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The Hopfield model and its role in the development of synthetic
biology.

Andrea Loettgers

Abstract-Neural network models make extensive use of
concepts coming from physics and engineering. How do sci-
entists justify the use of these concepts in the representation of
biological systems? How is evidence for or against the use of
these concepts produced in the application and manipulation
of the models? It will be shown in this article that neural
network models are evaluated differently depending on the
scientific context and its modeling practice. In the case of
the Hopfield model, the different modeling practices related to
theoretical physics and neurobiology played a central role for
how the model was received and used in the different scientific
communities. In theoretical physics, where the Hopfield model
has its roots, mathematical modeling is much more common and
established than in neurobiology which is strongly experiment
driven. These differences in modeling practice contributed to
the development of the new field of synthetic biology which
introduced a third type of model which combines mathematical
modeling and experimenting on biological systems and by doing
so mediates between the different modeling practices.

1. INTRODUCTION

A main characteristic of neural network models, such
as the Hopfield model [3], is the application of concepts
from physics and engineering in the representation of brain
structures and functions. The integration of concepts from
these diverse fields locates these models at the interface of
neurobiology, physics, and engineering. The first part of the
paper focuses on the dependency of the evaluation of neural
network models on specific scientific contexts, discussing the
case of the Hopfield model. As will be shown, the evaluation
of this model in theoretical physics and neurobiology was
dependent on the specific modeling and scientific practices of
the respective fields. Theoretical physics, especially statistical
physics and solid state physics had developed a specific mod-
eling strategy in the context of critical phenomena triggered
by the success of the Ising model in studying the mechanism
of phase transitions. This strategy consists in focusing on the
identification of the basic components and interactions which
give rise to specific phenomena such as phase transitions.
The strategy leaves aside details of the system even if they
are known. Neurobiology, especially in the 1980's when
the Hopfield model had been introduced, was very much
experiment driven. Neurobiologists were "in touch" with
the immense complexity and wealth of details of biological
systems on a daily basis in their experiments. Being "in
touch" with the biological system was a feature which they
missed in the Hopfield model. The strategy which Hopfield
had used in reducing the complexity of the biological neural
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network were alien to neurobiologists. The epistemic culture
in which the Hopfield model had been developed and the
epistemic culture in which this system and its function that
it should represented were located were separated.

The second part of the paper will discuss how synthetic
biology, with its specific modeling approach of reconstruct-
ing biological networks [6], can be understood as an attempt
to mediate between the two different epistemic cultures.
Synthetic biologists use biological components, genes and
proteins, for the engineering of genetic networks. The engi-
neering of genetic networks is based on genuine engineering
concepts as for example feedback loops. By implementing
the engineered network into cells, synthetic biologists test
the performance and behavior of their models under the
constraints of the biological systems. Similar to the approach
taken by Hopfield, synthetic biologists try to identify those
components of a genetic network that give rise to a specific
function, such as the circadian rhythm. The materiality of
the models and the testing of the network in the cell produce
evidence for or against this specific approach of abstracting
the complexity of biological systems and for or against the
use of concepts from engineering and physics. This evidence
goes beyond the evidence that is gained from mathematical
models. Our example will be the Repressilator, a genetic net-
work producing oscillations on the level of gene expressions
that was introduced by Michael Elowitz and Stanislas Leibler
[2]. It will be seen that the results gained by synthetic models
are not conclusive. There remains an uncertainty regarding
the approach and its concepts. But the models provide tools
that allows scientists to ask more precise questions and that
force them to get "in touch" with the biological system.

II. THE HOPFIELD MODEL AND THE INTERPRETATION OF
BIOLOGICAL SYSTEMS AS COMPLEX COMPUTATIONAL

SYSTEMS

Following the construction process of the Hopfield model
one can make the argument that one of the main motivations
in the design of the model was the attempt to concretize the
view of the brain as a complex computational system. This
was done by giving it a foundation in physics, which means
finding the physical laws that determine the mechanism un-
derlying and governing specific brain functions such as auto-
associative memory. Hopfield wrote in an article entitled:
Physics, Biological Computation and Complementarity [5]
which is based on a talk he gave at the Niels Bohr centenary
symposium in 1985:

The laws of elementary particle physics and cos-
mology and the history of the universe serve
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merely to determine the nature of a planetary
environment. The dynamical equations of quan-
tum mechanics and quantum electrodynamics (and
their classical equivalents when appropriate) are
the essential elemental laws of physics which lead
to biology. Some physicists make claims that 'we
shall never understand life until we understand the
origins of the elementary particles'. But the real
mysteries of biology lie in the way in which these
dynamical laws of physics, and the substrate of
electrons, photons and nuclei on which they op-
erate, produce the complex set of counter-intuitive
phenomena labeled with the term biology [5] p.52.

By drawing an analogy to disordered magnetic systems
Hopfield constructed a distributed model of auto-associative
memory which he introduced 1982 in a paper entitled: Neural
Networks andphysical system with emergent collective com-
putational abilities [3]. An example of the kind of problems
that can be investigated with the Hopfield model is the
problem of character recognition. Hopfield's model provides
a mechanism that allows just this kind of retrieval of informa-
tion from incomplete data. In the model, the human brain's
neurons are binary variables which form an interconnected
network. The network may be storing a certain number of
patterns. In the retrieval phase, one starts with some initial
configuration and the network dynamics evolves towards the
stored pattern which is closest to the initial configuration.
The model belongs to the class of attractor neural networks.
The basic structure of the Hopfield model is described in the
following paragraph.

111. THE HOPFIELD MODEL

In the model, the human brain's neurons N are binary
variables uri(t), where uri(t) = +1(0) characterizes an
active (passive) neuron. The model neurons are connected by
exchange couplings Jij. The exchange couplings in the case
of the Hopfield model are used for storing the memory items.
Hopfield used the Hebb rule which states: a simultaneous
activation oftwo connected neurons results in a strengthening
of the synaptic coupling between the two neurons (Hebb
1949). This rule is formalized in the Hopfield model as
follows

p

Jij = i(8 (1)jij
where the (' are variables that describe a pattern, i.e. a given
configuration of active and inactive neurons. The number of
patterns stored in the network is given by p and in each
pattern the number of neurons is equal to the total number of
neurons in the network, N. In the Hopfield model, the post-
synaptic potential hi(t) is produced by the activating signals
arriving from all the other neurons to which the neuron i is
connected. Mathematically, it is given by:

N

hi (t) =EZJijuj (t) (2)

Hopfield introduced the following dynamics into his model:

(3)

In the course of this dynamics, a neuron ori is randomly
chosen and updated according to the update rule. Under
the right conditions (symmetric couplings, no self couplings,
and a limited pattern number), this dynamics will drive
the system from an incomplete pattern into the associated
complete pattern. This property is due to the energy function
which is given by:

E=2 E JJi(J; (4)

and which is, as Hopfield could show, a Lyapunov function
which decreases in the course of the dynamics. Starting from
an incomplete input pattern the dynamics will lead into the
nearest-by energy minimum, the one that corresponds to the
stored pattern.
When the model was first introduced in the begining of

the 1980's physicists and neurobiologists reacted very differ-
ently. Neurobiologists rejected the Hopfield model whereas
physicists on the other hand found the model very appealing.
How can one explain these different reactions? I am going
to argue that physicists and neurobiologists used different
standards in evaluating the model which are rooted in their
specific modeling and scientific practices.

A. Different standards for model evaluation

Taking into account the complexity of biological neural
networks the Hopfield model is of a surprisingly simple
structure. John Hopfield is a theoretical physicists by training.
In the construction of the model he related to a specific
strategy common in statistical physics and solid state physics
of identifying the critical components and interactions in a

complex system. This strategy consists in simplifying and
abstracting the system under investigation in such a way that
details are left out even if they are known in order to find
the essential properties which explain the phenomena under
investigation. This strategy is to a good part the outcome
of the success story of the Ising model. The Ising model
was introduced by Ernst Ising in 1924 and models the
property of ferromagnetism as a cooperative phenomena. In
the standard Ising model, the magnetic moments Si are fixed
on a rectangular lattice and can take on values Si = ±1,
corresponding to the different spin directions. Only spins
located on nearest neighbor lattice points interact in the
model. The interaction is cwdetermined by a single constant
J, representing the interaction energy, and is a function of Si
and Sj. It is negative if Si and Sj have the same sign and it
is positive if they have opposite signs. The total interaction
energy E is given by:

E = - JS Sj,

<i,j>
(5)

j=l

(7i (t) = +1. if hi > 0,
0. if hi < 0 .
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where < i, j > runs over all nearest neighbors and is at its
minimum at maximal order of the system i.e. when all spins
point to the same direction. This means that the simple Ising
model has two energy minima corresponding to the cases
where all spins are up or all spins are down.

The system represented by the Ising model shows what
physicists call critical behavior around a critical temperature
Tc, the so-called Curie temperature, where the system under-
goes a phase transition from the paramagnetic, the disordered
state, into the ferromagnetic, the ordered state. This behavior
of magnetic systems below the critical temperature is an
example of collective behavior.

The Ising model is part of the tradition in statistical
physics of investigating the properties of complex systems
such as crystals, gases, liquids, and magnetic systems. In
this tradition, models are based on the assumption that the
interaction between the elements are responsible for the
observed phenomena such as ferromagnetism. For most of
the collective behavior of such systems, the properties of the
individual elements are not important. As has been already
discussed by others such as R.I.G. Hughes [7], the Ising
model has been used extensively in the study of critical
phenomena. In this context the fact that the model shows
only little correspondence to real magnetic systems was not
regarded as a disadvantage. The Ising model functions as a
representation for some class of other objects or processes
in the world that share similar features [4]. The unspecific
and abstract structure of the Ising model made it possible for
physicists to use it for representing various systems, such as
gases, alloys, and liquids, which share the property that they
show critical behavior of a certain kind.

Thus, a simple model allows one to study and explain
such a very basic and important properties as phase
transitions and furthermore it allows one to do so in such
a general fashion that the Ising model could function as a
representation for other systems. This fact had an important
impact on the modeling practice in this part of physics. It
showed:

. Physical phenomena, such as ferromagnetism, are the
result of collective phenomena. This means they result
from the interactions between the components of the
system and not from the specific properties of the
components themselves.

. The details of the system are not important for the
production of the observed phenomena.

Hopfield operated in this modeling tradition when he con-
structed his model by drawing an analogy to the Sherrington-
Kirkpatrick (SK) spin glass model [8], [9]. The SK spin glass
model is a model of a disordered magnetic system and has a
very similar structure as the Ising model. The main difference
spertains to the interaction. Sherrington and Kirkpatrick use
competing exchange couplings for modeling the disorder in

B. The Serrington-Kirkptrick spin glass model

In SK spin glass model, the disorder arises the fact
that both ferromagnetic and antiferromagnetic couplings are

present. A classical example for a spin glass is an alloy
of gold and iron (AuFe). Here Gold, Au, a non-magnetic
substance is weakly diluted with iron, Fe. Such a sys-

tem does not have a regular lattice structure such as one

finds in conventional crystals. The Fe atoms are randomly
distributed in an Au matrix. This means that also their
magnetic moments are randomly distributed. The couplings
are a function of the distance between the magnetic moments
Jij = J(R -Rj), with Ri and Rj denoting the positions
of the spins. The values of the couplings are randomly dis-
tributed and can be positive, i.e. ferromagnetic, or negative,
i.e. antiferromagnetic. The concurrent existence of ferromag-
netic and antiferromagnetic couplings leads to a 'conflict'
for some spins of the system, when they cannot 'satisfy'
at the same time both ferromagnetic and antiferromagnetic
couplings. Ferromagnetic couplings tend to align the spins,
antiferromagnetic couplings make them point in opposite
directions. Marc Mezard, Giorgio Parisi, and Miguel Angel
Virasoro explain this phenomena by the following illustrative
example:

In a classical tragedy the scenario may be the
following: there is a fight between two groups and
the various characters on the scene have to choose
sides. In addition they all have strong personal
feelings, positive or negative, towards each other
(it is a tragedy!). Some of them are friends and
some of them are enemies. For simplicity we will
assume that all feelings are reciprocal; otherwise
the system may never reach equilibrium [...]. Let
us consider three characters (A, B, and C); if A
and B, B and C, A and C do like each other, there
is no problem: they will all choose the same side.
In a similar way, if A and B are friends and C
is an enemy of both, then A and B can be on one

side and C will be on the other. Frustration follows,
instead, if A, B and C hate each other because two
personal enemies must then fight on the same side.
[10]

The competing interaction between the ferromagnetic and
antiferromagnetic couplings is at the origin of the observed
complex behavior in spin glasses. But as the simple example
shows, this form of competition could also be the origin
of complex behavior in other systems, where instead of a

competing interaction one has, for example, competing goals.
The complex behavior of spin glasses appears at low

temperatures after the system undergoes something like a

phase transition. The systems exhibit a 'freezing transition'
to a state with a new kind of 'order' in which the spins
are aligned in random directions [1]. At high temperatures
the system is in a paramagnetic phase. Cooling down of
the substance leads to a freezing of the spins, pointing in
a random direction. This transition is not an ordinary phase

the system. transition because it does not lead into an ordered phase.
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Scattering with neutrons for example shows, that the material
in the spin glass phases does not have a periodical order.

In 1975 David Sherrington and Scott Kirkpatrick intro-
duced their model for spin glasses in an article entitled
'Solvable Model of a Spin-Glass' [8]. This seminal paper was
followed in 1978 by a longer article 'Infinite-ranged models
of spin-glasses' [9] in which they undertook a more detailed
analytical and numerical examination of the properties of
their model.

The basic structure of the model is relatively simple:
a system of interacting binary variables where the binary
variables represent the spins, Si, or equivalently the magnetic
moments. The Si can take either value +1, which corre-
sponds to spin direction 'up', or -1, which corresponds to
spin direction 'down'. The coupling between two spins Si
and Sj is described by parameters Jij which enter into an
energy function of the form:

E = E Jij S,Si (6)
i,j

The disorder is modelled by choosing the Jij Gauss dis-
tributed,

P(JiJ) I2fJ2 exp [(j jo)2] (7)

P(Jij)dJij is the probability that a given coupling takes a
value between Jij and Jij + dJij. Positive values of Jij
correspond to ferromagnetic and negative values to antifer-
romagnetic couplings.
A comparison between the SK and the Hopfield models

shows that the two models agree in their basic structure. The
Hopfield model is an inverse spin glass model in the sense
that in the case of the Hopfield model the energy minima are
given (the stored pattern) where in the case of the SK model
the energy minima are the unknown.

In abstracting the complexity of biological neural networks
Hopfield followed the modeling tradition exemplified by the
Ising model. Neurobiologists soon brought forward a very
basic critique: why should in biological neural networks the
same mechanism be at work as in disordered magnetic sys-
tems? What do disordered magnetic systems and biological
neural networks have in common? The fact that the Hopfield
model was able to mimic auto-associative memory by using
the competitive interactions taken from spin glass model was
not enough. Experimental verification would have required
measurements of the activity of single neurons in different
parts of the brain which was not possible. The Hopfield
model also contradicted the complexity of the biological
systems which neurobiologists observed day by day in their
experiments.

In contrast to neurobiologists physicists were familiar
with the modeling tradition in which Hopfield developed
his model. They recognized in the Hopfield model a suc-
cess because it extended this modeling tradition beyond the
boundaries of physics into the field of biology. By doing so
it showed a possible way of relating biological phenomena

the competing interactions observed in disordered magnetic
systems.

Physicists evaluated the Hopfield model using different
standards, based in the specific modeling tradition developed
in the context of critical phenomena. Neurobiologists on the
other hand evaluated the mode on the basis of their insight
into the complexity of biological systems which they had
gained in their experiments. The Hopfield model obviously
contradicted this complexity but agreed with the abstraction
strategy used by physicists working on magnetic systems.

Physicists and neurobiologists worked in different epis-
temic cultures and they missed insights into each others
approaches. Physicists were not as familiar with the exper-

imental approached taken by neurobiologists. On the other
hand mathematical models were not the preferred research
tools of neurobiologists.

The emerging field of synthetic biology can be understood
as an attempt of reducing the gap between the epistemic
cultures of physicists, engineering and modeling biological
neural networks, and neurobiologists, investigating biological
neural networks mainly by performing experiments.
Many synthetic biologists have a background in physics

or engineering. A central point in the research practice of
this new field consists in constructing physical models of
biological systems based on concepts coming from physics
and engineering. By using biological components and testing
their performance in biological systems, synthetic biologists
try to create evidence which goes beyond the mathematical
model.

It is an interesting question to ask what developments led
to the emergence of this approach. A comprehensive answer

can not be given at this point. Further detailed examination
of developments in the 1990's related to the modeling of
neural networks and biological systems in general is required.
Only one point will be discussed in the following, the de-
velopment of specific programs or centers for computational
neuroscience. We will see that the foundation of these centers
were important for physicists and engineers to enter biology
on a detour. They allowed them to develop the approach of
engineering genetic networks for investigating the underlying
mechanisms of biological functions such as DNA replication,
chemotaxis, protein synthesis, and circadian clock.

C. Computational Neuroscience and the development of the
synthetic approach

Models, such as the Hopfield model, with their success of
being able to model biological phenomena using concepts
from physics and engineering turned neurobiology and biol-
ogy into very attractive fields for physicists and engineers.
This development was supported by specific programs as for
example the Center for Computation and Neural Systems,
founded in 1989 with the strong support of John Hopfield
at the California Institute of Technology. Its aim was to
introduce physicists and engineers to neuroscience, and en-

able its students to use theories, methods, and techniques
from physics and engineering to approach problems from

to physical phenomena by some general mechanism, such as neuroscience. The Center describes itself as:
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[...] an interdisciplinary Ph.D. program to study
problems arising at the interface between neuro-
science, electrical engineering, computer science,
and physics. The unifying theme of today's pro-
gram is the relationship between the physical struc-
ture of a computational system (molecular, neu-
ronal or electronic hardware), the dynamics of its
operation, and the computational problems that it
can efficiently solve.

Similar centers and programs were subsequently founded
at many other universities. These centers and the students
graduating from their programs contributed to the develop-
ment of synthetic biology by starting to get the concepts from
physics and engineering in touch with biology, by starting
to experiment with biological systems. Standardization of
biological methods and techniques especially in genetics
and modelcular biology made it possible for physicists and
engineers to start their own experimental work in this field.
One can argue that actually working with biological

systems and performing experiments on biological systems
had the effect that physicists experienced the missing touch
with the natural system represented by mathematical models
as the Hopfield model. As a consequence they looked for
new ways of verifying the approach of using concepts from
physics and engineering in the investigation of biological
systems. One way is practiced in synthetic biology. It consists
in engineering "simple biological system," for example the
Repressilator, and in finding the sufficient components and
interactions of a genetic network that give rise to oscillations.

IV. THE Repressilator

The Repressilator was introduced in 2000 by Michael
Elowitz and Stanislav Leibler [2]. The Repressilator is a
genetic network consisting of three transcriptional repressors
arranged in a feedback loop producing oscillations on the
level of gene expressions. The Repressilator had been con-
structed in the bacteria E. coli and the oscillations had been
observed using fluorescent reporter gene.

The basic structure of the Repressilator is a DNA ring
containing three genes: tetR, lacl, and A cI, which encode
the proteins TetR, Lacd, and A cI. In the Repressilator the
proteins selectively bind to another's promoter and inhibit the
expression of the gene and respectively the production of the
protein. This arrangement of a negative feedback loop leads
to temporal oscillations in the protein concentrations. These
oscillations in protein production can be made visible when
one of the protein products in the feedback loop is linked to
a gene for making a green fluorescent protein. If the circuit
is introduced into the bacteria E. coli the oscillation in the
protein production can be observed by the blinking of the
bacteria.

The specific design, components and interactions had been
based on a mathematical model. The model consists of six
coupled differential equations of the following form:

dmi a +ao (8)
dt (l + pn)

Fig. 1. The Repressilator network [2].

dpi = 13p(i - Ti), (9)dt
with pi denoting the three repressor concentrations, and
their corresponding mRNA concentrations, mi (where i is
lacl, tetR, or cl. Furthermore a0 is the number of protein
copies per cell produced from a given promoter type in the
presence of saturating amounts of repressor (describing the
"leakiness"), and a + a0 in its absence. /3 denotes the ratio
of the protein decay rate to the mRNA decay rate; and n is
the Hill coefficient describing the cooperativity. The analysis
of the mathematical model showed that:

[...] oscillations are favoured by strong promoters
coupled to efficient ribosome binding sites, tight
transcriptional repression (low 'leakiness'), coop-
erative repression characteristics, and comparable
protein and mRNA decay rates.

Elowitz and Leibler chose the components and design of
their artificial network in a way that these properties are
fulfilled. By doing so they designed a network which did
not allowed them to study natural network designs directly.
But it allowed them to study possible network designs which
may give insight as to what the sufficient components and
interactions of genetic networks are and which may be used
in the engineering of alternative network designs.

In order to study the oscillation of the Repressilator it
was implemented into E. coli cells and the timecourse of
the fluorescence of one E. coli was monitored under the
microscope as it grew into small colonies. The oscillation did
not turn out, as was hoped, to be regular. Elowitz and Leibler
concluded that noise may be responsible for the observed
irregular behavior and that further studies will be necessary
to distinguish between intrinsic noise due to stochastic effects
in gene expression and fluctuations in the amount of other
cellular components.

V. CONCLUSION

The result that the engineered network did not show the
behavior that was predicted by the mathematical model is an

)4. kp.
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important one. It shows that synthetic biology may have the
potential to lead beyond mathematical modeling. The materi-
ality of the synthetic model could be of crucial importance in
providing evidence for or against a mathematical model and
for or against the use of specific concepts from physics and
engineering for describing structures of genetic networks.
The approach taken by synthetic biology crucially depends
on the assumption of the modular organization of biological
systems. Making the assumption of a modular organization of
biological systems allows for the decomposition of biological
systems in functional modules. Each of these functional
modules is assigned to a specific function, such as the
circadian clock. The modules are assumed to be autonomous
which allows one to model specific functions and to test them
by introducing them into cells where the model should not
interfere with other functions in the cell. If the assumption
of the modular organization of biological systems is true,
synthetic models allow a very controlled way of designing
and testing possible design principles. The emphasis is put on
possible. This means that engineering genetic networks will
not lead to a conclusive answer about the underlying mech-
anism of specific function. But by combing mathematical
modeling and experimenting on biological systems synthetic
biology will mediate between the two approaches.
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