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COMPLEX GEOMETRlC ASYMPTOTICS FOR 
N ON LI NEAR SYSTEMS ON C OMPLEX VARIETIES 

Dedicated to JCUlI I.eray 

1. Int r oduction 

The met.hod of geometric asymptotics was introduced \0 ilwcstigate semi­

classical asymptot ic solutions of the wave and Schrodi ngcr equations in t he pres­

ence of caustics (that is, focal surfaces of t he corresponding geodesic £10\\) , For 

example, this was done in [23] to explain the whispering gallery phenomenon 

of acoustics . This method developed into one of the main areas of research ill 

geometric analysis by Leray, Hormander , Gu illelllin alld Sternberg, Kostant, We­

inst.ein , Arnold , Duisterma.'\t, Souriau and many others, (For details about t.he 

method of geometric asymplot.ics sec [22]. [12], [13], 133j, [201, 12Gj, [21], [25]) . 
~'I ethods of complex analysis have been applied t.o t he theory of Feynrnan 

path integrals and its relation to the semiclassical t heory. In particular, 1\ IcLaugh­

lin [311 introduced t he idea of using path integrals wit.h complex t ime to oblain 

W KO barrier penetration, 

In 13j, [41 and 19j, angle representations and complex geometric asymptot ics 

for nonlinear p roblems are investigated us ing lIlu lti-valued functions of several 

complex mriablcs on the moduli of J acobi \·arietics. This is a !lew approach 

to t he study of geometric asy mptotics th'lt. nat.urally fit.s into t he scheme of 

IRl'SC,uch partiaUy s upporlcd by NS F grants OMS ~HO:1SfiI nnd OM S 0022\ ·1. 
~RC5carch partially s upporwd by NSF grant. OMS tl:!029!J2. 
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238 M. S. ALBER - J. E. MARSDEN 

algebraic-geometric methods for nonlinear problems including the sine-Gordon 

and nonlinear Schrodinger equations. It is shown that the construction of such 

complex solutions gives new insight into the investigation of many phenomena 

basic to geometric asymptotics such as the index of a curve lying in a Lagrangian 

submanifold of a cotangent bundle. This index is related to the Maslov class, 

which is an obstruction to the transversality of two Lagrangian submanifolds. 

(This class has become a part of the theory of secondary characteristic classes 

and Chern-Simons classes [17]). This approach results in a particular form of 

the quantum conditions on the moduli of n-dimensional Jacobi varieties, which 

leads to the introduction of semiclassical geometric phases; see Berry [15]. At the 

same time, there is a new additional phase in the averaged shift of the quantum 

conditions after transporting a system along certain closed curves in the space 

of parameters, which can be linked to a symplectic representation of the braid 

group; for details, see [4) and [9). 

In this paper we describe the general method of complex geometric asymp­

totics and illustrate it by constructing semiclassical modes for three types of 

systems. The first type concerns families of geodesics on n-dimensional quadrics 

and in domains bounded by quadrics in the context of problems of diffraction. We 

also construct semiclassical modes for umbilic billiards and for the n-dimensional 

'-

complex spherical pendulum. This last example also illustrates the phenomena ~ 

of semiclassical monodromy. ~ 

2. Geometric asymptotics 

An important part of geometric asymptotics is the establishment of a link 

between the Schrodinger equation (using the Laplace-Beltrami operator in its 

kinetic part plus a potential part, in the usual way) and certain integrable non­

linear Hamiltonian systems. One does this by considering a class of solutions of 

the Schrodinger equation of the form 

(2.1) U = L Ak{JLI,' .. ,JLn) exp(iwSk(JLlt ... ,JLn)), 
k 

where the JL variables evolve in time according to the phase flow of an associated 

Hamiltonian system 

(2.2) dW = {WH} 
dt " 

Here {,} are the standard canonical Poisson brackets and H is a Hamiltonian 

function of the form kinetic plus potential energy corresponding to the quantum 
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Hamiltonian; this Hamiltonian determines a flow on the phase space that we 

denote by 

(2.3) 

which is a I-parameter group of diffeomorphisms of the phase space manifold 

M2n. We will describe this manifold below and also take it to be a complex 

2n-dimensional manifold. 

The function Ak is the so-called amplitude, which contains all the information 

about caustics (that is, the set of focal or conjugate points of the extremal, 

or geodesic, field). The function Sk is called the phase function and one can 

show that it is the generating function of the Lagrangian submanifold of the 

phase space obtained by transporting an initial Lagrangian submanifold by the 

Hamiltonian flow. Here w is a parameter, and in WKB theory, one normally takes 

w = lin where Ii is Planck's constant. Keep in mind that Sk can be multiple 

valued and that Ak, while single valued, generally blows up at a caustic. Index 

k indicates that Ak and Sk are amplitude and phase on the kth-sheet of the 

covering of the Lagrangian submanifold. (For details see below) . 

To resolve the difficulties posed by singularities and to deal with the mul­

tivaluedness of the phase function S, [23] introduced the method of geometric 

asymptotics in the case of 2-dimensional invariant varieties. This method to­

gether with the boundary-layer method, [14] was then developed to treat prob­

lems of diffraction. In particular, imaginary rays and the corresponding wave 

fields which are defined in shadow domains were described in [24] as part of a 

geometric theory of diffraction. (For details about general method of geometric 

asymptotics see [20]). 

Solutions of the form (2.1) with complex phase functions S and associated 

completely integrable systems with complex Hamiltonians H were studied in [3]. 

Complex geometric asymptotics in shadow domains were constructed in [4] and 

[5] in the context of the geometric theory of diffraction. 

In particular, these references suggested a method for constructing local semi­

classical solutions (modes) in the form of functions of several complex variables 

on the moduli of Jacobian varieties of compact multisheeted Riemann surfaces. 
Quantum conditions were defined as conditions of finiteness on the number of 

sheets of the Riemann surface. This method enables one to usc, in the neighbor­

hood of a caustic, a circuit in the complex plane. By gluing together different 
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pieces of the solution in this fashion, one can obtain global geometric asymp­

toties. This procedure, together with the transport theorem for integrable prob­

lems on Riemannian manifolds, facilitates the construction of geometric asymp­

toties for a whole class of quasiperiodic solutions of integrable systems on hy­

perelliptic Jacobi varieties (see 131 and [4]). This class includes some of the most 

important problems such as the Jacobi problem of geodesies on quadrics and bil­

liards in domains bounded by quadrics, as well as the KdV and Dym-type equa­

tions, the C. Neumann problem for the motion of particles on an n-dimensional 

sphere in the field of a quadratic potential and the sine-Gordon and nonlinear 

Schrodinger equations. In particular, whispering gallery modes and bouncing 

ball modes were constructed in 13] for the Jacobi problem of geodesics in the 

n-dimensional case. Similar modes were introduced in the 2- and 3-dimensional 

case by [23] to explain the whispering gallery phenomenon of acoustics and to 

describe waveguides. 

Recall that quasiperiodic solutions of integrable nonlinear equations can be 

described in terms of finite dimensional Hamiltonian systems on e2n . In these 

problems, there is a complete set of first integrals that are obtained, for example, 

by the method of generating equations, as explained in [7] and [8]. The method 

of generating equations has associated with it a finite dimensional complex phase 

space C2n and two commuting Hamiltonian flows. One of these gives the spatial 

evolution and the other gives the temporal evolution of special classes of solutions 

of the original POE. The level sets of the common first integrals are Riemann 

surfaces n. These surfaces have branch points that are parameterized by the 

choice of values of the first integrals. 

We think of C2n as being the cotangent bundle of en, with configuration 

variables J.tb' .. ,J.tn and with canonically conjugate momenta Pb ... ,Pn• The 

two relevant Hamiltonians on c2n both have the form 

(2.4) 
1 .. 2 

H = 2g1J Pj + V(J.tl,'" J.tn}, 

where gjj is a Riemannian metric on en. The two Hamiltonians are distinguished 

by different choices of the diagonal metric. 
These two Hamiltonians have the same set of first integrals, which are of the 

form 
j = 1, ... ,n, 

where K is a rational function of ILj. Thus, we get two commuting flows on the 

symmetric product of n copies of the Riemann surface n defined by 

p2 = K(J.t}. 
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These Riemann surfaces can be regarded as complex Lagrangian submanifolds of 

C2n . We call this the JL-representation of the problem. Recall that a Hamilton­

ian system is linearized when written in action-angle variables on the complex 

Jacobian. 
For every spatial (stationary) Hamiltonian (2.4) there is a corresponding 

stationary Schrodinger equation which has the form 

(2.5) 

Here w is a parameter as before, and Vi and Vj are covariant and contravariant 

derivatives defined by the metric tensor gjj. Equation (2.5) can be represented 

in the equivalent form 

(2.6) n au) II IglIl~ + w 2 (E - V)U = O. 
1=1 IJ.) 

We consider geometric asymptotics to be solutions of equation (2.5) of the form 

(2.1) defined on the covering of the Jacobi variety in the phase space of the inte­

grable problem. Substituting (2.1) into (2.5), (2.6) and equating the coefficients 

of wand w2 , respectively, one obtains the system 

(2.7) 

(2.8) 

vj(A~VjSd = 0 

Vi Sk V jSk - V = -E 

(transport equation), 

(eikonal equation). 

We can interpret the eikonal equation as the Hamilton-Jacobi equation of the 

corresponding problem. Solutions can be constructed using symmetry proper­

ties of the Riemann metric, which in turn determines the quantum equation as 

was shown in [3). This method of construction is related to the general method 

of separation of variables in Schrodinger operators. As a result, we obtain an 

action function S, which is, at the same time, a phase fUllction for the geometric 

asymptotics and that can be used to solve the transport equation for the ampli­

tude function A in the form A = Uo/VD det J. Here D is the volume element 

of the metric and J is the Jacobian of the change of coordinates from the IJ.­

representation on the Riemann surface to the angle representation on the Jacobi 

variety, that is, on the level set of the first integrals in the phase space of the 

corresponding classical problem. 

Then modes of the form (2.1) are constructed which link the Schr6dinger 

operators on Riemannian manifolds with integrable systems corresponding to 

the class of metrics mentioned above. The methods of geometric asymptotics 

can be used in many problems including the whispering gallery phenomenon of 

acoustics and problems in diffraction, as is shown in the next section. 
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3. Diffracted modes 

In this section we describe the collapsing construction introduced in [3] and 

its application to the problem of diffraction by an n-dimensional ellipsoid. This 

construction is of interest in a number of situations. For example, it was used 

in [7) to study peakon and billiard solutions in a shallow water equation. 

The main idea of the collapsing construction is as follows. One first consid­

ers the geodesic flow on a quadric in Rn+1. Associated with this flow is some 

underlying complex geometry (described in [3) and (8)), first integrals of the mo­

tion, and a complex Hamiltonian. We fix the value of the first integrals and let 

In+lo the shortest semiaxis (in the case of an ellipsoid and the semiaxis with the 

smallest absolute value in the case of a hyperboloid), tend to zero. This yields 

corresponding first integrals and Hamiltonians for the geodesic flow in a domain 

in IRtt bounded by a quadric. This quadric develops from the limiting process. 

Also, the projections of the trajectories ofthe geodesic flow into {Rn converge (as 

sets) to the trajectories of the billiard flow (in the elliptic case) in the domain. In 

the hyperbolic case, the trajectories may be regarded as complex billiards, as we 

will explain later. We note that the first integrals and Hamiltonian for billiards 

inside n-dimensional ellipsoids were obtained in this way; see [3) and 15]. 

When one fixes the first integrals for these geodesic flows, a special family 

of geodesics is picked out. Its envelope is, by definition, a caustic. As we will 

see, the amplitude of the associated semiclassical mode will blow up at each 

point of the caustic. We will use complexification of the problem to resolve these 

singularities and to extend the semiclassical mode into the shadow domain. 

In Figure 1 we show families of geodesics (again with a fixed choice of first 

integral) obtained after collapsing a 2-dimensional ellipsoid (in (a) and (b)) and 

a 2-dimensional hyperboloid (in (c) and (d». In (d) the solid straight lines are 

geodesics, but the dashed curved line is simply a schematic curve to indicate the 

behavior of a semiclassical mode called the diffraction mode, described below. 

The caustics are shown as dashed ellipses. For the elliptic case, (a) and (b) are 
distinguished by different choices of families of geodesics. In (a) the geodesics are 

quasiperiodic while in (b) they are umbilic, which is the particular family (choice 

of first integrals) whose (degenerate) caustic is the straight line segment between 

the foci, or just the two foci themselves, depending on how one interprets the 

notion of caustic. (See (10) and (8) for further details). The geodesics in (c) are 

called sliding geodesics. Each one of the families of geodesics gives rise to an 

interesting complex mode. For example, the mode associated with quasiperiodic 
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(a) (b) 

(c) (d) 

FIGURE 1. (a) shows a member of one of the families of elliptic billiards, 
(b) shows a member of the family of umbilic billiards, (c) shows one of 
the families of geodesics for sliding modes and (d) shows schematically a 
semiclassical mode for diffraction. 

elliptic billiards «a) of the figure) generates whispering gallery modes and sliding 

geodesics (c) produce luminous surfaces. 

In what follows we apply the above construction to the geodesic flow 011 

hyperboloids. The main difference with the elliptic case is that after collapsing 

the semiaxis with the smallest absolute value to zero, one obtains geodesics 

(straight lines) in the domain outside an n-dimensional ellipsoid, together with 

complex geodesics in the so-called shadow domain (the region B in (d». In the 

shadow domain the momenta Pj are purely imaginary. 

The first integrals and Hamiltonian for geodesics in the domain outside the 

(n - I)-dimensional ellipsoid have the form 

211-1 

(3.1) Pj = ± Lo II (J.tj - 7nk), j=I, ... ,n. 
1<=1 

and 

(3.2) H = t Pl- Lo n~:I.k#~o(J.tj - 7nk ). 

j=1 nr~//LJ /Lr) 

The quantities Pj = J.tj(x) are functions of the variable x and the diagonal metric 

tensor ha.s the expression 

(3.3) 
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and the potential energy is given by 

(3.4) 

Now let (J,Lj,i = 1, ... , n) vary along cycles on the Riemann surface 

2n-l 

W2 = Lo IT (J1.j - mk) 
k=l 

over the cuts with end points at mr and let J1.n vary over an infinite cut from 

m2t1-1 to -00. We call domains on the real axis other than cuts of the Riemann 

surface shadow domains. For example, after collapsing the hyperboloid by means 

of the limiting process rn3 - 0, and making the choice of parameters and first 

integrals given by 

one obtains the interval )m4,01 as one of the shadow domains; this corresponds 

to domain B in Figure l(d). Recall that the Hamiltonian system is defined on 

the complex Jacobian. In the real case, a projection onto a real subtorus is 

considered. In this situation, an extension back into the complex domain can be 

easily done. The variables Pj become purely imaginary in the shadow domains 

and therefore give rise to an exponentially decreasing factor in the expression for 

the semiclassical mode. 

Applying the method of geometric asymptotics, as described above, one ob­

tains a diffracted mode that has the following form: 

(3.5) u=uo 

The mode (3.5) can be constructed independently in each domain. These do­

mains for the two dimensional case are labeled C and B in Figure l(d). Here 
Do is a vector of 1\laslov indices, DJ is given by 

and D2 is the real part of the phase function S. 
In the shadow domain B, the amplitude A of the mode U has an exponentially 

decreasing factor as t, the parameter along the geodesic, increases, for the reasons 
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indicated above. One glues together solutions from the domains C and B in the 

neighborhood of a caustic (the dashed ellipse shown in Figure l(d» by going 

along a half circuit in the complex plane. This procedure produces a phase shift 

of 11' /4. After going into the shadow domain B, the mode can be reflected several 

times on the boundary of the ellipsoid E before returning into the exterior domain 

C and leaving the ellipsoid; in the course of this, it is possible for the mode to go 

several times around the ellipsoid. In the shadow domain B, the amplitude of 

the mode is exponentially decreasing and, correspondingly, the mode is loosing 

energy; presumably the loss of energy due to this exponential decay in the shadow 

domain is accounted for by radiation in the exterior domain. We keep track of 

the number of reflections on the boundary of the quadric and number of tangent 

points with caustics by introducing indices k and Maslov indices 1". 

4. U mbilic modes 

In \101 complex angle representations and Hamiltonian systems were obtained 

for a family of singular umbilic geodesics on quadrics. These systems have Hamil­

tonians of exponential type. Recently this singular geodesic flow was shown in 

[7] and 18] to generate a new class of soliton-like solutions of nonlinear Dym-type 

equations. 

The collapsing construction in+! -+ 0, where in+! is the shortest semiaxis of 

the n-dimensional ellipsoid, applied to the family of umbilic geodesics leads to 

a special type of umbilic billiards in domains bounded by (n - I)-dimensional 

ellipsoids. The Hamiltonians for these billiards have the form 

( 4.1) 

where 

(4.2) 

A complete set of first integrals for this system is as follows: 

(4.3) P
j 

= ~ (log(P,j - bk) + logLo). 
~ M(I£-) 1\[(,,-) 

k=l,k;>6io ) r-) 

Complex modes based on these billiards are different from both the whispering 

gallery modes and the bouncing ball modes obtained in 123], 13] and \5] lind are 

similar to the soliton modes described in [91. In the 2-dimensional case they can 
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be represented as follows: 

Here J.ll and J.l2 are varying along cycles over the cuts [0. b] and [b,13] on the 

corresponding Riemann surfaces defined by the form of first integrals described 

above. An interesting thing about these modes is that they are self-focusing, 

namely they asymptotically approach the mode associated with the geodesic 

through the two foci of the ellipse. 

5. The N-dimensional spherical pendulum 

The Hamiltonian of the n-dimensional spherical pendulum in Cartesian co­

ordinates Qi and their conjugate momenta Pi has the form: 

(5.1) 

Here the acceleration due to gravity is taken to be unity. We also constrain the 

length of Q to be one. The same Hamiltonian in the n-dimensional spherical 

coordinates can be expressed in the following "nested" form 

(5.2) 1 n (n 1) 
H = 2R2 L pij II (sinO.)2 + RcosOn; 

i=1 k=i+l J 

i.e .• 

(5.3) H = _1_ ( 1 (P? + 1 (P? + 1 
2R2 (sin 8n)2 8n _ 1 (sin On- d2 8n _, (sin On_2)2 

X ( ... + (sin
1
8

3
)2 (pi, + (Sin

1
8

2
)2 Pil)) ... ) + 2~2Pin + Rcos(}n' 

The change of coordinates 

(5.4) 

results in the Hamiltonian 

(5.5) 
1 n-l (n-l 1 ) 1 

H = -2'" P;(l - z]·)zJ· II -- --" + P; (1- z;) + Zn. L... J 1 - z. 1 - z~ TO 

j=1 k=i+l k n 
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where (Zj,PZj ) and «(Jj,P6j ) are pairs of conjugate variables. 

The nested structure of the Hamiltonian (5.3) shows that one has the follow­

ing first integrals for the n-dimensional pendulum: 

(5.6) 

P2 _ f.!2 
61 - fJ1' 

p2 f3~ _ a2 
62 + (. 0)2 - fJ2' sm 2 

p'2 {3~-2 {32 
6 .. _1 + (. 1I )2 = n-1' sm I1n-1 

1 (02 (3~-1) 1I {32 2 '6,. + (sin(Jn)2 + COSl1n = n· 

Here (1j are constants along solutions of the corresponding Hamiltonian system. 

Let 

j=2, ... ,n-I, 

and 

In what follows we extend our system into the complex domain by considering 

(3J to be complex numbers and let the variables Zj be defined on the associated 

Riemann surfaces: 

(5.7) 

We call the Hamiltonian system with Hamiltonian (5.5) and first integrals (5.6) 

on the Riemann surfaces (5.7) a complex n-dimensional spherical pendulum. 

To make things concrete, we shall apply the general construction of geometric 

asymptotics to the case of the 2-dimensional spherical pendulum. (See [111 for 

further information.) In this case the action function S can be represented in 

tenns of angle variables (0'1,0'2) as follows: 

(5.8) 
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The last two terms correspond to the holomorphic and meromorphic parts of the 

action function. The holomorphic part is proportional to the angle variable of 

the classical problem. The amplitude A can be found after calculating D and J. 

We find that 
1 

D = ·1911922 = J( ) 
1 - Z1 Z1 

and 

detJ- 1 = I OCt; 1= - 2fl2 . 
OZj JM(z2)z1(1 - Zl) 

This results in the following form of the function U: 

(5.11) U = I: Ao~(M(Z2»-1/4 exp [iW tSl:j(Zj)], 
1:=(1:1 ,1:,) 3=1 

where 

(5.12) 

and 

(5.13) 

1 
Tl = 1 flr dZt • 

];\ (1 - Zl )Zt 

T2 = 2{3~ 1 dZ2 _ 2 1 Z2dz2 _ pi 1 dZ2 . 
];, JM(Z2) ];, JM(Z2) ];, (1- z~)JM(Z2) 

(5.14) 

The amplitude A has singularities at the branch points Z2 = mI. m2. rna of . the 

Riemann surface W 2 = M(z). Each time a trajectory approaches one of these 

singularities. we continue in the complex time and go around a small circle in 

complex plane, enclosing the singularity. This results in a phase shift (±i~) of 

the phase function S. which is common in geometric asymptotics. The indices 
l 

kt and k2 keep track of the number of oriented circuits for Zl and Z2 around II 

and l2. The complex mode (see (5.11)) is defined on the covering space of the 
complex Jacobi variety. In the real case, it is defined on the covering space of a 

real subtorus. Keeping this in mind, quantum conditions of Bohr-Sommerfeld­

Keller type can be imposed as conditions on the number of sheets of the covering 

space of the corresponding Riemann surface for each coordinate Zj: 

(5.15) 7r 
{ 

Wk1Tt = 27rN1• 

2'T2 + wk2T2 = 27rN2 • 
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Here Nt. N2 are integer quantum numbers. The quantum conditions (5.15) in­

clude a monodromy part after transport along a closed loop in the space of 

parameters (f31 and ~). This semiclassical monodromy consists of a classical 

part as well as a contribution from complex monodromy and the Maslov phase. 

Classical monodromy may be explained briefly as follows. We consider two 

different cases, namely the case -1 < !3i < 1 and f3i > 1. In t he first case, one 

considers a cycle 12 over the cut [-l,P?] and in the second case, one considers a 

cycle 12 over the cut [-1, 1]. There is a closed curve in the space of parameters 

that leads one from one case to the other. Evidently, there is a difference in the 

values of the third integral in the expression for T2 between the two cases that 

is given by the residue of the integrand at Z2 = 1. 

Complex monodromy is present if the roots ml and m2 of the basic polyno­

mial M(z) approach each other. This singularity can be resolved by interchang­

ing these two roots in the complex plane so as to avoid a real singularity. This 

leads to the change of orientation of the cycle i2 , and in the general case can be 

described by the generator of the symplectic representation of the braid group. 

It results in an additional shift in the quantum conditions. 

The third type of shift in the quantum conditions comes from the integral 

representation for the !\'Iaslov class. 

The complex mode (5.11), which corresponds to a particular choice of pa­

rameters in (5.15), is similar to an acoustic mode that occurs in the whispering 

gallery phenomenon described in Keller and Rubinow [23] and Alber [31, [5]. 
The n-dimensional system can be treated in a similar way. The complex 

mode U has the form 

U = ~ AoJ2.B2 ... Sn 
~ « -1)n/(2(Z2) ... /(n(zn)(l - z3)(1 - z4)2 ... (1 - zn)n-2)1/4 

k=(kl, ... ,k,,) 

x exp [iW t Ski(Zj)]. 
J=l 

which yields the following quantum conditions: 

1 
~klTl = 2rrN1 , 

2"r2 + wk2T2 = 2rrN2' 

irn + wknT." = 2rrNno 

(5.16) 

Since the form of Tj, j = 2, ... ,n - 1, is different from both Tl and Tn, one gets 

additional new types of monodromy in the n-dimensional case. 
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