A Caltech Library Service

The curvelet representation of wave propagators is optimally sparse

Candès, Emmanuel J. and Demanet, Laurent (2005) The curvelet representation of wave propagators is optimally sparse. Communications on Pure and Applied Mathematics, 58 (11). pp. 1472-1528. ISSN 0010-3640. doi:10.1002/cpa.20078.

See Usage Policy.


Use this Persistent URL to link to this item:


This paper argues that curvelets provide a powerful tool for representing very general linear symmetric systems of hyperbolic differential equations. Curvelets are a recently developed multiscale system [7, 9] in which the elements are highly anisotropic at fine scales, with effective support shaped according to the parabolic scaling principle width length2 at fine scales. We prove that for a wide class of linear hyperbolic differential equations, the curvelet representation of the solution operator is both optimally sparse and well organized. * It is sparse in the sense that the matrix entries decay nearly exponentially fast (i.e., faster than any negative polynomial) * and well organized in the sense that the very few nonnegligible entries occur near a few shifted diagonals. Indeed, we show that the wave group maps each curvelet onto a sum of curveletlike waveforms whose locations and orientations are obtained by following the different Hamiltonian flows - hence the diagonal shifts in the curvelet representation. A physical interpretation of this result is that curvelets may be viewed as coherent waveforms with enough frequency localization so that they behave like waves but at the same time, with enough spatial localization so that they simultaneously behave like particles.

Item Type:Article
Related URLs:
URLURL TypeDescription
Candès, Emmanuel J.0000-0001-9234-924X
Additional Information:This research was supported by a National Science Foundation grant DMS 01-40698 (FRG), by a DOE grant DE-FG03-02ER25529, and by an Alfred P. Sloan Fellowship. E. C. would like to thank Guillaume Bal for valuable conversations. Author preprint
Subject Keywords:Hyperbolic Equations, Waves, Hamiltonian Equations, Characteristics, Geometrical Optics, Fourier Integral Operators, Curvelets, Sparsity, Nonlinear Approximation, Multiscale Representations, Parabolic Scaling
Issue or Number:11
Record Number:CaltechAUTHORS:CANcpam05
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:2038
Deposited By: Archive Administrator
Deposited On:04 Mar 2006
Last Modified:08 Nov 2021 19:44

Repository Staff Only: item control page