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Abstract— In this paper, we study training based channel
estimation for relay networks using the amplify-and-forward
(AF) transmission scheme. We first point out that separately
estimating the channel from source to relay and the channel from
relay to destination incurs several problems. We then propose a
new estimation scheme that directly estimates the overall channel
from source to destination. The proposed channel estimation well
matches the AF based space time coding that was developed
recently. Both linear least-square estimator and minimum mean-
square-error estimator are studied. The corresponding optimal
training sequences and the optimal precoding matrices are also
derived.

I. INTRODUCTION

Placing multiple antennas at the transmitters can increase
the system capacity [1] enhance the system reliability [3], [4].
Unfortunately, packing many antennas onto a small mobile
terminal faces the practical difficulty of the size limit. In
order to overcome this limitation, one would refer to the relay
network [5]- [8].

The relay based transmission is usually divided into two
phases. During Phase I, the source will broadcast its own
information bits to all relays. During Phase II, the relays would
either choose to purely amplify and retransmit the information
to the destination, or to decode the information first and then
transmit these information bits to the destination. The former
process is referred as amplify-and-forward (AF) and the latter
is referred as decode-and-forward (DF). Various cooperative
diversity schemes and space time coding (STC) techniques
have been developed in [6]- [8] for either AF or DF approach.

Before enjoying all those benefits brought by the relay
networks, an accurate channel state information (CSI) is
required at the destination (for AF) or at both relay and
destination (for DF). However, almost all the existing works
assume that the perfect channel knowledge is available, and
no attempt on channel estimation for the relay networks
has yet been reported. One major reason of the lack of the
literature is the common belief that the channel estimation
for network could be built upon following the same approach
between the individual transmitters and receivers. However,
this belief is only valid for the DF scheme, whereas for AF
based transmission, separating the channel estimation from
two phases will incur several problems.
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In this work, we propose a training based channel estimation
scheme, where the overall channel from source to destination
is estimated at the destination only. Both the least square
(LS) and the minimum mean square error (MMSE) channel
estimators are derived. We also derive optimal training designs
including both the training sequence sent from the source and
the linear precoding matrix at each relay.

II. SPACE TIME CODING IN AF RELAY NETWORK

Consider a wireless network with M randomly placed relay
nodes Ri, i = 1, ...,M , one source node S, and one destination
node D. Every node has only a single antenna that cannot
transmit and receive simultaneously. The channel between
each node pair is assumed quasi-stationary Rayleigh flat fading
which is constant within one frame but may vary from frame
to frame. Denote the channel from S to D as f , from S to Ri as
gi, from Ri to D as hi, respectively; namely f ∈ CN (0, σ2

f ),
gi ∈ CN (0, σ2

gi), and hi ∈ CN (0, σ2
hi). Assume that S wants

to send the signal block s = [s1, ..., sT ]T to D via AF mode.
The transmission will be accomplished by the following two
phases. For Phase I, the transmitter broadcasts the signal s to
relays and the destination. The received signals at Ri and D

could be expressed as

ri = gis + nri, (1)

d1 = fs + nd1, (2)

where nri and nd1 are the independent white complex Gaus-
sian noise at the relays and the destination, respectively.
For convenience, all noise variances are assumed as N0,
namely, nri,nd1 ∈ CN (0, N0I). The power constraint of the
transmission is E{sHs} = TPs, where Ps is the average
transmitting power of source. To exploit the diversity of the
relay system, a linear transformation of ri, denoted as ti,
should be transmitted from each relay, instead of sending the
ri to the destination directly. A linear dispersion (LD) based
STC has been proposed in [8], where ri is first precoded by
a unitary matrix Pi and is then scaled by a real factor αi to
keep the average power of Ri as Pri. To enable complex STC,
we here modify the precoding scheme in [8] into

ti = αiPir
(∗)
i , (3)

where (·)(∗) represents the item itself if the ith relay operates
on ri whereas represents the conjugate of the item if the ith
relay operates on r∗i . Note that this type of STC, where one
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relay operates only in either ri or r∗i , exclusively, has been
proposed and analyzed in [8] for AF relay networks. Since
the specific realization of the channel is unknown, αi will be
chosen as

αi =

√
Pri

σ2
giPs + N0

, (4)

which keeps the power constraint from the long term point of
view. The destination D in Phase II then receives

d2 =
M∑
i=1

hiti + nd2 = BΛw + nd, (5)

where nd2 ∈ CN (0, N0I) represents the complex white
Gaussian noise vector at D in the second phase, and si � s
for all i. Other variables are defined as follows:

wi = hig
(∗)
i , w = [w1, ..., wM ]T ,

Λ = diag{α1, ...., αM}, nd =
∑

i hiαiPin
(∗)
ri + nd2,

B = [P1s
(∗)
1 ,P2s

(∗)
2 , ...,PMs(∗)

M ].

Furthermore, it could easily be checked that the covariance of
nd conditioned on a specific realization of hi is

Cov(nd|hi, i = 1, ...,M) =

(
M∑
i=1

|hi|2α2
i + 1

)
N0I, (6)

where the property PiPH
i = I is utilized.

III. TRAINING BASED CHANNEL ESTIMATION

For coherent detection in the AF mode [6]- [8], the des-
tination D performs the maximum likelihood (ML) detection
based only on a specific channel realization wi white treating
nd as the overall while Gaussian noise. Therefore, the task of
the channel estimation focuses only on estimating wi at D.
Based on this fact, two different channel estimation schemes
could be considered.

One is to separately estimate gi, hi and then construct wi

from g
(∗)
i hi. This approach is not as trivial as it seems to be.

For example, each relay should spend at least M additional
time slots to send the estimated gi to the destination after hi

was estimated. In practical transmissions, the power in one
frame is usually constant. Therefore, additional energy will be
consumed when transmitting additional time slots. Moreover,
transmitting the estimated gi will suffer from further distortion
because of both the noise at the destination and the error in
the estimated channel hi. Sometimes, transmitting a real value
is not convenient for relay nodes. Then gi has to be quantized
before the transmission [9]. The quantization error must also
be counted.

The other way is to directly estimate the overall channel
wi at D. We assume that the length of the training sequence
sent from S is N , which may be different from the data
block size T . The training sequence, denoted as z, will be
broadcasted from S at Phase I, and a linear transformation
will be performed at each relay nodes before they forward
the training to the destination at Phase II. Denote the N ×N
unitary precoding matrix at the ith relay as Ai and define

C = [A1z
(∗)
1 ,A2z

(∗)
2 , ...,AMz(∗)

M ]. (7)

The transmitting model with other equations from (1) to
(6) could be applied straightforwardly. With slight abuse of
notations, we will keep all other notations unchanged from
the previous section. During the training period, the power
constraint is zHz ≤ NPs = Es.

A. Channel Estimation of w

1) LS Estimation. The LS estimation assumes a specific
realization of gi,hi, namely, the deterministic channel scenario.
From (5), the optimal estimate of w should be obtained from

ŵLS = Λ−1C†d2 = w + ∆w (8)

with error
∆w = Λ−1C†nd. (9)

The covariance of ∆w is then

Cov(∆w|g(∗),h)=N0

(∑
i

|hi|2|αi|2 + 1)Λ−1(CHC

)−1

Λ−1,

(10)
where g(∗) = [g(∗)

1 , . . . , g
(∗)
M ]T and h = [h1, . . . , hM ]T are

defined for convenience. Meanwhile, we would like to define
g = [g1, g2, . . . , gM ]T for future use. Since Λ is a constant
matrix, the optimization is conducted by varying the value of
C. Note that the diagonal elements of C must all be less than
or equal to Es. Therefore, the optimal C can be found by
solving the following constrained optimization problem:

min
Ai,z

tr
(
Λ−1(CHC)−1Λ−1

)
, s.t. [CHC]ii ≤ Es. (11)

Note that, the above optimization problem is different from
that of traditional MISO system, where there is a total power
constraint over all transmit antennas and the solution follows
a water-filling like structure [10]. In the relay networks, since
different relays could not cooperate with each other, each relay
has its own power constraint Pri, which is reflected by M
individual constraints in (11).

Theorem 1: The optimal CHC in (11) must be a diagonal
matrix.

Proof: The following inequality for an arbitrary N ×N
positive definite matrix F could be utilized [11]:

tr(F−1) ≥
N∑

i=1

([F]ii)
−1

, (12)

and the equality holds if and only if F is diagonal.
Suppose C0 is the optimal solution and define D0 =

CH
0 C0. Meanwhile, we suppose D0 is not diagonal. Let

D̄0 = diag{D0}. Then [D̄0]ii must be smaller than or equal
to Es, and therefore D̄0 is also in the feasible set of (11). Let
F = ΛD0Λ whose diagonal part is given by

F̄ = diag{F} = ΛD̄0Λ. (13)

Using the inequality (12), we obtain tr(Λ−1D̄−1
0 Λ−1) =

tr(F̄−1) < tr(F−1) = tr(Λ−1D−1
0 Λ−1). This contradicts the

assertion that the non-diagonal matrix D0 was optimal. Hence
the optimal CHC must be diagonal.

From the above discussions, we know that the only choice is
that CHC = EsI. This result is to say that each relay should
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transmit orthogonal training whereas should meet their own
power constraints. Then, we only need to design z and Ai

such that all off-diagonal elements of CHC are zero, namely

(z(∗)
i )HAiAH

j z(∗)
j = 0, for i �= j. (14)

There exist a number of such z and unitary matrix Ai. The
detailed discussion will be provided later.

Then the mean square error (MSE) on wi, separately, can
be obtained as

var(wi|h,g) =
N0(

∑
j |hj |2|αj |2 + 1)
|αi|2Es

, (15)

and

var(wi) =
N0σ

2
hi

Es
+

N0(
∑

j �=i σ2
hj |αj |2/|αi|2)
Es

+
N0σ

2
gi

Eri
+

N2
0

EsEri
, (16)

where Eri = NPri is defined for notation simplicity.
2) MMSE Estimation. The MMSE estimation assumes that

the statistics of gi, hi are known at D, namely, the statistical
channel scenario. Denote the covariance of h and g(∗) as Rh

and Rg(∗) respectively. Then, the covariance matrix of w,
assuming channels of Phase I are independent from channels
of Phase II, is

Rw = E{wwH} = Rg(∗) � Rh, (17)

where � denotes the Hadamard product. The linear MMSE
estimator of w is expressed as

ŵMMSE (18)

= RwΛCH(CΛRwΛCH + N0

∑
i

(σ2
hi|αi|2 + 1)I)−1d2.

The error covariance of the MMSE estimator is

Cov(∆w)=
(
R−1

w +
1

N0

∑
i(σ

2
hi|αi|2 + 1)

ΛCHCΛ
)−1

.

(19)
Therefore, the optimal training should be obtained from

arg min
Ai,z

tr (Cov(∆w)) , s.t. [CHC]ii ≤ Es. (20)

The problem (20) can be reformulated as a convex optimiza-
tion problem. Let us define D = CHC and proceed the
optimization under the unknown variable D. As will be shown
in Section III-B, there exist a number of feasible sets {Ai, z}
for any positive semi-definite D, which validates our direct
optimization with respect to D. The optimization problem then
becomes

min
T,D

tr(T) (21)

s.t. T �
(
R−1

w +
1

N0

∑
i(σ

2
hi|αi|2 + 1)

ΛDΛ
)−1

,

[D]i,i ≤ Es,

D � 0.

This is precisely a convex optimization problem. Moreover,
note that the constraint

T � (R−1
w +

1
N0

∑
i(σ

2
hi|αi|2 + 1)

ΛDΛ)−1 (22)

can be rewritten, via Schur’s complement [13], into the fol-
lowing linear matrix inequality (LMI):[

T I
I R−1

w + 1
N0

∑
i(σ

2
hi|αi|2+1)

ΛDΛ

]
� 0. (23)

Therefore, (21) lies in the so called semi-definite program-
ming (SDP) formulation which can be solved efficiently from
[12]. Meanwhile, there exist closed form solutions for several
important scenarios. First let us ignore the condition D � 0
and represent D back to CHC. For simplicity, let us further
represent N0

∑
i(σ

2
hi|αi|2 + 1) by β. Then the Lagrange

function with the diagonal constraint can be written as

L(C, µi) = tr
(

(R−1
w +

1
β
ΛCHCΛ)−1)

+
∑

i

µi(tr(eH
i CHCei) − Es

)
, (24)

where ei is the ith column of an N × N identity matrix.
Since (24) is in quadratic form, it is sufficient to consider
only ∂L(C, µi)/∂C [14], which is calculated as

∂L(C, µi)
∂C

= C∗
(∑

i

µieieT
i − 1

β
Λ(R−1

w +
1
β
ΛCHCΛ)−2T Λ

)
. (25)

Therefore, any C can be the optimal solution if (25) is zero.
Since C is a tall and full rank matrix, (25) is equivalent to

(
R−1

w +
1
β
ΛCHCΛ

)2

= βΛ−1

(∑
i

µieieT
i

)−1

Λ−1 = Ω,

(26)
where

Ω = diag
{

β

α2
1µ1

,
β

α2
2µ2

, ...,
β

α2
MµM

}
. (27)

It is proved in [15] that

R−1
w +

1
β
ΛCHCΛ = Ω1/2. (28)

Let R̃w,inv denote the diagonal matrix with diagonal elements
obtained from R−1

w . Then

Ω1/2 = diag{Ω1/2} = R̃w,inv +
Es

β
Λ2. (29)

Then, the optimal CHC should be obtained from (28) as,

CHC = EsI − βΛ−1R̃w,offΛ−1, (30)

where R̃w,off represents the remaining matrix after setting
all diagonal elements of R−1

w to be zero. However, we
need to further consider the positive semi-definite constraint
D = CHC � 0 in order to arrive at a true optimal
solution. Therefore, (30) is the optimal solution only when
EsI − βΛ−1R̃w,offΛ−1 � 0. This positive semi-definite
requirement is satisfied under two important scenarios:

a) When channel wi are uncorrelated with each other. In this
case, the optimal solution of CHC is EsI, which coincides
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with the optimal training in the LS channel estimation. There-
fore, the orthogonal training sequence is, again, employed.
Then the error covariance matrix is

Cov(∆w) =
(
R−1

w +
Es

β
Λ2

)−1

, (31)

and the estimation error for each wi could be separately
obtained as

var(wi) =
N0

(∑
j σ2

hj |αj |2 + 1
)

|αi|2Es + N0

∑
j σ2

hj |αj |2/σ2
wi

. (32)

Compared to the MSE of the LS estimation (16), the MSE in
(32) is smaller, as expected.

b) When the transmit SNR is high enough such that EsI−
βR̃w,off � 0 could be satisfied. The error covariance matrix
is

Cov(∆w) =
(
R̃w,inv +

Es

β
Λ2

)−1

, (33)

and the MSE on wi can be separately obtained as

var(wi) =
N0

(∑
j σ2

hj |αj |2 + 1
)

|αi|2Es + N0

∑
j σ2

hj |αj |2/σ̃2
wi

. (34)

where σ̃2
wi is the ith diagonal element of R−1

w . The MSE in
(34) is also smaller than (16).

B. Design of z and Ai

Assume that the optimal D has been derived from either
(21) or (30). Then, the remaining task is to find the training
sequence z as well as the unitary linear precoding matrices Ai.
The following equations should be considered simultaneously:

(z(∗)
i )HAH

i Ajz
(∗)
j = [D]ij , i, j = 1, ...,M, (35a)

AH
i Ai = I, i = 1, ...,M. (35b)

Since D is a positive semi-definite matrix, we can decompose
D as

D = FHF, (36)

where F is an N ×M matrix. Denote the ith column of F by
fi. Then,

Aiz
(∗)
i = fi, i = 1, ...,M, (37)

or equivalently

A(∗)
i z = f (∗)

i i = 1, ...,M. (38)

Since the diagonal elements of the optimal D is Es, the norm
of f (∗)

i is the same as the normal of z. Then, the unitary matrix
A(∗)

i is the N × N rotation matrix which rotates the vector
z to the vector f (∗)

i . For any fixed z, there could exist many
different A(∗)

i that satisfy (38) because the rotation can be
performed from any direction in the N -dimensional space.
Based on this fact, we can assign an arbitrary value to z while
keep its norm

√
Es. Once z and f (∗)

i are fixed, we need to find
matrix A(∗)

i from (38). It is noted that a direct derivation for
A(∗)

i would be difficult. Therefore, we will first rotate z by
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Fig. 1. Channel estimation MSEs versus SNR for both optimal training and
random training.

a unitary matrix U to a simple reference vector, say
√

Ese1,
such that

Uz =
√

Ese1. (39)

Obviously, the first row of U is the normalized vector zH/‖z‖,
and the remaining N − 1 rows of U is just basis vectors that
span the orthogonal complement space of z. Similarly, we can
rotate f (∗)

i to
√

Ese1, and there is

Vif
(∗)
i =

√
Ese1, (40)

where Vi is the corresponding unitary matrix. Then,

A(∗)
i = VH

i U or Ai = (VH
i U)(∗). (41)

IV. SIMULATION RESULTS

In this section, we numerically study the performance of
our proposed channel estimation algorithms. The channels gi,
hi and the noise at the relays or destinations are assumed as
circular complex Gaussian random variables with variances
1. The channel covariance matrices Rh and Rg have the
following structures [10]:

[Rg]a,b = ε
|a−b|
1 , [Rh]a,b = ε

|a−b|
2 ,

where ε1 and ε2 are two real scalars. For all examples,
relays with odd indices operate on r while relays with even
indices operate on r∗. Since gi is circularly symmetric, it
is known that E{gigj} = 0. Therefore, Rg(∗) can be found
from Rg by setting the appropriate entries to be zero and
interchanging some symmetric entries, depending on which
relays operate on r∗i . The signal to noise ratio is defined as
SNR= (Ps × 1)/N0 = Ps. The convex optimization involved
in MMSE estimation is conducted by the SDP tool SeDuMi
v1.1 running under MATLAB environment. One thousands
Monte-Carlo runs are taken for average.

1) Optimal Precoding vs Random Precoding. In Fig. 1,
we display the channel estimation mean square error (MSE)
versus SNR of both the LS estimator (8) and the MMSE
estimator (18) for M = 4 relay nodes. The relay powers are
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Fig. 2. Channel estimation MSEs versus SNR: different M , same N .
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Fig. 3. Channel estimation MSEs versus SNR: different pairs of N = M .

chosen as {0.8Ps, Ps, 0.8Ps, Ps}, respectively. The parameter
ε1 and ε2 are set as 0.1 which represents a very low correlation
between different relays. We show the performance of both
the optimal precoding and the random precoding where Ai

are drawn randomly in the latter case. From Fig. 1, we see
that when N = 8 and with optimal precoding, the MMSE
estimator outperforms the LS estimator at lower SNR region,
whereas the two estimators have nearly the same performance
at higher SNR range. This is a consistent phenomenon as in
the traditional multi-input single-output (MISO) channel esti-
mation [10]. Besides, the performance with optimal precoding
is about 2dB better than that with random precoding. For the
extreme case where N is as small as 4, the performance of
both LS estimator and MMSE estimator with optimal precod-
ing degrade somewhat around 2.5dB. However, the channel
estimation with random precoding degrades significantly for
both estimators.

2) Different Parameters M , N . We then consider two
different simulation scenarios, e.g. same N , different M in
Fig. 2, and different M , N with M = N in Fig. 3. For each

M , half of the relays have the power 0.8Ps and the other
half have the power Ps. From Fig. 2, it can be seen that the
relay number affects the channel estimation even when the
same powers of source and same average power of relays are
applied. This is a direct reflection from (16) and (32) where
it says that the channel estimation MSE increases with M for
each wi. Note that, in traditional MISO systems, the channel
estimation MSE is only related with the transmit power but is
not related with the number of antennas [10]. The reason for
the degrading performance in AF relay networks is because
the relays forward additional noise to the destination too. The
performances for different M , N but with M = N are shown
in Fig. 3, where it can be seen that lager M = N gives better
performance. This validates the simultaneous training for all
relay channels instead of trivially training each relay channel
individually.

V. CONCLUSIONS

In this paper, we studied the training based channel estima-
tion for AF based relay networks. The popular LS and MMSE
approaches have both been considered. We show that the
optimal training can be achieved from an arbitrary sequence
and a set of well designed precoding matrix for each relay
node. The whole design process is efficiently conducted by
dividing it into a convex optimization problem plus a matrix
calculation problem. Numerical examples have been provided
to validate the proposed studies.
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