy. This possibility was pointed out to us by D. Ebin; cr. Marsden and 
Fischer [28]. 

At thbsc points (g, zr) e ~; for which Do(g, n:) is not surjective, there are extra 
second order conditions that must be satisfied for a deformation (h, (I» to be tangent 
to a curve in ~~. 

11.3.2. THEOREM. LeI (g, zr) e <6'';, X e !:l.+1, X#:O such tlult Lxg = 0 and Lx zr = 
O. Let (g(l), zr(A» e 0';, .It e (- c, e), c> 0, be a C2 curve with (g(O), zr(0» = (g,zr). 
and(g'(O), zr'(O» = (h, (I»). Then (h, (I» satisfies 

DJ(g, r.) . (h, (I» = ow + i zrlm h""h' - n:"" li'l" = 0 
and 

J h . Lx (I) = O. 

.. 

. . 
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PROOF. Differentiating o(g(l). 1r(l» = 0 twice and evaluating at l = 0 gives 

do ! dJ. (g().), 1r().» 1=0 = Do(g.1r) . (h, cu) = 0, 

and 

~~~ (g().), 1r(l»!l=O = JJ20(g, 1r) . «h, cu), (h, cu» 

+ Do(g,1r) . (g"(O), 1r"(0» = o. 
Thus. if ker P"'.:r) #: 0, then for each X E ker pea.:d, 
J X . (D2o(g.1r) • «h,w), (h, cu») + J X· ((lee,lt) . (g"(O), 1r"(0») 

= J X ' (D20(g. 1r) . «h. cu). (h. cu)}) + J <fJ1e.If) X) . (g"(O), n-"(O» 

= J X . (D2o(g, 1r) . «h. cu), (h, cu») = O. 

A rather lengthy computation gives 

D2o(g, n-) , «h, cu), (h, cu» 
= 2cu'm ( ! h,,,,I; - hi

/lm) - 21r/''' hia ( ! h'ml a - hallm). 

which, together with Do(g, n-) . (h, cu) = 0, gives 

J X . (D20(g, n-) ·«h, cu), (h,cu)}) = - J Lxcu • h = O. 

Thus, J Lxcu . h = 0 is the necessary second order condition for each X E ker /3ea .... > 

that must be satisfied for (h, cu ) to be tangent to 11 curve in ~;. 0 
Thus at points (g, 1r) of linearization instability of the equation OIl1r = 0, there is 

an extra condition generated by each X E ker (Do(g, 11:»* = {X E !IS: Lxg = 0 and 
Lxn- = O}, so that the number of linearly independent extra conditions is equal 
to dim ker (Do(g, n-»*. For the Hamiltonian constraint there was one extra second 
order condition, corresponding to the fact that dim ker (D.te(gF, 0»* = I. 

0.4. The constraint manifold f'(f'. We now consider the constraint set fd" = ctf~ n 
t{f~. To show that res is a submanifold of T* JI', we need additional restrictions in 
order to ensure that the intersection is transversal. At this point it is necessary to 
assume that tr 1r = constant. (See Note on p. 263.) 

11.4.1. THEOREM. Let (g, n-) E C-C' = f6'~ n ~~ satisfy thefollowing conditions: 

C ... : ifn- = 0, g is not flat; 
C, : Lxg = 0 and Lxn- = 0 => X = 0; 
Cu : tr 1r' = constant. 

Then. in a neighborhood of (g. x), <C';s a Coo submanifold ofT*J!". 

PRooF. Let 'I' = (.te, 0): T* vII' -+ A,-2 x (!I'-l ® "Y' ), (g,n-) ..... (Jt'(g,n-), o(g,x». 
Then 

DW(g, 1r) . (h, cu) = (D.tf(g.1r) . (h, cu). Do(g, x) . (h, cu» 
= (r(g.If) • (h, w), (lCg.If)· (h, cu» 
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and the Lt-adjoint of DlJf(g, n) is 

(Dff(g, :rr»* . (Npg, X ® pg) = r(g.~)(N;tg) + fjiz.1!)(Xpg)' 

Thus suppose (DUf(g, :rr»*(N Pg, X ® pg) = O. Then 

gJN + Hess N - N Ric(g) + ! NR(g)g 
(a) + 2 ( ! (tr :rr') :rr' - :rr' x :rr')~ - t (,j. (tr :rr')2 - :rr' . :rr')g} N 

- t (Lx:rr + X ® o:rr + o:rr ® X)'~ = 0; 

(b) 2(t(tr:rr) g - n) N + ·!(Lx g)' pg = O. 

Taking the trace of (a) and using .tI'(g, :rr) = 0 and o:rr = 0 gives 

(c) 2:JN - ! {X . d tr :rr' - :rr' . Lx g - (oX)(tr :rr'» = 0, 

and from the trace of (b), 

(d) JX=Ntr:rr'. 

From (b), 

(e) Lx g = 4 (:rr - t (tr :rr)g)N, 

and, subsituting (d) and (e) into (c) gives 

(f) 2LiN + 2{:rr' . :rr' - t (tr :rr')2)N - t X . d tr:rr' = O. 

Since P(ir',:rr') =: :rr' . :rr' - ! (tr ;rr')'! = (if' - t (tr /t')g) . (ir' - ! (tr ;rr')g), the 
coefficient of N is positive-definite. Thus, if tr ir' = constant, .~ 

2LiN + 2P(:rr', ;rr') N = 0, 

so that N = 0 unless:rr' = O. If N = 0, from (a) Lx1C = 0 and from (b) Lxg = 0 
so X = O. 

If 'Jr' = 0, then LiN = 0 so N is constant and so from (a), N(Ric(g) - ! gReg»~ 
= 0 => N = 0, since Ric(g) :p 0 in the case that ;rr' = O. Then, again. X = O. 
Thus, in either case, (DlJf(g, ;rr»* is injective. 

The symbol (Je,{DW(g,'Jr)*) is given by 

(J~ . • (5, Y) = {( - g lIe ... 1I2 + e ... ® ex) s - t (- if? e. Yj - 'Jr? e. Yi + ;rrije. y·), 
HY ® e; + e! ® Y)pg(x)}. 

Thus if (J~. (s, Y) = 0, ex :p 0, from the second factor Y = 0 and so from the first 
factor .~ = O. Thus (JE. is injective, D1J(g, 1:) is surjective, and 1J is a submersion at 
(g,'Jr). 0 

It would be nice if the tr 'Jr' = constant condition could be dropped and we con­
jecture that it can. However, because of the coupling of equations (a) and (b) with­
out the tr:rr' = const condition, it is possible that these equations have nonzero 
solutions (N, X) even at those (g, :rr) that satisfy conditions C,Jf' and C4. 

11.5. Integrating deformations of Ricci-Hat spacctimes. As explained previously, 
we can use H.4.l to prove the following result. We consider only the Ceo case here. 

11.5.1. THEORE.\f. Let Wg be a smooth Lorentz metric on a 4-manifold V salis/ying 

. . 
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Einstein's empty-space field equations Ric«f)g) = 0, and let (f)h be a solution to the 
linearized equation 

D Ric(Cf)g) • (f)h = 0 
about the solution (4) g. 
~Assume that V has a compact connected oriented spacelike hypersurj"ace M with 

influced riemannian metric g and second fundamental form k that satisfy conditions 
C1l', C't and Cir• Then there exist a tubular neighborhood V' of M, a 0> 0, and a 
smooth curve (4)g(1), - 0 < 1 < O. of exact solutions to Einstein's equations defined 
on V' tangent to (4)h at (4)g, i.e., (4)g(0) = (4)g, (C)g'(O) = cC)h, and Ric«C)g(l» = 0 
in a tubular neighborhood of M. 

PROOF. Let (g, 7r) be the variables on M induced by (4)g. A deformation (4)h of 
Ric(C4)g) = 0 induces a deformation (h, (I) of the linearized constraint equations, 
DJft'(g, 7r) • (h, (I) = 0, Do(g, 7r) • (h, (I) = O. Since (g, 7r) satisfies conditions 
C1l', C

" 
and CIr, by II. 4.1, ~ is a smooth submanifold with tangent space TCK,.) tC 

= ker (DJft'(g. 7r), Do(g, 7r». Since (h, (I) is tangent to~, we can find a curve 
(g(l), 2t(1» e t"(/ tangent to (h, (I). By the evolution theory, this curve of solutions to 
the constraint equations gives us a curve (C)g(l) of spacetimes defined in a tubular 
neighborhood V' of M. By a transformation of coordinates, (C)g(l) can be made 
tangent to (C)h. See [16] for details. 0 

Thus a solution of the linearized Einstein empty-space field equations actually • 
approximates to first order a curve of exact solutions to the nonlinear equations in a 
tubular neighborhood of any compact spacelike hypersurface that satisfies condi­
tions C1l',C,j,and Cir• Because these conditions are so weak, presumably most space­
times which have compact spacelike hypersurfaces have a hypersurface M satisfying 
these conditions. and thus is linearization stable in a tubular neighborhood of M. 
Moreover, by usin~ standard arguments and by considering the maximal deve­
lopment (see [12D of the Cauchy data of the curve of spacetimes (4)g(l), there win 
be a maximal common development (which approximates the maximal develop­
ment of (4)g(0» for which the spacetime is linearization stable. 
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