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In a Brief Communication,1 Rauf and Tataronis~who
will be referred to as RT! criticized conclusions2 by myself
regarding the validity of the Alfve´n resonance concept. I
wish to provide a brief response to these criticisms here.

RT stated ‘Bellan has challenged the existence of the
Alfvén resonance in an MHD~magnetohydrodynamic!
plasma’. This statement is a misinterpretation: in my paper I
challenged the existence of the Alfve´n resonance in a real
plasma. Since experiments are performed on real plasmas
and not on ‘MHD plasmas’ this is an important distinction.

RT preface their Eq.~1! with the statement ‘‘If the
plasma motion is incompressible . . . ’’ and preface their Eq.
~2! with the statement ‘‘For a compressible plasma . . . .’’ How
does one decide whether a given real plasma is best charac-
terized as ‘incompressible’ or as ‘compressible’? Rauf and
Tataronis argue that one can start with a warm, compressible
model @their Eq. ~2!# and then change to an incompressible
model by lettingg→` or, on the other hand, to a cold model
by letting g→0. This settingg→` or g→0 does not make
sense for a real plasma because a real plasmaalwayshasg of
order unity; i.e.,g is not adjustable.

Sinceg 5O ~1! in a real plasma, one must ask if there
existsanyphysically realizable situation where a plasma be-
haves incompressibly and is therefore modeled by RT’s Eq.
~1!? Mathematically, this question can be posed as: Is there a
physically realizable situation where the coefficientAC/D in
RT’s Eq. ~2! has the limiting formA/k2, so that RT’s Eq.~2!
becomes RT’s Eq.~1!? This question can be answered by
expressing the coefficientAC/D in RT’s Eq. ~2! as
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RT’s Eqs.~3!-~5! have been used to defineA,C, andD here
and no approximations have been made. The numerator and
denominator in the square brackets in Eq.~1! here are iden-
tical except for the last term in the denominator,v2/k2cs

2.
Thus, the only situation whereAC/D→A/k2 is when
v/k!cs in which case RT’s Eq.~2! becomes RT’s Eq.~1!.
Because no constraint has been imposed onB0~x!
5B0y(x) ŷ1B0z(x) ẑ or on k5kyŷ1kzẑ, this analysis is
valid for arbitraryk and for arbitrary magnetic shear.

For the values ofk typically invoked in Alfvén reso-
nance models, the orders of magnitude ofki and of
k'5~kyB0z2kzB0y!/B0 are the same. Hence,v/k!cs implies
v/ki!cs as well. Sincev5kivA(x) at the ‘Alfvén reso-
nance’, requiringv/k!cs necessitates thatvA!cs .

The ratio of thermal energy to magnetic energyb is

b5 nkT/B2/2m0 5 cs
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2 . ~2!

Sinceg is always of order unity in a real plasma,vA!cs
corresponds to havingb@1. Thus, theonly situation where
RT’s Eq. ~1! could conceivably be valid would be in a
plasma havingb@1, which is certainly not true of the plas-
mas where the Alfve´n resonance concept and the ‘incom-
pressible plasma’ assumption are typically invoked. In par-
ticular, the experiment3 cited by RT as demonstration for the
Alfvén resonance hadb,231023. Also, Tataronis and
Grossmann’s original Alfve´n resonance paper4 invoked in-
compressibility for ab50.5 plasma.

The ideal MHD Ohm’s law@required to derive RT’s
Eqs. ~1! and ~2!# is invalid in theb@1 limit because in a
realistic highb plasma,E will be mainly balanced by the
electron pressure gradient rather than byU3B. Furthermore,
kinetic effects will dominate perpendicular motion. Thus,
RT’s Eq. ~1! does not give an approximate description of a
b@1 plasma and so does not describe any physically realiz-
able regime, either highb or low b. Conclusions~e.g., asser-
tions of the existence of ‘Alfve´n resonance’! drawn from
RT’s Eq. ~1! thus have no physical significance and cannot
be used to judge models that do relate to physical reality.

In the cold plasma limit,cs→0, so that
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and RT’s Eq.~2! becomes
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which is just Eq.~32! of Ref. 2. RT claim that Ref. 2 was
restricted to the special case whereky50 @in which case Eq.
~4! above trivially becomes the compressional mode#. In
fact, the discussion of Eq.~4! in Ref. 2 was not restricted to
the ky50 case; the discussion leading from Eq.~115! to Eq.
~126! in Ref. 2 shows that the finiteky version of Eq.~4!
above is still the compressional mode equation but without
important coupling terms to the shear mode.

RT also asserted that aside from Eq.~21! in Ref. 2, ‘‘the
other equations in his paper do not contain any information
about the shear Alfve´n wave’’. This is a puzzling statement
since Secs. IV-VIII in Ref. 2 discuss the cold plasma shear
Alfvén wave in great detail.

RT then claim that forky50, the cold shear mode is
described by their Eq.~9! which admits the singular solution
vy(x);d(x) in an inhomogeneous plasma. The essential de-
fect in RT’s analysis comes from the fact that the ordering of
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ideal MHD involves assuming that terms;me and terms
;1/c2 can be neglected, but thenalso omits terms of order
mec

2. These missing terms are an essential feature of actual
shear wave behavior in a cold plasma and their omission
leads to the non-physical singularity deduced by RT.

What is the correct behavior ofvy? The perpendicular
component of Ohm’s law is unaffected by finitemec

2 and so
vy52Ex/B0 remains valid. As shown in Eq.~86! of Ref. 2,
when ky50 and terms;mec

2 are retained, the cold shear
mode equation becomes
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@in order to make comparisons with RT, Eq.~86! of Ref. 2
has been put in dimensioned form and displacement current
has been dropped#. Equation~90! in Ref. 2 gives
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Sinceky50 is being assumed in this discussion, the shear
and compressional modes are decoupled~as agreed by RT!
and soBz may be set to zero sinceBz corresponds to the
compressional mode. Thus, Eq.~6! gives
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in which case Eq.~5! can be expressed as
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Combining these last two equations gives the differential
equation governingEx ,

d

dx F c2vpe
2

d

dx S Ex

vA
2 D G2

~12kz
2vA

2/v2!

vA
2 Ex50 ~9!

which is an Airy-type equation and, like Eq.~5! above, has
the uniform plasma dispersion relation
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@cf. Eq.~88! in Ref. 2 or equivalently Eq.~7.15! in Ref. 5#. In
the vicinity of thev5kzvA layer,kxc/vpe→0, so contrary to
what is often naively assumed, the field isnot localized
within a thin layer of widthc/vpe . Since both independent
solutions of the Airy equation are finite atv5kzvA , Ex is
finite atv5kzvA and so isvy . The flaw in RT’s ideal MHD
model is that ideal MHD setsc2/vpe

2 50 so that RT’s Eq.~9!
is missing the finitec2/vpe

2 term in Eq. ~9! here. Because
vy52Ex /B0 , RT’s proposed solutionvy;d(x) implies
Ex;d(x). A physical model only has validity if the magni-
tudes of the terms that have been neglected are much smaller
than the magnitudes of the terms that have been retained.
Sincec2vpe

22d2d(x)/dx2 is in generalinfinitely larger than
(12kz

2vA
2/v2)d(x), RT’s delta function solution is defective

as a physical model and does not provide even an approxi-
mate description of the cold shear wave in a real plasma.

If we choose thex-origin to be at thev5kzvA layer and
define the density scale lengthL215n21dn/dx, then
12kz
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in the vicinity of thev5kzvA layer. The solutions of this
equation are the Airy functions Ai~x/d!, Bi~x/d! where
d5L1/3~c/vpe)

2/3 is larger than the collisionless skin depth
by the factor~Lvpe/c!1/3. As shown in Ref. 6 the dimension-
less ‘wavelength’l of Airy functions Ai~j!, Bi~j! in the vi-
cinity of j50 is l'4. Thus, for a densityn51019 m23 and
L51 m, the solution of Eq.~9! would have a wavelength of
approximately 5 cm on the immediate low density side of the
v5kzvA layer. The Airy equation describes waves which
propagate from low density to thev5kzvA layer where they
reflect. To say that this wave reflection is a ‘resonance’ does
not make sense — if one were to apply RT’s methodology to
a beam of light reflecting from a mirror~a situation also
described by an Airy equation!, one would first deny the
existence of the light waves~because their wavelength is
inconveniently short! and then conclude that all the wave
energy is concentrated in a delta-function resonance at the
mirror.

When finiteky is taken into account@cf. Eqs.~127! and
~128! in Ref. 2# all quantities remain finite and well-behaved
at thev5kivA layer, but there is a coupling~mode conver-
sion! between the compressional mode and the shear mode.

Summary: The results in Ref. 2 provide a reasonably
accurate description of shear wave propagation in a physi-
cally realizable, cold inhomogeneous plasma~e.g., see mea-
surements forv,vci cold plasma waves in pure helium plas-
mas by Ono7! whereas ideal MHD gives misleading
predictions. RT do not demonstrate any error in the two-fluid
analysis of Ref. 2. Two-fluid models are closer to reality than
MHD. If MHD agrees with two-fluid analysis~as is the case
for compressional modes and for equilibrium and stability
analyses! then MHD is a worthwhile approach. But, if
MHD disagrees with two-fluid analysis~as is the case for
shear Alfvén waves!, then the predictions of MHD are incor-
rect since MHD is a less precise description of reality than is
two-fluid theory. RT have noted that Alfve´n resonance has
been discussed in the MHD literature for over 20 years; this
citation of a long tradition does not constitute a scientific
argument and cannot negate the fact that two-fluid analysis
shows these resonances do not exist in a real plasma.
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