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We agree with both Goedbloed and Lifschitz (whom we will refer to as GL) and Ruderman, 
Goossens and Zhelyazkov (RGZ) that the apparent violation of quasi-neutrality in Ref. 1 is not a 
true problem and rescind this particular argument against MHD. However, the rest of the discussion 
in our paper is independent of this argument regarding quasi-neutrality, and as discussed below, the 
conclusions in Ref. 1 about the validity of MHD, about compressibility versus incompressibility, 
and about Alfven resonance remain valid. 0 1995 Atnericaa Institute of Physics. 

Validity of the ideal MHD approximation. We agree 
with GL that MHD is ‘a beautiful and classical theory, free 
of internal contradictions,’ and do not dispute the rigor of the 
mathematics underlying spectral theory. The issue we raise is 
whether MHD provides a valid description of a real plasma 
in the physically sensible cold-plasma regime (i.e., 
p< m, lmi in order to have vA > u re). This is a serious ques- 
tion because it is possible to have a beautiful, self-consistent, 
mathematically rigorous theory that does not correspond to 
reality. As a simple example, one could construct a new 
theory identical to ideal MHD except that one arbitrarily sets 
Ampere’s law to be VxB=2poJ. Because this new ‘theory’ 
is inconsistent with the correct Ampere’s law, this new 
‘theory’ is obviously an invalid description of reality, but is 
nevertheless beautiful, classical, free of internal contradic- 
tions and has an associated spectral theory as rigorous as that 
of regular MHD. Thus freedom from internal contradictions 
and mathematical rigor are necessary, but not sufficient con- 
ditions for a physical theory. The essential question is which 
of the infinity of mathematically rigorous, self-consistent 
theories is the one that corresponds to physical reality. 

The Maxwell-Lorentz equations-the basis of plasma 
physics-cannot be derived by formal mathematical argu- 
ment because these equations model the results of experi- 
mental observation, i.e., they model physical reality. For ex- 
ample, Faraday discovered his ‘law’ by measuring the 
voltage appearing on the terminals of a coil linking a chang- 
ing magnetic flux; he could not have derived his law by 
mathematical manipulation of previously known formulae. 

Even though ideal MHD is mathematically self- 
consistent, it is sometimes not a consistent approximation of 
the Maxwell-Lorentz equations, i.e., of physical reality. The 
specific issue here is the consistency between the approxima- 
tions used for obtaining the pre-Maxwell Ampere’s law and 
for obtaining the ideal MHD Ohm’s law. 

Amp&e’s law: As implied in the comments by GL and 
RGZ, restricting discussion to phenomena with phase veloc- 
ity small compared to the speed of light is formally equiva- 
lent to letting c2-+m. Since the displacement current scales 
as l/c2 it is dropped from the full Ampere’s law, yielding the 
pre-Maxwell Ampere’s law. 

Ohm’s Law: in the cold plasma approximation, the elec- 
tron equation of motion is 

4 rn,x= -e[E+u,xB]. 

Since w<<w,,, the perpendicular acceleration 
medu,L Idt is negligible compared to the magnetic force 
term and Eq. (1) may be approximated as 

dWl nzex= -e[Efu,xB] 

or using U,=Ui-J/flc?=U-Jffte, 

The Jlae term is the Hall term and may also be dropped 
since w< < wCi is being assumed. Thus, the linearized 
Ohm’s law is 

c2 d(poJ,,) - - 
Tdt=E+UxB. 
Ww 

(2) 

Ideal MHD omits the left hand side of this equation by in- 
voking the argument that ~&=ne*/m~q,---+~ because the 
electron mass is small. 

The essential problem is that in deriving the pre- 
Maxwell Ampere’s law we have formally assumed that 
c*-+~, so even though the electron mass is small, it is in- 
consistent to neglect c2f W& . Dropping the electron inertia 
term changes the cold Maxwell-Lorentz system from being 
a fourth-order system to being a second-order system. As 
discussed in Ref. 1, the fourth order system has two modes, 
the compressional mode which involves BII and JI and the 
shear mode which involves BL and JII. Dropping the elec- 
tron inertia does not affect the compressional mode (except 
in the vicinity of the w=kzuA layer), and indeed the cold 
limit of the mode given in Eq. (1) of GL is the compressional 
mode. To see this, consider the zero-pressure, B, = 0 form of 
Eq. (1) of GL 

(p0pw2- kfB2)B2 dU, 
- +(,uopo2-k;B*)U,=O; 

pop &(k;+k;)B* dx I 
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here we have used U,= - ioX. This equation is identical to 
Eq. (32) of Ref. 1 an d in Sec. VI A of Ref. 1 it was shown 
that this equation is mathematically equivalent to the com- 
pressional wave equation 

v*.( & v,) +b,=o 
expressed in dimensionless variables. 

incompressibility and cold plasma assumptions. 
MHD analyses that invoke incompressibility typically do so 
without substantive justification. The usual ‘justification’ is 
to say one is taking ‘the limit ~--)a’, but this is a mathemati- 
cal formalism just like letting C--SW. Both y and c do not 
really change; what one is really doing is modeling some 
physically attainable regime which behaves as if y and/or c 
became infinite. Thus it is necessary to specify exactly which 
physically attainable regime behaves as if y-+m. RGZ have 
shown that this regime is where ci> >ui ; i.e., this is the 
regime where incompressibility is a valid approximation for 
the MHD equations. RGZ do this by showing that the com- 
pressible warm plasma equation corresponds to the ‘incom- 
pressible’ Eq. (27) of Ref. 1 only when c%>>v:For 
yfL(L,P>xF one can approximate Eq. (2) of GL as 
D=(~cLI~-~~~P)(~w~=-F~) and so it is clear that the more 
general Eq. (1) of GL also becomes similar to Eq. (27) of 
Ref. 1 when ct>>vi and 02<<k2cz: Explicitly stating 
the criterion as cz> > ui (rather than the obscure matbemati- 
cal maneuver of letting y-+m) is of great physical relevance 
because j3=pOnKTIB2=c~/v~. Thus, the often-used ‘in- 
compressible MHD’ approximation could only be valid for 
plasmas having p> > 1. Ultra-high p means the plasma is 
nearly un-magnetized - no magnetic fusion device is in this 
regime, nor are most of the plasmas for which ideal MHD is 
typically used. Since tiIkll-uA<<cS one would expect the 
equation of state to be isothermal, not adiabatic. Further- 
more, the substantial parallel electron pressure would have to 
be included in Eq. (2) and would balance the parallel electric 
field so that it would still be incorrect to assume, as done in 
ideal MHD, that the parallel electric field vanishes. 

Thus, incompressibility cannot be invoked on a given 
plasma by imposing the formal limit y+m, but is rather a 
consequence of the plasma having p> > 1. The common 
practice of prescribing incompressibility for /!I< 1 plasmas, 
the usual plasmas to which ideal MHD is applied, consti- 
tutes overdetermining the system of equations (e.g., see Ref. 
2 where in_compressibility is imposed on a p=O.5 plasma). 

Does B, have a logarithmic singularity? In the previ- 
ous version of their comment RGZ asserted: 

‘there is a fundamental difference between dissipative 
MHD and the mathematical model of a cold plasma. In con- 
trast to viscosity and/or resistivity in MHD the efect ofelec- 
tron inertia does not remove the AljiGn singularity. ’ 

In support of this assertion, RGZ claimed to show that 
i, should have a logarithmic singularity at the Alfvdn layer 
where u=k,v*. RGZ used Eq. (75) of Ref. 1 to give the 
relation 

b,= dl? ‘I ik --L+$?.~z 
‘dx VA (3) 

and then correctly stated that a logarithmically singular 1?, 
would be obtained using the solutions given by Eqs. (142) 
and (143) of Ref. 1. 

In our response to this earlier criticism by RGZ we 
showed that there is still no Alfvin resonance because of a 
subtle error in Eq. (141) of Ref. 1. If Eqs. (136)-(140) are 
used to transform Eq. (135) and all terms are kept, one finds 

cg2g;+eg;-(4-+(2+e4/4)g+=0 (4) 

where, unlike Eq. (141) of Ref. 1, the seemingly unimportant 
t4/4 term is now retained. The Y,(5) Bessel function is an 
exact solution for g- (5) of Eq. (141) of Ref. 1, but is an 
incorrect solution of Eq. (4). By explicitly substituting the 
series expansion Y2( 5) =~-2+1/4-(~2/16)ln(~/2) C... 
into Eq. (4), it is seen that the previously dropped term gives 
a contribution - E4Y2( 6) - t2 which is of the same order as 
terms resulting from derivatives of the logarithmic term in 
Y,(t). Thus, we conclude that Y,(t) is not a correct solu- 
tion of Eq. (4) and, as shown below, the correct, exact solu- 
tion of Eq. (4) is g -+( 6) = [-zexp( rF 5 2/4). 

In hindsight, transforming Eq. (135) to Eq. (141) in Ref. 
1 turns out to have been unnecessary because Eq. (135) may 
be solved exactly, yielding the two independent solutions 

Q’,‘)(x)=einyx (51 

and 

Q?)(x) =e Fnyx-etnyxf2nyxe‘+nyx; (6-l 
for small x note that Q$‘(x)== 1 ?n ,x and 
Q~)(x)-2(n,x)2+2(n,~)3/3. Hence, the exact gkneral so- 
lution of Eq. (135) of Ref. 1 is 

Q_(x)=aQif’(x)fbQi_2)(x), 

Q+(x)=KQ~)(x)+XQ!&) (7) 
9 

where a, b, K, and h are constants chosen to match the WKB 
solutions at large X. 

That i, is not singular at x = 0 can be seen using Eq. 
(75) of Ref. 1 to express L?, in normalized form as 

1 
Bx=~; 

ln the limit S-in: we may write S-n~=xS’ so that Eq. (8) 
becomes 

lim Bx=--$ in, 2 + fz,fiZ,@z . 
s-)n; ( - 1 

(9) 

Multiplying Eq. (132) of Ref. 1 by in, and expanding gives 

(10) 

(11) 

Since the exact QI given in Eqs. (7) are finite and regular at 
x = 0, then b.r= (Q + - Q -)/2i is also finite and regular at 
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x = 0 and so there is indeed no Alfvin singularity in a cold mode at the w2 = k$: layer, then k, will certainly not van- 
plasma when finite electron inertia is taken into account. ish on the low density side of the layer. 

The above response to RGZ’s original criticism shows 
that g, does not have a logarithmic singularity and RGZ 
appear to have accepted this response as valid, However, in 
the revised version of their comment RGZ again state ‘there 
is a fundamental difference between dissipative MHD and 
the mathematical model of a cold collisionless plasma’, but 
now introduce a new and completely different issue, namely 
concern about matching in the vicinity of x = 0. 

RGZ calculate the width of a ‘dispersion’ layer by as- 
suming that the dominant terms in their Eq. (4) are the first 
and third, in which case this equation becomes 

(12) 

RGZ now claim that it is impossible to match Eqs. (7) to 
k-, and b, outside the x=0 neighborhood because the Eq. (7) 
solutions are exponential in character. RGZ base this claim 
on the assertion that ‘far away from the resonant point B, 
tends to a constant value and &‘, tends to zero.’ This assertion 
is incorrect; k, and k?, are determined by Eqs. (127) and 
(128) of Ref. 1 together with specified boundary conditions, 
and as seen from Figs. 2 and 3 of Ref. 1, .!?, does not tend to 
zero away from x = 0. Equations (7) are the solutions in the 
vicinity of x = 0 and give the information required to match 
the exterior solutions to the left of x = 0 to the exterior solu- 
tions on the right. Given k?, , h, ,Ei and gi at x= - S deter- 
mines the constants a,b,K, and X; these constants can then 
be used together with Eqs. (7) to calculate ,??, , b, ,/?l and 
g: at x= + S and so match to the exterior solutions to the 
right of x = 0. The numerical integrations given in Figs. 2 and 
3 of Ref. 1 would not have succeeded if there were a match- 
ing problem at the x=0 layer. In fact the transition is so 
smooth that it is hard to see where the Alfven layer is; if 
RGZ were correct there would be an abrupt jump at the 
Alfvin layer (the location of the Alfvin layer for Fig. 2 is at 
0.05 m, i.e., where pt = 7.2X lo’* rnm3, while the location of 
the Alfvin layer for Fig. 3 is at 0.93 m). 

Near the Alfven layer, they assume that s = x - XA , and write 
w*- u:kf=sA where A is defined by their Eq. (8). They 
then make two critical assumptions: (i) that there is a unique 
s where the two terms in the above equation balance, and (ii) 
this critical s can be estimated by assuming that derivatives 
d/d..? can be replaced by l/s so that the left hand term be- 
comes E,ls3A. With these assumptions they determine their 
6, , which is supposed to be the special value of s at which 
the two terms balance. This argument by RGZ is incorrect 
for several reasons. First of all, Eq. (12) is a differential 
equation which can be solved for a11 values of x, so there is 
no special value of s where the two terms balance; by defi- 
nition, a solution to Eq. (12) balances the two terms every- 
where. Second, it is improper to assume that derivatives can 
be replaced by I/s in regions near the layer. To see this, note 
that Eq. (12) can be written as 

d 1 dE, 

( ! 
---- 
ds s ds 03) 

which for smail s has two approximate solutions 
E = 1 + As3/30212 and E =s*+ As5/15w212 
toZassume that (s-4,‘)’ 

It is incorrect 
-“E Is3 for either 0: mese solutions. 

RGZ then go on to say that it does not make sense to 
consider a driven problem in a dissipationless plasma. This is 
not true as can be seen from the everyday example of a radio 
transmitter connected to a dissipationIess transmission line. 
What counts are the boundary conditions at the ends. If the 
net energy flux into the transmission line equals the net flux 
out, then there will be no accumulation of energy in the line. 
This can be achieved by having (i) a non-driven standing 
wave, (ii) a matched load, or (iii) an unmatched load with a 
matching impedance at the source to absorb the reflected 
wave. The argument by RGZ has nothing to do with Alfven 
resonance and, if true, would mean that all studies of waves 
in dissipationless plasmas would be incorrect. Equations 
(127) and (128) of Ref. 1 constitute a fourth order system 
with no singularities and have a unique solution if four 
boundary conditions are specified. 

The condition s-(os@\ Al; l/3 is simply the upper value of 
s for which the leading term in the Frobenius solutions domi- 
nates higher order terms, as can be seen by comparing the 
magnitudes of the first and second terms in the two respec- 
tive solutions. For large s, Eq. (13) becomes 

d2E, sh 
ds’-gp=o (14) 

which for negative s (low density side of the w2= k:vi 
layer) is just the slow wave equation which has solutions 
E,-exp(ti$k&) where kz = - sAf 0~1:. On changing back 
to dimensionless variables, it is seen that this kz is just the E 
wave given by Eq. (88) of Ref. 1. Thus, it is incorrect to 
assume that E, +O on the low density side of the Alfvin 
layer, because on this side Eq. (14) describes a propagating 
non-MI-ID wave which has finite E, . 

Comparison with RGZ’s matched asymptotic expan- 
sions. RGZ have written Eqs. (127) and (128) of Ref. 1 in 
dimensioned form and have assumed that k,L- 1 while 
k,L< < 1. Since the inhomogeneity is in the x direction, 
there is no reason why the z and y wavelengths should be 
determined by the scale length in the x direction. 

The inertial electron Alfv6n cone: A counter-example 
to the predictions of ideal MHD. To emphasize the fact that 
ideal MHD gives an incomplete and sometimes incorrect de- 
scription, consider the inertial electron shear Alfven reso- 
nance cone. This non-trivial phenomenon cannot be de- 
scribed by ideal MHD, yet occurs in the w< <wCi cold 
plasma regime where ideal MHD supposedly provides a 
complete description of plasma behavior. 

RGZ assume as a boundary condition that E,--+O away 
from the w*=@J~ layer. This constitutes prejudging the 
outcome, since if the fast B, mode converts into a slow E, 

This cone was first derived by Borg er aL3 using spatial 
Fourier analysis (and has been discussed more recently by 
Morales el aL4). The Fourier analysis derivation is quite 
complicated so that it is not obvious that the cone is an exact 
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solution. We give here a brief alternate derivation that avoids is neglected because the parallel electron pressure is larger. 
spatial Fourier analysis and shows directly that the cone is an Equation (7) of GL results from omitting both electron iner- 
exact non-MHD shear wave solution of the. Maxwell- tia and parallel pressure and so artificially forces the parallel 
Lorentz equations in a w < C oCi cold, uniform plasma. electric field to vanish in all cases.] 

We use cylindrical coordinates (Y, B,z), assume that the 
only finite fields are J?‘,,,@, ,.?,,jz ,is (corresponding to 
shear wave polarization), and consider solutions independent 
of 8. The relevant equations are the parallel component of 
Ampere’s law 

the perpendicular component of Ampere’s law 

ai, -. 
- ,=EL&, (16) 

the azimuthal component of Faraday’s law 

(17) 

the parallel component of Bq. (2), 

ajz Q& _ -= 
at 7E c”f.40 z 

and the polarization current 

(19) 

These equations describe the shear wave and in particu- 
lar, using Eq. (2) we see that 

go= -&/B= 5. 
1 

SXB 
dt - 

P (20) 

which would correspond to the Y defined by GL (assuming 
cold plasma and Bdy = 0). The shear wave equation is ob- 
tained as follows: J, is eliminated to obtain 

1 aB, 6, 
iTp=-dz. 

Equation (18) and the time derivative of Eq. (15) give 

1 a ab, CO& . 
--r-=-- 
r ar ( i at =pG. 

(21) 

(22) 

Substitution for d~‘,ldt and I?‘, in the time derivative of Eq. 
(17) gives the cold plasma shear wave partial differential 
equation 

~[~(~~)-~~]+~(v~~)=O. (23) 

The slab dispersion relation associated with this equation is 
Eq. (159) of Ref. 1. If, as in ideal MHD, c’/o& is arbitrarily 
set to zero, then the slab dispersion relation associated with 
Eq. (23) corresponds to Eq. (7) of GL and the cold plasma 
shear Alfvin wave becomes ill-defined because it is missing 
the electron inertia term. [In a warm plasma (i.e., 
/3> m, lmi) the electron inertial term does not get smaller; it 

If we consider a perturbation with time dependence 
exp( -id) and define p= wperIc and l= wz/vA , Eq. (23) 
becomes 

z- 
$j -;z!$ -gaz” . 

p’ (24) 

where Q = pi B is proportional to the field-aligned current. 
We define the auxiliary coordinate 7, 

$,pL. 52 05) 

and express the Q derivatives in terms of 17 derivatives, e.g. 
a2Qiap2=~~~~-p2~~3~a~~ap +~p21~2~a2~ia~2. substi- 
tuting for d2&dp2,d&~p, and d2Q/@ in Eq. (24) and 
using Eq. (25) gives 

2- 

% -Q=O 

aq -. 

(26j 

which has solutions Q = e’ v. Thus, solutions of Eq. (23) are 

ie=exp( 5 id-)/p. 

Using Eq. (22) gives the parallel electric field, 

E 
z 

- = twexp(~idF7) 

: J-F2 

(27) 

(2% 

which is just Borg et al.‘s resonance cone. In un-normalized 
variables, Eq. (28) is 

exp(+iJ~*)‘-(o,,r/c)2) Ig=+W- 
(wz/vA)2- (Wp,rlC)2 . (29) 

Thus J!?~ is divergent on the conical surface 

(30) 

where us,,, =v~~o~~Ic== JE. The speed of light does 
not appear in the cone angle indicating that the resonance 
cone is a slow wave phenomenon. Warm plasma effects ne- 
glected in this derivation would keep the cone finite (this has 
been thoroughly discussed in the context of high frequency 
resonance cones, e.g., see Ref. 5). The cold plasma shear 
Alfvdn resonance cone has been observed experimentally 
both by Ono6 and by Gekelman et al.’ 

Equation (29) is an experimentally confirmed, exact so- 
lution to the w< < oCi cold plasma Maxwell-Lorentz system 
and yet contradicts the predictions of ideal MHD. Ideal 
MHD is in error here because of the improper assumption 
that ape fc is infinite. 

In their revised comments RGZ attempt to dismiss the 
resonance cone, a macroscopic plasma phenomenon, as be- 
ing outside the framework of MHD applicability and make 
the interesting assertion that ideal MHD is only valid fo, 
scale lengths L> > c/wpi (if true, this assertion would mean 
that the Tokapole II plasma where the Alfvdn ‘resonance’ 
was claimed to have been observed’ is not describable by 
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MHD since the Tokapole II minor radius is a = 7 - 10 cm 
and CIWpi~ 7 cm for the Tokapole ns lOI mm3 hydrogen 
plasma). The condition L > > C/O,i in fact, is not one of the 
standard assumptions made in deriving ideal MHD, but is 
rather a condition relating to non-linear Hall magnetic diffu- 
sion [cf. discussion after Eq. (9) of Ref. 93. For linear prob- 
lems, such as discussed in Ref. 1, the ion skin depth CIW,i is 
of no relevance+ The fact that the resonance cone is ‘outside 
of the framework of applicability of MHD’ merely restates 
the fact that MHD does not properly describe the behavior 
of shear waves in a cold, collisionless plasma. Shear Alfvin 
wave resonance cones involve very large k’, (infinite in the 
cold plasma approximation) and so cannot even be approxi- 
mated by MHD because MHD is based on the incorrect as- 
sumption that k;, = 0. 

Conclusions. In the p< < 1 cold plasma limit, Eq. (1) 
presented by GL may be identified as the compressional 
mode because in this limit it becomes equivalent to Eq. (116) 
of Ref. 1. A consequence of RGZ’s analysis is that p> > 1 is 
the only regime where the ‘incompressibility’ assumption 
could conceivably be applied to the plasma as a whole, and 
in this limit one might expect the equations derived by 
Uberoit’ and by Tataronis and Grossmann could apply to a 
real plasma. However, the j?> > 1 ideal MHD regime is not 
self-consistent because, if a collisionless plasma has 
/3>> 1, the parallel electron pressure term (neglected in 
ideal MHD) will act instead of electron inertia to balance the 
parallel electric field (which is assumed to vanish in ideal 
MHD). Furthermore, the usual plasmas where incompress- 
ibility is invoked have p less than unity, and so assuming 
incompressibility for these typical plasmas overdetermines 
the system of equations. 

The non-existence of the Alfvin resonance in a cold 
plasma has been shown more precisely by correcting a subtle 
error found in response to criticism by RGZ. 

The omission of electron inertia in cold ideal MHD- 
means that the formal limit c2+m is not consistently ap- 

plied in deriving ideal MHD - thus ideal MHD is not a 
consistent approximation of the Maxwell-Lorentz equations. 
The experimentally observed shear Alfvin resonance cone 
has been shown to be an exact solution of the cold plasma 
Maxwell-Lorentz equations and provides a substantive con- 
tradiction to cold plasma ideal MHD. 

We would like to thank both GL and RGZ for their 
stimulating comments. 
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