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Abstract— In this paper, we answer the question that “Can con-
ventional differential unitary space time modulation (DUSTM)
be applied when there is an unknown carrier frequency offset
(CFO)?” and present a maximum likelihood (ML) detection rule
for this scenario. We analyze the asymptotical performance of our
ML detection and provide the code design criterion by using the
modified diversity product. The analysis also brings the insight
that our proposed decision rule is a new differential modulation
scheme in both temporal and spatial domains. Various simula-
tions are conducted, and the proposed algorithm is shown to
be more robust to the CFO drifting than the existing double
temporal differential modulation.

I. INTRODUCTION

Wireless multiple-input multiple-output (MIMO) systems
with space time coding (STC) [1] have received much attention
due to the potential of increasing the transmission rate and
combating fading. Hochwald and Marzetta [2] investigate
non-coherent detection for space time modulation on MIMO
systems which release the requirement of channel state in-
formation (CSI). Following this pioneering work, Hochwald
[3] and Huges [4] have developed a general framework for
differential unitary space time modulation (DUSTM) that is
viewed as a generalization of the classical single antenna
differential phase shift keying (DPSK).

In wireless communications, carrier frequency offset (CFO)
always arises due to the transceiver oscillator mismatch or
the Doppler shift caused by the relative motion between the
transmitter and the receiver. The performance of DUSTM
degrades greatly if the non-zero CFO is not compensated at
the receiver before symbol detection. Recently, Liu [5] and Ma
[6] proposed a new modulation scheme for MIMO and SISO-
OFDM systems that could deal with both unknown CSI and
CFO. This method applies a double differential modulation
(DDUSTM) in time domain, where the effect of the unknown
CFO is removed by double temporal differentiation.

Although DDUSTM provides an effective way to deal with
CFO, a natural question arises: Can conventional DUSTM be
applied with an unknown CFO? In this paper, we give an
affirmative answer to this question. We find that by sacrificing

one degree of freedom in transmit antennas, the ML single-
symbol detector (SSD), using only two consecutive blocks,
could be derived for DUSTM even with the unknown CFO. We
name the proposed modulation scheme as modified DUSTM
(MDUSTM) throughout the rest of this paper. The asymptot-
ical performance of MDUSTM is analyzed and an optimal
MDUSTM code design criterion is derived. Since MDUSTM
only requires constant CFO and channel for two consecutive
blocks, simulation results show that our MDUSTM is more
robust to the CFO drifting than DDUSTM that requires
constant CFO and channel for three consecutive blocks.

II. SYSTEM MODEL

Consider a MIMO system with Nt transmit and Nr receive
antennas that operates in a Rayleigh flat fading environment.
Each time slot occupies an interval Ts in seconds, and each
block is consisted of T time slots. The block interval is thus
TsT in seconds. The transmitted symbols during the kth block
is denoted by the T ×Nt matrix S[k] = [st,i[k]], t = 1, . . . , T
and i = 1, . . . , Nt, where st,i[k] is transmitted from the ith
antenna in the t + (k − 1)T time slot. We assume that the
channel does not change significantly during one slot interval
Ts. The complex base-band received signal at the jth receive
antenna, at time slot t in the kth block can be written as

xt,j [k] =
√

ρ

Nt

i=1

hi,j [t + (k − 1)T ]st,i[k] + wt,j [k], (1)

j = 1, . . . , Nr, t = 1, . . . , T,

where hi,j [t] ∈ CN (0, 1) denotes the channel gain from the i-
th transmit antenna to the j-th receive antenna in the t-th time
slot, and wt,j [k] ∈ CN (0, 1) is the complex additive white
Gaussian noise (AWGN) at the j-th receive antenna which is
statistically independent across the receiver and time index.
We assume that all path gains are statistically independent
(E{hi,j[k]h∗

i′,j′ [k]} = δ(i − i′)δ(j − j′)) and have the same
autocorrelation function ϕh[n] = E{(hi,j [t + n]hi,j [t]∗}.
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Typically, when Jakes’ model [7] is used, ϕh[n] is given by

ϕh[n] = J0(2πfDTsn), (2)

where fD is the Doppler spread due to user mobility, and J0(·)
is the zeroth-order Bessel function of the first kind. The power
of transmitted symbols is normalized such that

E
Nt

i=1

|st,i[n]|2 = 1. (3)

Therefore, ρ is the expected SNR at each receive antenna.
We consider DUSTM in this paper. In [3], the signals are

modulated by choosing a matrix from a finite group V =
{Vl, l = 0, 1, . . . , L−1}, where Vl is a T ×Nt unitary matrix
(VlVH

l = IT ), L = 2NtR, and R denotes the data rate. To
make DUSTM feasible, we take T = Nt and V0 = INt . The
NtR binary information bits are first converted to an integer
l within [0, L − 1], and V[k] = Vl is chosen from V . The
transmitted symbol at the nth block is encoded as

S[k] = V[k]S[k − 1]. (4)

In the first block, S[0] = V0 is sent. The internal composition
property of a group ensures that S[k] ∈ V and is unitary for
any positive k. In this paper, we consider diagonal constella-
tions of the cyclic group, for which the unitary matrices Vl

are chosen as

Vl = diag ej2πu1l/L, ej2πu2l/L, . . . , ej2πuNt l/L , (5)

where ui for i = 1, 2, . . . , Nt are optimized to achieve the
maximum diversity product in [3]. We thus have st,i[k] �= 0
t = i and st,i[k] = 0 for t �= i. Therefore, (1) can be rewritten
as

X[k] = S[k]H[k] + W[k], (6)

where X[k] = [xi,j [k]] is the Nt×Nr receive matrix, W[k] =
[wi,j [k]] is the Nt × Nr noise matrix, H[k] is the Nt × Nr

channel matrix, and the (i, j)-th entry of H[k] is hi,j [i+(k−
1)Nt].

Suppose the CFO is constant in one block but may vary
from block to block due to the CFO drifting [6]. Let εk denote
the normalized CFO by the sampling period Ts during the kth
block. Then, the phase distortion on the i + (k − 1)Nt time
slot is

θi,k = 2πεk, i = 1, ..., Nt, k = 0, 1, . . . . (7)

Therefore, the overall phase rotation before the i + (k − 1)Nt

time slot, denoted as ϑi,k , is that accumulated from all the
previous time slots:

ϑi,k =
τ<i c<k

θτ,c = 2πNt

k−1

c=0

εc + (i − 1)εk. (8)

If CFO does not vary, the accumulated phase ϑi,k becomes
2π(Ntk + i − 1)ε0, as usually the case. The receive signal
block X[k] with the unknown CFO is then modeled as

X[k] =
√

ρejϑ1,kΓ(εk)S[k]H[k] + W[k], (9)

where Γ(εk) is the diagonal matrix with the form

Γ(εk) = diag{1, ej2πεk , . . . , ej2π(Nt−1)εk}. (10)

III. ML DETECTION OF DUSTM WITH CFO

In this paper, we only consider single symbol detection
(SSD) while multiple symbol detection (MSD) is presented in
[8]. For SSD, we assume that both the CFO and the channel
do not vary across two blocks, say the (k − 1)th block and
the kth block, for ease of exposition1. We relax this channel
constraint in Section III. B. Hence, the indices k−1 and k are
dropped in both the channel matrix and the CFO. The received
signal blocks may be rewritten as

X[k − 1] =
√

ρejϑ1,kΓ(ε)S[k − 1]H + W[k − 1], (11)

X[k] =
√

ρej(ϑ1,k+2πNtε)Γ(ε)S[k]H + W[k] (12)

= ej2πNtεV[k]
√

ρejϑ1,kΓ(ε)S[k − 1]H + W[k].

Let S̄[k] = [ST [k − 1],ST [k]]T and X̄[k] = [XT [k −
1],XT [k]]T . The probability density function (PDF) of X̄[k]
could be expressed as

f(X̄[k] V[k], ε, ϑ1,k) =
exp(−tr(Λ−1X̄[k]X̄H [k]))

π2NtNrdetNr{Λ} , (13)

where

Λ = I2Nt + ρ
INt e−j2πNtεVH [k]

ej2πNtεV[k] INt

. (14)

Since f(X̄[k] V[k], ε, ϑ1,k) does not depend on ϑ1,k, we can
rewrite it as f(X̄[k] V[k], ε). After some algebra, the ML
estimate can be obtained as

{ε̂, V̂[k]} = arg max
ε,V[k]

f(X̄[k] V[k], ε)

= arg max
ε,V[k]

Kexp �{ej2πNtεtr(V[k]X[k − 1]XH [k])} ,(15)

where K contains all the factors of f(X̄[k] V[k], ε) that are
independent of V[k] and ε.

We first fix V[k]. By maximizing (15) over ε, the ML
estimate of ε is given by

ε̂ = − 1
2πNt

∠tr(V[k]X[k − 1]XH [k]) +
n

Nt
, (16)

where n ∈ {0, ..., Nt − 1} is the integer ambiguity related to
ε. Substituting (16) back into (15), the ML detection (MLD)
for V[k] is obtained as

V̂[k] = arg max
V[k]

tr(V[k]X[k − 1]XH [k]) . (17)

Clearly, the ambiguity n does not affect the MLD of V[k].

1In comparison, DDUSTM assume constant CFO and channel across three
blocks.
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IV. PERFORMANCE ANALYSIS AND CODE DESIGN

A. Pairwise Error Probability Analysis

Assuming the codeword Vl ∈ V was transmitted, the
pairwise error probability (PEP) that the maximum likelihood
detector (17) decides Vl′ ∈ V , rather than Vl, when only
these two codewords are possible, is given by

Pe (Vl → Vl′ ) = P tr VlX[k − 1]XH [k]

< tr Vl′X[k − 1]XH [k] Vl transmitted .(18)

Similar definition holds for Pe (Vl′ → Vl). It can be easily
known that Pe (Vl′ → Vl) = Pe (Vl → Vl′ ). Therefore we
will denote the PEP as Pe for brevity, whose exact form is
proved in [8] to be

Pe = EH Pe|H

= EH
1
2
[1 + Q(

√
a,
√

b) − Q(
√

b,
√

a)] , (19)

where

Q(α, β) =
∞

β
exp −α2 + x2

2
I0(αx)xdx (20)

is the Marcum Q function, and a, b,Q are defined as

a
b

=
ρ‖H‖2

F

4
1 ∓ 1 − |tr(HHQH)|2

‖H‖4
F

, (21)

Q � VH
l Vl′ . (22)

This expression of Pe is in fact related to the fourth order
Gaussian statistics and is currently intractable.

In fact, Marcum Q function can be approximated in sev-
eral ways, for example, as those in [9] and [10]. How-
ever, we will adopt a more general way by utilizing the
following inequalities. From [11], we know Q(α, β) <

exp − (β−α)2

2 when β > α ≥ 0, and Q(α, β) > 1 −
1
2 exp − (α−β)2

2 − exp − (α+β)2

2 when α > β ≥ 0.
Then

Pe|H ≤ 1
4

3 exp − (
√

b −√
a)2

2
− exp − (

√
a +

√
b)2

2

≤ 3
4

exp − (
√

b −√
a)2

2
. (23)

Substituting the specific forms of a, b into (23) results in

Pe|H ≤ 3
4

exp −ρ

4
‖H‖2

F − tr HHQH . (24)

The unfriendly factor |tr(HHQH)| forbids the further deriva-
tion on the conditioned PEP bound (24). To simplify the
analysis, we only consider the asymptotic performance as with
[12], [13]. We consider the following two cases:

1) Nr → ∞ and Nt is finite: Similar to [12], we assume
that the variance of hij is 1/Nr, because the normalizing factor
1/Nr ensures the total power received by Nr antennas from
each transmit antenna remains constant as Nr approaches ∞.
By the strong law of large numbers, we have HHH ≈ INt

and |tr(HHQH)| ≈ |tr(Q)|. Then

Pe|H ≤ 3
4

exp −ρ

4
(Nt − |tr(Q)|) . (25)

Now, Pe|H is independent from H, then the upper bound on
Pe is

Pe ≤ 3
4

exp −ρ

4
(Nt − |tr(Q)|) . (26)

2) Nt → ∞ and Nr is finite: First of all, it is noted that

‖H‖2
F − |tr(HHQH)| =

Nr

j=1

Nt

i=1

|hij |2 −
Nr

j=1

Nt

i=1

qi|hij |2

≥
Nr

j=1

Nt

i=1

|hij |2 −
Nt

i=1

qi|hij |2 . (27)

Since hij are independent and identically distributed random
variables over (i, j), the upperbound on Pe could be expressed
as

Pe = E{Pe|H}

≤ 3
4
ENr exp −ρ

4

Nt

i=1

|hi1|2 −
Nt

i=1

qi|hi1|2 .(28)

From the free probability theory [12, Fact A.2 or Eq. (24)],
we know

Nt

i=1

qi|hi1|2 → 1
Nt

tr(Q)
Nt

i=1

|hi1|2. (29)

Then, Pe can be asymptotically bounded by

Pe ≤ 3
4
ENr exp −ρ

4

Nt

i=1

1 − 1
Nt

|tr(Q)| |hi1|2

=
3
4
ENtNr exp −ρ

4
1 − 1

Nt
|tr(Q)| |h11|2

=
3
4

1

1 + ρ
4 1 − 1

Nt
|tr(Q)|

NtNr

. (30)

B. Code Design

To minimize the bound of Pe in both cases, it is clear from
(26) and (30) that we should minimize |tr(Q)|. As opposed to
the definition in [3], we define the modified diversity product
ζ as

ζ = max
0≤l<l′≤L−1

tr VH
l Vl′ . (31)

Therefore, the designing criterion is to minimize the modified
diversity product.

For cyclic group codes as in [3], the unitary matrices Vl

are chosen as in (5), where ui for i = 1, . . . , Nt need to

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2813

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 15,2010 at 23:51:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I

CYCLIC GROUP CODE DESIGN FOR MDUSTM WITH L = 2RNt .

Nt R L [u1, u2, ..., uNt ] Nt R L [u1, u2, ..., uNt ]
2 1 4 [0, 3] 2 1.5 8 [0, 5]
3 1 8 [0, 1, 3] 4 1.5 64 [0, 11, 55, 59]
4 1 16 [0, 2, 11, 15] 2 2 16 [0, 13]
5 1 32 [0, 15, 25, 26, 28] 4 2 256 [0, 131, 135, 186]

be optimized to achieve minimum modified diversity product
(31). In this case, Q can be expressed as

Q = diag ej2πu1(l−l′)/L, ..., ej2πuNt (l−l′)/L . (32)

Denote l − l
′

as Δl. The modified diversity product ζ can be
simplified as

ζ = max
0≤Δl≤L−1

Nt

i=1

ej2πuiΔl/L . (33)

We resort to exhaustive computer search for the best set of
u1, . . . , uNt ∈ {0, ..., L−1}. The search space can be reduced
using the following rules:

1) Note that |tr(Q)| = |e−j2πu1Δl/Ltr(Q)|. Therefore, we
can always set u1 = 0.

2) The order of ui does not affect the metric, so we always
assume that ui2 > ui1 , if i2 > i1.

3) In (33), Δl and L−Δl give the same ζ. Hence we only
need to search Δl from 1 to L

2 .

Table I shows the results of our search for parameters that
minimize ζ.

Remarks:

• When Q = γINt and γ is a complex scalar with unit
norm, it can be readily obtained that |tr(Q)| = Nt, which
leads to the worst PEP. It is interesting to see that the
traditional designed cyclic group codes [3] are among
those who provide the worst PEP. For example, if we
choose l = l1 and l

′
= l1 + L/2, Δl = l

′ − l = L/2 and

tr VH
l Vl′ = Nt

i=1 ej2πuiΔl/L = Nt

i=1 ejπui .
From [3], all ui are odd integers [3]. Therefore, we have
tr VH

l Vl′ = Nt, and ζ = Nt.
• In fact, our MLD can be considered as employing differ-

ential modulation across the transmit antennas, which is a
new differential modulation scheme. Our scheme applies
differential modulation in both spatial and temporal do-
mains as opposed to temporal domain only in DDUSTM
[5]. DDUSTM needs that the CFO remains constant over
three blocks to detect the transmitted signals, while we
only need it be constant in two blocks. This suggests that
our method is more robust to CFO drifting than that in
[5].

V. SIMULATION RESULTS

In this section, we simulate our proposed MDUSTM scheme
using symbol error rate (SER) as our figure of merit under
various scenarios. The signal transmitted in the first block is
chosen as S[0] = INt .
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Fig. 1. Average SER versus CFO for Nt = Nr = 2 (SNR=12dB).

1) Performance comparison with DUSTM under frequency
errors. In this example, we consider a 2×2 MIMO system and
investigate the performance of both the MDUSTM scheme and
the DUSTM without compensating the frequency errors. The
maximum range of ε, [0, 1], is examined. For both schemes,
their respective optimal codes with R = 1 (u = [0, 3],
and u = [1, 1]) are employed. The simulation results are
shown in Fig. 1 for SNR=12 dB. We note that, when CFO is
small, DUSTM without CFO compensation performs better.
However, for a general range of CFO, the DUSTM totally
fails while MDUSTM is still effective. Similar phenomenon
has been observed both in [5] and [6].

2) Performance comparison of the designed optimal codes
with all other codes. In this example, we choose Nt = 3, Nr =
4 and adopt the cyclic group codes for demonstration. The
performance line of our designed code u = [0, 1, 3], as well as
those of all other possible u are drawn in Fig. 2. Interestingly,
all codes could be divided into several groups and within each
group the codes provide similar performances. However, the
performances from group to group are quite different. It can
be seen that the designed asymptotically optimal codes lies
in the bunch that gives the best performance. In fact, only
one choice of u = [0, 1, 6], in this example, outperforms the
designed code. This is not unexpected since the optimal code
for regular number of antennas may not necessarily be the
asymptotic codes.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

2814

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 15,2010 at 23:51:22 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

av
er

ag
e 

S
E

R

Designed Code
All other Codes

u=[0,1,6]

Fig. 2. Demonstration of the optimality of the designed code under regular
transceiver antennas.

3) Performance comparison with normal DDUSTM under
frequency drifting. We apply the optimal cyclic group code
for both MDUSTM and DDUSTM in this example. Since
MDUSTM sacrifices one degree of freedom in transmit an-
tenna to cope with CFO, it is expected that the DDUSTM
would outperform MDUSTM at high SNR due to its higher
diversity order.

Nevertheless, it can be found that the proposed scheme is
highly robust for frequency drifting than DDUSTM. Similar
to [6], the CFO drifting is modeled as a random process from
block to block but the drifting is zero inside each block.
Suppose the CFO at the kth block is εk. For the (k + 1)st
block, the CFO becomes

εk+1 = εk + Δεk, (34)

where Δεk is drawn uniformly from [−0.5Δεmax, 0.5Δεmax].
Four different values of Δεmax are chosen and the perfor-
mance comparison between MDUSTM and DDUSTM are
plotted in Fig. 3. The parameters are selected as Nt = 3, Nr =
4, ε0 = 0.4/Nt. Both schemes employ their respective optimal
code design (u = [0, 1, 3] and u = [1, 1, 3]). It can be seen that
with a smaller CFO drifting, both schemes are affected slightly.
However, when Δεmax goes beyond 0.05ε0, the performance
of DDUSTM degrades significantly. Especially for very large
drifting Δεmax = 0.1Δε0, the performance of DDUSTM is
almost unacceptable.

VI. CONCLUSIONS

In this paper, we developed ML detection methods for
DUSTM under the existence of unknown CFO. The proposed
MDUSTM removes the effect of unknown CFO by the spatial
differentiation as opposed to the traditional way that operates
through the temporal domain. We have derived the asymptotic
pairwise symbol error rate analysis and, accordingly, designed
the asymptotically optimal code for large number of antennas,
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Fig. 3. Performance comparison between SSD and DDUSTM under various
CFO drifting, Nt = 3, Nr = 4.

whereas these asymptotic codes also work well when the
number of transceiver antennas is small. Since the proposed
MDUSTM only requires a slowly varying channel and CFO
during only two blocks, it is more robust to CFO drifting than
DDUSTM.
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