Function of miR-146a in Controlling Treg Cell-Mediated Regulation of Th1 Responses

Li-Fan Lu,1 Mark P. Boldin,2,6 Ashutosh Chaudhry,1 Ling-Li Lin,1 Konstantin D. Taganov,2,6 Toshikatsu Hanada,3,4 Akihiko Yoshimura,3,4 David Baltimore,2,5 and Alexander Y. Rudensky1,*

1Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
2Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
3Department of Microbiology and Immunology, Keio University School of Medicine, Shinjyuku-ku, Tokyo, 160-8582, Japan
4Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075, Japan
5Regulus Therapeutics, 3545 John Hopkins Court, San Diego, CA 92121, USA
6Present address: Regulus Therapeutics, 3545 John Hopkins Court, San Diego, CA 92121, USA
*Correspondence: rudenska@mskcc.org
DOI 10.1016/j.cell.2010.08.012

SUMMARY

Foxp3+ regulatory T (Treg) cells maintain immune homeostasis by limiting different types of inflammatory responses. Here, we report that miR-146a, one of the miRNAs prevalently expressed in Treg cells, is critical for their suppressor function. The deficiency of miR-146a in Treg cells resulted in a breakdown of immunological tolerance manifested in fatal IFNγ-dependent immune-mediated lesions in a variety of organs. This was likely due to augmented expression and activation of signal transducer and activator transcription 1 (Stat1), a direct target of miR-146a. Likewise, heightened Stat1 activation in Treg cells subjected to a selective ablation of SOCS1, a key negative regulator of Stat1 phosphorylation downstream of the IFNγ receptor, was associated with analogous Th1-mediated pathology. Our results suggest that specific aspects of Treg suppressor function are controlled by a single miRNA and that an optimal range of Stat1 activation is important for Treg-mediated control of Th1 responses and associated autoimmunity.

INTRODUCTION

A variety of pathologies are caused by the immune responses to “self” and environmental nonmicrobial antigens, to microbial antigens derived from commensal microorganisms, and to infectious agents. Regulatory T (Treg) cells limit “collateral damage” resulting from protective immunity to infection and suppress sterile inflammation as well as unwanted immune responses to “self” and allergens (Belkaid and Tarbell, 2009; Lu and Rudensky, 2009; Sakaguchi, 2005). Suppressive function of Treg cells is indispensable for the immune homeostasis and survival of higher organisms; Treg cell ablation in healthy adult mice leads to a fatal, aggressive lympho- and myeloproliferative autoimmune syndrome (Kim et al., 2007). X chromosome-encoded transcription factor Foxp3 plays a pivotal role in differentiation, homeostasis, and function of Treg cells. Foxp3 loss-of-function mutations cause systemic immune-mediated lesions similar to those observed upon chronic Treg cell ablation (Fontenot et al., 2003; Hori et al., 2003; Khattri et al., 2003). Analyses of T cells expressing GFP-tagged null and functional Foxp3 alleles and genome-wide analysis of Foxp3 binding genes showed that Foxp3 directly or indirectly controls several thousand genes in Treg cells (Fontenot et al., 2005; Gavin et al., 2007; Lin et al., 2007; Zheng et al., 2007; Lu et al., 2009; Marson et al., 2007). These studies also revealed that a number of genes constitutively up- or downregulated in Treg cells in a Foxp3-dependent manner undergo corresponding changes, albeit transient and less prominent, in activated effector T cells. This sizable cluster of “Foxp3-amplified” genes includes those serving as hallmarks of Treg cells (CTLA4, CD25, and GITR) and playing important functional roles in their homeostasis and function (Gavin et al., 2007; Lin et al., 2007; Zheng et al., 2007; Marson et al., 2007). These results suggested that Foxp3 acts in an “opportunistic” manner by amplifying and stabilizing expression of genes beneficial to Treg cell function.

In addition to coding genes, the “Foxp3-amplified” cluster also includes several small noncoding RNA known as microRNAs (miRNAs) (Cobb et al., 2006). Notably, miRNAs serve as important regulators of Treg cell homeostasis and function in both basal and inflammatory settings (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008). Ablation of miRNA precursor-processing enzyme Dicer in Treg cells results in a reduction in their numbers and suppressive capacity in healthy mice harboring both Dicer-deficient and -sufficient Treg cells and a complete loss of suppressor function in diseased mice lacking wild-type Treg cells (Liston et al., 2008). Consequently, the generalized depletion of miRNAs in Treg cells leads to a fatal early-onset autoimmune pathology indistinguishable from that in Foxp3 mutant mice devoid of Treg cells (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008). These results and the description...
of a subset of miRNAs differentially expressed in regulatory versus effector T cells (Cobb et al., 2006) raised a question as to how individual miRNAs present in increased amounts in Treg cells contribute to distinct aspects of their homeostasis and function. In this regard, miR-155, a well-known onco-miR (cancer-associated micro-RNA), is constitutively expressed in high amounts in Treg cells in a Foxp3-dependent manner, whereas T cells lacking Foxp3, B cells, and myeloid cells transiently upregulate miR-155 upon activation (Androulidaki et al., 2009; O'Connell et al., 2007; Thai et al., 2007). Our previous studies showed that miR-155 confers heightened responsiveness of Treg cells to their key survival and growth factor, IL-2, thereby maintaining their numbers in a competitive environment. However, miR-155 is largely dispensable for Treg suppressor function (Lu et al., 2009).

Like miR-155, miR-146a is highly expressed in Treg cells and is induced upon activation of effector T cells and myeloid cells. In the latter, miR-146a acts as a negative feedback regulator to limit TRAF6 and IRAK1/2-mediated signaling in inflammatory settings (Hou et al., 2009; Taganov et al., 2006), whereas in activated human T cells, miR-146a has been suggested to oppose apoptosis and IL-2 production (Curiale et al., 2010). Thus, we explored a role for miR-146a in Treg cells and found that this microRNA is essential for the ability of Treg cells to restrain IFNγ-mediated pathogenic Th1 responses and associated inflammation. In Treg cells, miR-146a-mediated downregulation of Stat1, a key transcription factor required for Th1 effector cell differentiation, was necessary for Treg ability to suppress Th1 responses. Furthermore, relieving negative regulation of Stat1 activation in Treg cells using an alternative genetic approach resulted in a breakdown of immune homeostasis similar to that observed in mice harboring miR-146a-deficient Treg cells. Thus, our results suggest that a specific miRNA overrepresented in Treg cells ensures their suppressor function by maintaining an optimal threshold of cytokine receptor-dependent activation of transcription factors crucial for a particular type of immune response.

**RESULTS**

**Elevated mir-146a Expression in Treg Cells**

To identify miRNAs essential for controlling Treg cell function, we considered miRNAs differentially expressed between Foxp3+ Treg cells and Foxp3- non-Treg CD4+ T cells (Cobb et al., 2006; data not shown). Among miRNA overrepresented in Treg cells, miR-146 was particularly prominent. This miRNA has been implicated in negative regulation of immune cell function, specifically in negative feedback regulation of myeloid cell activation (Taganov et al., 2006). To study the role of miR-146 in Treg cells, we first sought to confirm the high amounts of miR-146 in Treg cells. Since mature miR-146a and miR-146b sequences differ by two nucleotides, it was difficult to distinguish whether miR-146a or miR-146b or both are present in increased amounts in Treg cells. To address this issue, we performed stem-loop based Taqman real-time RT-PCR assay, which allowed us to distinguish miRNAs within the same family (Chen et al., 2005). As shown in Figure S1A (available online), the miR-146a expression in CD4+CD25+ Treg cells was sharply augmented in comparison to that in CD4+CD25- CD62Lhigh-naive T cells, while miR-146b expression was much lower. Analysis of Treg and non-Treg cell subsets isolated from miR-146a-deficient mice suggested that the small increase in miR-146b signal in Treg cells was likely due to miR-146a expression since miR-146b expression could no longer be observed in miR-146a-deficient Treg cells (Figure S1A). In support of this notion, examination of primary miRNA transcripts demonstrated that pri-miR-146a but not pri-miR-146b was elevated in Treg cells compared with naive T cells (Figure S1B). Thus, miR-146a, but not miR-146b, was highly upregulated in Treg cells.

**miR-146a Deficiency Resulted in Increased Numbers but Impaired Function of Treg Cells**

To assess a role for miR-146a in Treg cells, we examined Foxp3+ Treg cell subsets in the thymus and in the peripheral lymphoid organs of miR-146a-deficient mice. These mice develop severe lympho- and myeloproliferative syndrome at 6 months of age (M.P.B., K.D.T. and D.B., unpublished data). Therefore, we analyzed miR-146a-deficient and littermate control mice at 6–8 weeks of age prior to development of any clinical signs of autoimmune or inflammatory disease and found comparable sizes of different thymocyte and peripheral lymphoid and myeloid cell subsets (Figures S1C–S1F; data not shown). Moreover, T cell activation status was also similar to that observed in the wild-type (WT) littermates (Figure S1I; data not shown). In contrast to a reduction in Treg cell numbers observed in mice lacking miR-155 (Lu et al., 2009), miR-146a-deficient mice contained significantly increased numbers of Foxp3+ Treg cells in the periphery, but not in the thymus (Figures S1G and S1H). Consistent with its increased size, the miR-146a-deficient Treg cell subset exhibited heightened proliferative activity reflected in augmented expression of Ki67 and a modest increase in several activation markers (Figure S1J; data not shown).

As miR-146a is an important negative regulator of myeloid cell responses to cytokines and Toll-like receptor (TLR) ligands, it was possible that increased miR-146a-deficient Treg cell numbers were due to a heightened activation status of dendritic cell (DC), but not a cell-intrinsic effect of miR-146a deficiency. It was also possible that altered immune effector function in Mir146a−/− mice masked potential defects in miR-146a-deficient Treg cell-mediated suppression. To explore these possibilities we performed a series of bone marrow (BM) transfer studies (Figure 1A). First, we transferred BM cells from miR-146a-deficient or −sufficient littermates mixed with BM from Ly5.1+ B6 mice at a 1:1 ratio into Rag2- or TCRδ-deficient recipients. Analysis of the resulting chimeric animals (Mir146a−/−/Ly5.1+ B6) allowed us to discriminate between cell-intrinsic and cell-extrinsic effects of miR-146a deficiency on increased Treg cell numbers. Second, by performing cotransfers of Ly5.1+ Foxp3KO BM cells in place of Ly5.1+ B6, we generated mice (Mir146a−/−/Foxp3KO) in which all Treg cells lack miR-146a because Foxp3KO precursors fail to generate Treg cells, but all other BM-derived cells originate from both miR-146a-deficient and −sufficient BM. These mice allowed us to examine the function of miR-146a-deficient Treg cells in a miR-146a-sufficient setting (Hou et al., 2009; Taganov et al., 2006), whereas in activated human T cells, miR-146a has been suggested to oppose apoptosis and IL-2 production (Curiale et al., 2010). Thus, we explored a role for miR-146a in Treg cells and found that this microRNA is essential for the ability of Treg cells to restrain IFNγ-mediated pathogenic Th1 responses and associated inflammation. In Treg cells, miR-146a-mediated downregulation of Stat1, a key transcription factor required for Th1 effector cell differentiation, was necessary for Treg ability to suppress Th1 responses. Furthermore, relieving negative regulation of Stat1 activation in Treg cells using an alternative genetic approach resulted in a breakdown of immune homeostasis similar to that observed in mice harboring miR-146a-deficient Treg cells. Thus, our results suggest that a specific miRNA overrepresented in Treg cells ensures their suppressor function by maintaining an optimal threshold of cytokine receptor-dependent activation of transcription factors crucial for a particular type of immune response.
environment. Like chimeric mice reconstituted with Foxp3KO BM alone, Mirm-146a−/−/Foxp3KO chimeras developed severe immune-mediated pathology including conjunctivitis, blepharitis, and dermatitis as early as 5 weeks after BM transfer and became moribund soon thereafter (Figure 1B). Histological examination of Mirm-146a−/−/Foxp3KO chimeras 6–7 weeks after transfer showed massive lymphocyte activation and tissue infiltration in the lung, liver, and skin similar to that observed in mice harboring Dicer-deficient Treg cells (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008). In contrast, there were no clinical or histological signs of immune-mediated lesions in control Mirm146a+/−/B6 chimeras where both mIr-146a-deficient and -sufficient Treg cells were present (Figure S2).

The disease in Mirm-146a−/−/Foxp3KO was not due to reduced numbers of Treg cells. Mirm146a−/−/Foxp3KO chimeras, which developed autoimmune pathology, had increased numbers of Treg cells compared with control Mirm146a+/−/Foxp3KO animals (Figures 1C–1E). Importantly, the difference in mIr-146-deficient versus -sufficient Treg cell numbers was also observed in Mirm146a−/−/B6 chimeric mice where mIr-146a-deficient Treg cells compete with their wild-type counterparts (Figures 1F and 1G). The observed increase in the proportion of the mIr-146a-deficient Treg cell subset in both Mirm146a−/−/Foxp3KO and Mirm146a−/−/Ly5.1−B6 mixed chimeras suggested that mIr-146a deficiency increases Treg cell numbers in a cell-autonomous manner.

Despite their increased numbers, mIr-146a-deficient Treg cells were unable to restrain activation of mIr-146a-sufficient effector T cells, which was exhibited by high proliferative activity, an increased Cd62Llow cell subset, and high levels of the activation markers ICOS and CTLA4 (Figure 1H). In agreement with the histopathology data and lack of clinical signs of disease, flow cytometric analysis of control Mirm-146a−/−/Ly5.1−B6 chimeras showed that both mIr-146a-sufficient and -deficient effector T cells were kept in check by the mIr-146a-sufficient Treg cells present in these mice (Figure 1I). These results suggested an indispensable role of mIr-146a in Treg cell-mediated immunological tolerance.

miR-146a Deficiency in Treg Cells Resulted in Dysregulated IFNγ Responses

To identify the underlying mechanisms responsible for early fatal immune-mediated disease observed in Mirm146a−/−/Foxp3KO chimeras, we first sought to examine whether mIr-146a deficiency results in a general impairment of Treg suppression function in inflammatory settings similar to Dicer deficiency in Treg cells (Liston et al., 2008). To examine this possibility, mIr-146a-deficient Treg cells isolated from healthy Mirm146a−/−/B6 or diseased Mirm146a−/−/Foxp3KO mice were cocultured with mIr-146a-sufficient responder CD4+ T cells. We found that mIr-146a-deficient Treg cells isolated from healthy Mirm146a−/−/B6 chimeras were as suppressive as their mIr-146-sufficient counterparts from control animals, whereas mIr-146-deficient Treg cells from diseased Mirm146a−/−/Foxp3KO mice were more suppressive in vitro, likely due to their activation in an inflammatory environment (Figures 2A and 2B). These results suggested that, unlike Dicer deficiency, lack of mIr-146a did not diminish the overall suppressor capacity of Treg cells reflected by an in vitro suppression assay. Instead, a particular aspect of Treg suppressor function was likely impaired in the absence of mIr-146a.

As mentioned earlier, mIr-146a functions as a negative regulator of TLR/IL-1 signaling pathway by targeting TRAF6 and IRAK1/2 (Taganov et al., 2006; Hou et al., 2009). A recent study demonstrated that IL-1 stimulation results in IL-17 production in CD4+ T cells including Foxp3+ Treg cells (Chung et al., 2009). Moreover, a critical role of IRAK1 in promoting Th17 differentiation at the expense of TGFβ-dependent generation of peripheral Foxp3+ Treg cells suggested a possibility that the lack of mIr-146a might lead to heightened Th17 responses, which cause the fatal autoimmunity in Mirm146a−/−/Foxp3KO chimeras (Maitra et al., 2009). Indeed, in agreement with previous studies we found increased levels of TRAF6 and IRAK1 in Treg and non-Treg T cells (Figure S1K). However, we did not observe any change in either Foxp3 induction or Th17 differentiation in vitro in the presence or absence of mIr-146a (Figure S1L). More importantly, Th17 cell numbers were similar in Mirm146a−/−/Foxp3KO and control Mirm146a+/−/Foxp3KO and Mirm146a−/−/B6 mice (data not shown). Further analysis of cytokine production showed that the loss of mIr-146a in Treg cells resulted in increased production of the proinflammatory Th1 cytokine IFNγ by both mIr-146a-deficient and -sufficient CD4 and CD8 T cells, whereas production of IL-4, IL-5, and IL-17 was unaffected (Figure 2C; data not shown). This increase was not observed in the presence of mIr-146a-sufficient Treg cells in Mirm146a−/−/B6 mice (Figure 2F; data not shown). The selective dysregulation of Th1 responses in the presence of mIr-146a-deficient Treg cells was in contrast to sharply increased production of multiple cytokines (IL-2, IL-4, IL-5, IL-17, and IFNγ) in the presence of Dicer-deficient Treg cells (Liston et al., 2008).
Consistent with these findings, purified miR-146a-deficient Treg cells adoptively transferred together with Foxp3KO CD4+ effector T cells into lymphopenic recipients failed to restrain Th1 responses (Figure S3).

In addition to a marked increase in IFNγ production in miR-146a-sufficient and -deficient T cells, a sizable proportion of miR-146a-deficient Foxp3+ Treg cells produced IFNγ in Mir146a+/−/Foxp3KO mice (Figures 2C–2E). Production of IFNγ and other effector cytokines by Treg cells is kept in check by Foxp3 likely as a “safety” feature, since Treg cells express TCR with an increased reactivity against “self” antigens (Hsieh et al., 2006). Loss of Foxp3 in Treg cells resulted in the acquisition of the ability to produce proinflammatory cytokines, and cause tissue lesions in the absence of functional Treg cells (Williams and Rudensky, 2007; Zhou et al., 2009). Thus, our current observations suggested that in addition to Foxp3, miR-146a prevents acquisition of Th1-like properties by Treg cells, i.e., restrains production of the proinflammatory cytokine IFNγ by Treg cells.

IFNγ Blockade Prevents Autoimmune Disease in Mice Harboring miR-146a-Deficient Treg Cells

Next, we examined whether the augmented IFNγ response was responsible for the autoimmune disease observed in Mir146a+/−/Foxp3KO chimeric mice. To address this question, we neutralized the IFNγ activity by treating mice with IFNγ blocking antibody starting 3 weeks after BM transfer (Figure 3A). IFNγ blockade did not affect the increases in miR-146a-deficient Treg cell numbers (Figure 3B); however, it rescued the disease observed in their presence. At the time of analysis, treated Mir146a+/−/Foxp3KO mice were disease free and phenotypically indistinguishable from control Mir146a+/−/Foxp3KO mice (Figure 3C; data not shown). In contrast, control IgG treated Mir146a+/−/Foxp3KO mice developed severe clinical signs of immune-mediated disease and tissue inflammation (Figure 3C; data not shown). The effectiveness of IFNγ blockade was also manifested in normalization of the number of T cells expressing CXCR3, a Th1-specific chemokine receptor (Nakajima et al., 2002; Barbi et al., 2007), in IFNγ antibody-treated mice, whereas, in IgG-treated animals, CXCR3 expression on effector and Treg cells remained high (Figure 3C; data not shown). Importantly, antibody-mediated neutralization of IFNγ and rescue of Th1-mediated disease in Mir146a+/−/Foxp3KO mice were not associated with measurable increases in IL-4 or IL-17 (Figure 3D). These results suggested that miR-146a-deficient Treg cells were able to restrain Th2 and Th17, but not Th1 responses and that immune-mediated lesions observed in the presence of miR-146a-deficient Treg cells were IFNγ dependent. Since an increase in numbers of miR-146a-deficient Treg cells was unaffected by IFNγ neutralization, these experiments also imply that Treg cell homeostasis and suppressor function are likely controlled by miR-146a via distinct molecular mechanisms.

miR-146a Regulates Stat1 in Treg Cells

Next, we sought to explore molecular mechanisms underlying miR-146a-dependent Treg cell-mediated Th1 regulation. In addition to the aforementioned miR-146a targets, TRAF6 and IRAK1, a recent study has suggested that Stat1 is a miR-146a target in human PBMCs (Tang et al., 2009). Since Stat1 is a key transcription factor downstream of IFNγ receptor signaling, it was possible that Stat1 expression in miR-146a-deficient Treg cells was increased and could account for the IFNγ/Th1-dependent immune-mediated lesions observed in Mir146a+/−/Foxp3KO chimeras. However, unlike the 3′ UTR of the human Stat1 gene, which contains a perfect match with the miR-146a seed sequence, no canonical target sequence was found in the mouse Stat1 gene. Nevertheless, a highly conserved sequence with partial complementary to miR-146a was present in the mouse Stat1 3′ UTR (Figure 4A). Although computational algorithms relying on miRNA seed sequence analysis failed to identify mouse Stat1 as a miR-146a putative target, it was recently shown that some microRNAs, like miR-24, control multiple genes in the absence of canonical target seed sequences (Lal et al., 2009). Thus, it was possible that miR-146a might recognize mouse Stat1 through “seedless” yet conserved complementary sequences. Indeed, transfection of mouse Stat1 3′ UTR-containing luciferase reporter into miR-146a-sufficient, but not miR-146a-deficient T cells showed repression of reporter activity, which was abolished upon mutagenesis of the putative miR-146a binding site (Figure 4B). Moreover, miR-146a overexpression in HEK293 cells reduced luciferase reporter activity (data not shown). Finally, we found an ∼3- to 4-fold increase in total Stat1 protein in both Treg and non-Treg cells lacking miR-146a. Together, these results suggested mouse Stat1 serves as a target of miR-146a in mouse T cells (Figure 4C). Levels of phosphorylated Stat1 were also markedly increased in miR-146a-deficient cells. Consistent with the rescue from disease, Stat1 phosphorylation returned to basal level in chimeric mice treated with IFNγ antibody, whereas the total Stat1 amounts were only partially diminished (Figure 4C). Elevated levels of TRAF6 and IRAK1 in miR-146a-deficient T cells were largely unaffected by IFNγ antibody treatment and, thus, demonstrate the specificity of the observed effects of IFNγ neutralization.

Figure 2. Selective Dysregulation of IFNγ Responses in Mice Harboring miR-146a-Deficient Treg Cells

miR-146a-deficient or -sufficient Treg cells isolated from (A) healthy Mir146a+/−/B6 or (B) diseased Mir146a+/−/Foxp3KO chimeric mice were cocultured with wild-type responder CD4+ T cells at the indicated ratios for 72 hr in the presence of CD3 antibody and irradiated T cell-depleted splenocytes. (C) Frequencies of IFNγ-secreting cells in Foxp3+ CD4+ and Foxp3−CD4+ T cells isolated from diseased Mir146a+/−/Foxp3KO are shown. miR-146a-deficient T effector subset appears to make somewhat less IFNγ as compared with Foxp3+ T cell subset because the latter contains an increased frequency of self-reactive T cells due to the presence of Treg “wannabe’s” (Hsieh et al., 2006). The proportions (D) and absolute numbers (E) of IFNγ-secreting cells in Foxp3+CD4+ Treg cells isolated from diseased Mir146a+/−/Foxp3KO chimeric mice are numerated. Data are representative of three independent experiments (n = 11–13); values represent the mean ± SD, *p < 0.05. (F) Frequency of IFNγ-secreting cells in Foxp3+ CD4+ and Foxp3−CD4+ T cells isolated from healthy Mir146a+/−/B6 mice are shown. Data are representative of three independent experiments (n = 11–13). See also Figure S3.
miR-146a Controls Treg Cell-Mediated Regulation of IFNγ Response through Targeting Stat1

To test the hypothesis that increased Stat1 expression in the absence of miR-146a is responsible for the observed failure of Treg cells to control Th1 response, we conducted a “loss-of-function” experiment by generating miR-146a-deficient mice harboring a single functional Stat1 allele (Mirm146a−/− Stat1+/−). We cotransferred Mirm146a−/− Stat1+/− and Ly5.1+Fopx3KO Treg cells into miR-146a-sufficient recipients and monitored their ability to control Th1 response in response to exogenous IFNγ.

Figure 3. IFNγ Blockade Rescued Immune-Mediated Pathology in Mice Harboring miR-146a-Deficient Treg Cells
(A) Schematic of IFNγ neutralization experiments using BM chimeras.
(B) Spleenic Treg cell frequencies in chimeric mice treated with IFNγ neutralizing or control antibodies 6 weeks after BM transfer.
(C) Expression of K67 and other activation markers in miR-146a-sufficient Ly5.1+Fopx3+CD4+ T cell subsets from miR-146a+/Fopx3KO mice with IFNγ neutralizing or control antibodies.
(D) Frequency of IFNγ-, IL-4-, and IL-17-secreting cells in miR-146a-sufficient Ly5.1+Fopx3+CD4+ T cell subsets from indicated chimeric mice with or without IFNγ treatment are shown. Ly5.1+Fopx3+CD4+ T cells isolated from chimeric mice reconstituted with Fopx3KO BM only served as positive control.

Data are representative of two independent experiments (n = 9–12).
bone marrow cells mixed at 1:1 ratio into Rag2− or TCRβ-deficient recipients (Mim146a−/−/Stat1+/−/Foxp3KO). As shown in Figure 4D, both Treg cells and non-Treg T cells isolated from Mim146a−/−/Stat1+/−/Foxp3KO mice exhibited ~50% reduction in total and phosphorylated Stat1 amounts compared to corresponding Mim146a+/−/Stat1−/−/Foxp3KO controls. As a result, Mim146a−/−/Stat1+/−/Foxp3KO mice developed a much milder and delayed immune-mediated pathology (Figure 4E; data not shown). In agreement with a milder disease phenotype, we observed significantly reduced IFNγ secretion by both miR-146a-sufficient and -deficient effector CD4+ T cells. Furthermore, reduced Stat1 expression markedly diminished IFNγ production by miR-146a-deficient Treg cells (Figure 4F). Interestingly, reduced IFNγ production was accompanied by a substantial increase in IL-4 producing miR-146a-sufficient and -deficient effector CD4+ T cells in Mim146a−/−/Stat1+/−/Foxp3KO chimeric mice (Figure 4G). Together, these results provided genetic evidence that miR-146a ensures Treg cell-mediated control of Th1 responses at least in part through targeting Stat1 and that limiting Stat1 expression in miR-146a-deficient Treg cells moderates these responses.

**Unrestrained Stat1 Activation in Treg Cells Results in IFNγ-Mediated Th1 Pathology**

Considering that each miRNA regulates multiple targets, it was important to examine the consequences of altering Stat1 activation in Treg cells by means other than the manipulation of miR-146a expression. Therefore, we performed a “gain-of-function” experiment by analyzing mice with a Treg-specific ablation of SOCS1, a negative regulator of Stat1. Although SOCS1 also controls other signaling pathways, loss of SOCS1-dependent negative regulation of Stat1 is the major contributor to the IFNγ-mediated immunopathology in mice with SOCS1 deficiency (Kubo et al., 2003; Alexander et al., 1999; Horino et al., 2008; Marine et al., 1999). As shown in Figures 6A–6F, increased Stat1+/- Foxp3CreSocs1fl/fl mice produced less IFNγ and were less activated in comparison to those from Mim146a−/−/Ifng−/-/Foxp3KO mice. This observation suggested that IFNγ production by miR-146a-deficient cells contributed to, but did not fully account for the development of severe Th1 pathology in the presence of miR-146a-deficient Treg cells (Figures 5C and 5D). Thus, miR-146a limits Th1 responses in two ways: by endowing Treg cells with the ability to suppress Th1 responses and by negatively regulating T effector cells in a cell-autonomous manner. Corresponding to this role in the Th1 response, we found higher levels of miR-146a in both T effector and Treg cells with Th1-like features (CXCR3+ T-bethigh) in comparison to their CXCR3 T-betlow counterparts (Figures 5F–5I).

Next, we sought to examine effector mechanisms that account for the disease observed in Foxp3creSocs1flox/flox mice. Like miR-146a-deficient Treg cells, SOCS1-deficient Treg cells had impaired in vitro suppression activity (Figure 7A). As expected SOCS1 deficiency in Treg cells resulted in unrestrained Stat1 activation in Treg cells (Figure 7B). And similar to our observations in Mim146a−/−/Foxp3KO chimeras, these mice exhibited selectively dysregulated IFNγ production by both Foxp3 and Foxp3 CD4+ T cell as well as CD8+ T cells (Figures 7C and 7D). Although both Mim146a−/−/Foxp3KO chimeras and Foxp3creSocs1flox/flox mice exhibited Th1-related pathology, clinical disease manifestations were significantly less severe in the latter mice. A likely explanation for the observed difference...
Figure 4. Loss of miR-146a-Mediated Stat1 Repression Contributes to the IFN-γ-Mediated Th1 Pathology in Mice Harboring miR-146a-Deficient Treg Cells

(A) Multiple species sequence alignment of the Stat1 3′ UTR including the putative miR-146a target site sequence (bold).

(B) CD4+ T cells isolated from miR-146a-deficient or -sufficient mice were cotransfected with a luciferase reporter construct containing wild-type or mutated Stat1 3′ UTR and assessed for luciferase activity 24 hr after transfection.

(C) Immunoblot analysis of the Stat1, TRAF6, and IRAK1 protein expression as well as the phosphorylation of Stat1. Densitometric values normalized on the basis of β-actin expression are indicated below the corresponding lanes; fold increase in normalized target protein expression in the absence of miR-146a with or without IFN-γ neutralization in the indicated T cell subsets. Data are representative of two independent experiments.

(D) Immunoblot analysis of total Stat1 as well as the phosphorylated Stat1 protein in mice with Stat1 hemizygosity. Densitometric values normalized on the basis of β-actin expression as well as fold increase in normalized target protein expression in the indicated T cell subsets are shown below the corresponding lanes.

(E) Kaplan-Meyer survival plot of Rag2−/− mice reconstituted with 1:1 mixtures of indicated BM cells. Arrows indicate the time of analysis.
Diverse molecular mechanisms control the function of Foxp3+ Treg cells and lead to their failure to suppress the corresponding response and imply that excessive effector cytokine signaling in Treg cells may be required for control of IFNγ-mediated Th1 responses in a close resemblance to Mim146a−/−/Foxp3KO mice (Figures S5B–S5D).

Together, our studies suggest that elevated miR-146a expression in Treg cells is required for control of IFNγ-mediated Th1 immune responses at least in part through targeting Stat1, a key molecule in the IFNγ signaling pathway. Our results further imply that excessive effector cytokine signaling in Treg cells may lead to their failure to suppress the corresponding response and consequently brings about severe autoimmunity.

**DISCUSSION**

Diverse molecular mechanisms control the function of Foxp3+ Treg cells, which serve as critical guardians of immune homeostasis. Very recently, miRNA-mediated posttranscriptional regulation of gene expression in Treg cells has attracted considerable attention because of the devastating failure of immunological tolerance observed in mice with Treg cell-specific ablation of Dicer and Drosha-dependent miRNAs (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008). These mice, like Foxp3null mice, which are genetically devoid of Treg cells, develop unprovoked Th1, Th2, and Th17 responses and die before 4 weeks of age from severe immune-mediated lesions in a variety of organs (Chong et al., 2008; Liston et al., 2008; Zhou et al., 2008). In an effort to identify specific miRNAs contributing to Treg function, we discovered that miR-155, whose elevated expression in Treg cells is driven by Foxp3, confers competitive fitness to Treg cells by increasing sensitivity of IL-2R signaling through targeting SOCS1. However, miR-155 was dispensable for suppressor function of Treg cells despite its nonredundant role in Treg homeostasis (Kohlhaas et al., 2009; Lu et al., 2009).

Another recent study suggested that high level of cAMP expression in Treg cells is conditional upon low amounts of miR-142-3p and that forced expression of this miRNA in Treg cells attenuates their ability to suppress T cell proliferation in vitro (Huang et al., 2009). However, the striking loss of suppressor function observed in Dicer-deficient Treg cells is most likely due to loss of miRNAs that are overrepresented in these cells (Liston et al., 2008). Here, we demonstrate an essential role for one miRNA, miR-146a, in Treg cell function in vivo by analyzing chimeric mice generated upon cotransfer of miR-146a-deficient and Foxp3-deficient or wild-type B6 bone marrow cells into lymphopenic recipients. The presence or absence of miR-146a-sufficient Treg cells represented the sole difference between the resulting Mim146a−/−/Ly5.1B6 and Mim146a−/−/Foxp3KO mixed chimeras. Chimeric mice harboring only miR-146a-deficient Treg cells, but not mice harboring both miR-146a-deficient and -sufficient Treg cells, succumbed to severe autoimmune disease early after bone marrow reconstitution demonstrating an indispensable role of miR-146a in Treg cell-mediated suppression.

Foxp3-dependent suppressor program implemented by Treg cells keeps in check different types of effector immune responses to “self” antigens and pathogens. Several recent studies revealed that Treg cells do not seem to execute a universal hard-wired functional program limiting all kind of inflammation and immunity but instead these cells exhibit distinct mechanistic requirements for suppression of particular classes of the immune response. For example, Ilr4, a transcription factor required for Th2 differentiation, is expressed in Treg cells in a Foxp3-dependent manner and endows them with the ability to suppress Th2 responses (Zheng et al., 2009). Similarly, the expression of T-bet, another key transcription factor in Th1 effector cell differentiation, is induced in Treg cells in a Stat1-dependent manner in response to IFNγ signaling and enables them to proliferate, migrate to, and accumulate at the sites of Th1 responses (Koch et al., 2009). Likewise, we have found that Treg cell-restricted ablation of Stat3, a transcription factor required for Th17 induction, leads to uncontrolled Th17-dependent pathology (Chaudhry et al., 2009). These studies suggest that in Treg cells distinct suppressor mechanisms are tailored to fit particular tissue and inflammatory settings by the same transcription factors which guide effector T cell differentiation in response to similar cues. In this study, we extended this concept to miRNAs by demonstrating that fatal immune-mediated lesions observed in the presence of miR-146a-deficient Treg cells were accompanied by sharply augmented Th1 responses and were dependent upon increased amounts of IFNγ.

Activation of the transcription factor Stat1 downstream of the IFNγ receptor facilitates differentiation of Th1 cells and forced expression of a Stat1-encoding transgene in T cells results in an IFNγ-mediated immunopathology (Siebler et al., 2003). A connection between miR-146a and Stat1, a key transcription factor in IFNγ response, was suggested by two recent studies implying that Stat1 serves as a miR-146a target in human lymphocytes and monocytes (Cameron et al., 2008; Tang et al., 2009). Despite the lack of a canonical miR-146a site in the 3’ UTR of the mouse Stat1 gene, it contains a highly conserved site with partial complementarity to miR-146a seed sequence and additional complementarity in the adjacent sequence. Luciferase reporter assays demonstrated that this putative miR-146a binding site is crucial for miR-146a-mediated repression of Stat1. In addition, we have currently employed the HITS-CLIP (high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation) approach to identify miR targets in T cells. Our preliminary data confirmed the proposed region for miR-146a binding in the mouse Stat1 gene (data not shown). More importantly, the disease observed in mice harboring miR-146a-deficient Treg cells was largely alleviated when miR-146a deficiency was coupled with Stat1 hemizygosity. Finally, important independent confirmation of

(F and G) Frequency of (F) IFNγ- or (G) IL-4-secreting cells in Foxp3+CD4+ and Foxp3−CD4+ T cell subsets in diseased miR-146−/−Stat1+/+/Foxp3KO and mim146−/−Stat1−−/Foxp3KO chimeric mice.

Data are representative of two independent experiments (n = 13).
Figure 5. IFNγ Production by miR-146a-Deficient T Cells Partially Contributed to but Cannot Account for Th1 Immunopathology in Mirn146a−/−/Fosp3KO Mice

(A) CD4+CD25−CD62Lhi cells isolated from Mirn146a−/− mice or wild-type littermates were cultured in vitro under Th1/Th2 polarizing conditions. Intracellular IFNγ and IL-4 staining was assessed by FACS analysis. Data are representative of three independent experiments (n = 4–6).

(B) Schematic of generation of mixed BM chimeras.

(C and D) Frequencies of IFNγ-secreting cells in (C) CD4+ and (D) CD8+ T cell population isolated from indicated chimeric mice are shown.

(E) Flow cytometric analysis of expression of activation markers and Ki67 in miR-146a-sufficient Ly5.1+Foxp3-CD4+ Teff cells from indicated chimeric mice are shown. Data are representative of three independent experiments (n = 6–7).

(F–I) Real-time PCR analysis of (F) primary miR-146a, (G) mature miR-146a as well as (H) T-bet and (I) Foxp3 mRNA expression in FACS-purified CXCR3+ and CXCR3− populations from CD4+CD25+ Treg cells (TIR) and CD4+CD25−CD62L−naive T cells (TNI).

Data are representative of two independent experiments.
this biological significance of restraining Stat1 activation in Treg cells for their ability to suppress Th1 responses was provided by our analysis of Foxp3creSOCS1fl/fl mice and wild-type littermates. Percentages of different thymocyte and splenocyte subsets are shown.

Importantly, analysis of Mirn146a−/−Ifng−/−/Foxp3KO and Mirn146a−/−/Foxp3KO chimeric mice revealed that miR-146a-deficient Treg cells were unable to prevent pathogenic Th1 responses and associated disease regardless in the absence of IFNγ supplied by the miR-146a-deficient compartment. Nevertheless, these experiments also showed that IFNγ production by miR-146a-deficient T effector cells contributed to full-scale Th1 immunopathology in Mirn146a−/−/Foxp3KO mice. It is noteworthy that miR-146α was the first identified miRNA with an increased expression in terminally differentiated Th1 cells (Monticelli et al., 2005). Thus, miR-146α-mediated Stat1 repression in activated T effector cells likely serves as a mechanism of negative feedback regulation of Th1 responses. Moreover, our observation of higher levels of miR-146α in both Treg and effector T cells with “Th1-like” features (CXCR3+ T-bet+) in comparison to their CXCR3 T-betlow counterparts suggested that Treg cells further increase miR-146α expression in Th1 environment to ensure effective suppression of Th1 responses. Consistent with this model, the presence of miR-146α-sufficient Treg cells in Mir146a−/−/Ly5.1+ B6 chimeric mice was able to keep in check Th1-prone effector T cells derived from miR-146α-deficient compartment. Together, our data demonstrated an important role of miR-146α in both mediated regulation of Th1 responses, in a significant part, through targeting Stat1.
Treg cell-mediated Th1 regulation and in limiting Th1 responses in a T effector cell-intrinsic manner.

In addition to Stat1, miR-146a was previously shown to negatively regulate TLR/IL-1R signaling pathway in macrophages by targeting TRAF6 and IRAK1/2 (Hou et al., 2009; Taganov et al., 2006). Indeed, levels of TRAF6 and IRAK1 proteins were increased in both miR-146a-deficient Treg and non-Treg T cells. It has been shown that IL-1R signaling facilitates Th17 differentiation and IL-17 production (Chung et al., 2009; Maitra et al., 2009). Furthermore, Th2 responses are also facilitated by signaling through IL-1R and IL-33R, another TRAF6/IRAK-dependent IL-1R family member (Ben-Sasson et al., 2009; Schmitz et al., 2005). Thus, according to the idea of “symmetry” between cues eliciting effector T cell differentiation and corresponding suppressor capability in Treg cells, miR-146a deficiency in Treg cells could also result in augmented Th17 and Th1 responses. However, the lack of Th2 or Th17 cytokine production in mice harboring miR-146a-deficient Treg cells could also result in augmented Th17 or Th2 responses. However, the lack of Th2 or Th17 responses in T reg cells could also result in augmented Th17 or Th2 responses. However, the lack of Th2 or Th17 cytokine production in mice harboring miR-146a-deficient Treg cells demonstrated that miR-146a deficiency in Treg cells results in a selective impairment in their ability to regulate Th1 responses. Lack of a detectable increase in Th2 and Th17 responses in the presence of miR-146a-deficient Treg cells can be explained by the fact that IFNγ/Stat1 signaling, while promoting Th1 immune response, inhibits the differentiation of Th2 and Th17 cells (Hu and Ivashkiv, 2009). Thus, it is possible that the potential impact of dysregulated TRAF6/IRAK1 signaling in miR-146a-deficient Treg cells was masked by the dominant effect of elevated Stat1 expression and activation. In support of this idea, combined miR-146a deficiency and Stat1 hemizygosity in Treg cells resulted in an increase in IL-4 producing Th2 cells in addition to the aforementioned decrease in IFNγ-producing Th1 cells.

Although the heightened Stat1 activation associated with miR-146a and SOCS1 deficiency in Treg cells impaired their ability to suppress Th1 responses, the numbers of miR-146a- and SOCS1-deficient Treg cells were markedly increased compared to their wild-type counterparts. Whereas an increase in size of SOCS1-deficient Treg subset is most likely a consequence of augmented IL-2R signaling and Stat5 phosphorylation (Lu et al., 2009), miR-146a deficiency did not alter Stat5 expression or activation (data not shown). In addition, miR-146a-deficient Treg cell number was not decreased by the attenuated Stat1 phosphorylation and inflammation that accompanied antibody-mediated blockade of IFNγ signaling in chimeric mice, or Stat1 haploinsufficiency. These findings suggested that de-repression of miR-146a targets other than Stat1 likely contributed to the increased Treg cell numbers in miR-146a-deficient mice.

Our findings that miR-146a- or SOCS1-deficient Treg cells fail to control Th1 responses likely due to unrestrained expression and activation of Stat1 may appear to fit the aforementioned...
concept of “symmetry” in the integration of environmental cues by Treg and effector T cells. However, whereas in previous studies it was the lack of Th lineage-specific transcription factors Stat3, Irf4, and T-bet in Treg cells that resulted in impaired suppression of Th1, Th2, and Th1 responses, respectively, in this study unrestrained activation of Stat1 led to immunopathology. Importantly, Stat1 as well as IFNγ receptor (IFNγR) expression in Treg cells are necessary for T-bet induction in Treg cells, a prerequisite for efficient suppression of Th1 responses (Koch et al., 2009). The observations that both the lack of Stat1 and unrestrained Stat1 activation resulted in a breakdown of immunologic tolerance suggested that Treg-mediated suppression of Th1-mediated immunopathology is dependent upon a certain optimal range of Stat1 activation by cytokines. Moreover, by limiting Stat1 amounts in Treg cells, miR-146a prevents their deviation into IFNγ-producing “Th1-like” cells and thereby, safeguards their function and identity in inflammatory settings.

Our findings also raise a question as to why miR-146a- or SOCS1-deficient Treg cells fail to control Th1 responses. Chemokine receptor CXCR3, a well-characterized target of T-bet (Beima et al., 2006; Lord et al., 2005), is induced in Treg cells in a T-bet-dependent manner and endows them with the ability to migrate to the sites of Th1 responses, a prerequisite for their efficient regulation (Koch et al., 2009). However, CXCR3 expression on the surface of Treg cells was elevated in the absence of miR-146a or SOCS1 consistent with increased Stat1 activation. This finding leads to the next fundamental question as to how do miR-146a- or SOCS1-deficient Treg cells lose control of Th1 responses. It is possible that IFNγ secreted by Treg cells could facilitate pathogenic Th1 responses since a sizable fraction of both miR-146a- and SOCS1-deficient Treg cells produce IFNγ. In addition, our previous microarray and phenotypic analyses have shown that IFNγR is upregulated in Foxp3− Treg cells versus naïve T cells in a Foxp3-dependent manner. Furthermore, a recent study by the Belkaid group has demonstrated that during lethal Toxoplasma gondii infection exposure of wild-type Treg cells to high amounts of Th1 inflammatory mediators superimposes Th1 effector program on Treg cells. Consequently, Treg cells produce IFNγ and potentially contribute to the tissue damage leading to death of the infected host (Oldenhove et al., 2009). Together, these findings raise a possibility that an autocrine loop amplifies Stat1 activation and IFNγ production in miR-146a- and SOCS1-deficient Treg cells, and that overt IFNγ signaling in miR-146a-deficient and SOCS1-deficient Treg cells results in the breakdown of a yet unidentified mechanism of Treg cell-mediated suppression of Th1 responses. In supporting this notion, reduced pathogenic Th1 responses were observed in chimeric mice harboring miR-146a-deficient non-Treg cells precludes clear conclusions drawn from these studies. Further genetic studies employing Treg cell-specific ablation of IFNγ and IFNγR are required to directly test this idea.

In summary, our studies demonstrated that a single miRNA, miR-146a, is indispensable for suppression mediated by Treg cells in vivo. Excessive activation of Stat1 in Treg cells is kept in check by miR-146a to ensure efficient control of spontaneous IFNγ-dependent Th1-mediated immunopathology and prevent deviation of activated Treg cells into IFNγ-producing Th1-like cells. Similar lesions observed in mice with Treg cell-specific ablation of SOCS1 lend further support to this notion. Our observations combined with the previously reported requirement for Stat1-dependent T-bet induction in Treg cells (Koch et al., 2009) suggest that a certain optimal range of Stat1 activation maintained by miR-146a is important for Treg-mediated control of Th1 responses and that both lack of Stat1 and unrestrained Stat1 activation in Treg cells lead to a severe failure of immunologic tolerance.

EXPERIMENTAL PROCEDURES

Mice

MiR146a−/− (M.P.B., K.D.T., D.S. Rao, L. Yang, M. Klawani, Y. Garcia-Flores, M. Luong, A. Devrekanli, J. Xu, G. Sun, J. Tay, P.S. Linley, and D.B., unpublished data), Foxp3−/− (Fontenot et al., 2003), Foxp3+/−/− (Rubtsov et al., 2008), SOCS1−/− (Tanaka et al., 2008), and Stat1−/− (Meraz et al., 1996) mice were housed under SPF conditions. Disease development was monitored by frequent visual examination and histopathological analyses. All mice were used in accordance with guidelines from the Institutional Animal Care Committee of the Memorial Sloan-Kettering Cancer Center.

Quantitative PCR Analysis

Total RNA (including microRNA) was prepared from FACS purified cells using miRNeasy kit (Qiagen). For detecting the miR-146a and miR-146b expression levels, Taqman “stem-loop” real-time RT-PCR was performed as demonstrated previously (Jazdzewski et al., 2008). For measuring primary miR-146a and miR-146b, first strand complementary DNA was synthesized by using iScript cDNA synthesis kit (Bio-Rad) followed by real-time PCR analysis (SYBR green; Applied Biosystems).

Generation of Bone Marrow Chimeras Mice and In Vivo IFNγ Neutralization

Mixed bone marrow chimeras were generated as described elsewhere (Lu et al., 2009). In brief, T cell-depleted bone marrow cells from mice of indicated genotypes were mixed at 1:1 ratio and injected into T cell-deficient Rag2−/− or Stat1−/− mice precludes clear conclusions drawn from these studies. Further genetic studies employing Treg cell-specific ablation of IFNγ and IFNγR are required to directly test this idea.

In vitro Suppression Assay

The ability of miR-146-deficient and -sufficient Treg cells to suppress proliferative responses of T cells was assessed in a standard in vitro suppression assay (Liston et al., 2008). In brief, FACS purified 4 × 104 naïve Ly5.1−/− CD4+CD25−CD62Lhi T cells and Mirn146a−/− or Mirn146−/− CD4+CD25+ Treg cells were co-cultured with 2 × 105 CD4−/−CD25− CD62Lhi T cells in a 1:1 ratio and stimulated with CD3 antibody in the presence of irradiated (2000 rads) splenocytes. T cell proliferation was assessed by with3H-TdR incorporation (cpm) in triplicate cultures during the last 8 hr of culture.

Flow Cytometry and Cytokine Secretion Assays

Cell surface staining and flow cytometric analysis of CD4, CD8, CD25, CD62L, CD103, GITR, ICOS, and CXCR3 (all eBioscience) expression were performed as described elsewhere (Fontenot et al., 2005). Intracellular staining of Foxp3, IL-4, IFNγ, CTLA-4 (all eBioscience), and K67 (BD Bioscience) were performed following fixation and permeabilization according to manufacturer’s instructions.
To measure T cell cytokine production, 2 × 10^6 splenocytes were stimulated in 24-well plates with PMA (50 ng/ml) and ionomycin (250 ng/ml) in the presence of “Golgi plug” (BD Biosciences) for 5 hr at 37°C before staining.

**Luciferase Reporter Assay**

CD4+ T cells isolated from Mir146a−/− or Mir146a+/+ mice were cultured in 12-well plates (1 × 10^5 cells/well) and transfected with psiCHECK2 luciferase reporter plasmids (Promega) containing either wild-type or mutated Stat1 3' UTR using Amaxa mouse T cell nucleofector kit (Lonza, Basel, Switzerland). Cells were harvested 24 hr later and luciferase activity was assessed using Dual-Luciferase Reporter Assay System (Promega) according to manufacturer’s protocol.

**Western Blot Analysis**

Cell lysates from miR-146a-sufficient or -deficient Ly5.1^CD4^CD25^CD62L^hi T cells and Ly5.1^CD4^CD25^ Treg cells FACS purified from the mixed BM were homogenized in 50 mM Tris buffer (pH 8.5) containing 100 mM NaCl, 5% glycerol, 0.1% SDS, 0.5% NP40 and protease inhibitors. After centrifugation, protein concentration was measured using BCA kit (Pierce). Equal amounts of protein were loaded and electrophoresed on 8–16% SDS-PAGE gels. Blotting was performed using a Bio-Rad Trans-Blot SD unit with polyvinylidene fluoride membranes (Bio-Rad). Membranes were blocked in 5% non-fat dry milk in Tris-buffered saline (pH 7.5) containing 0.1% (v/v) Tween 20 (TBS-T) for 1 h at room temperature. Non-specific proteins were blocked with 4% (w/v) BSA in Tris-buffered saline (pH 7.5) for 1 h at room temperature. The membranes were then incubated with the diluted primary antibodies at 4°C overnight. After washing with TBS, the membranes were incubated with the appropriate horseradish peroxidase-conjugated secondary antibody (1:2000) for 1 h at room temperature. Immunoreactive bands were detected using the ECL Plus system (Amersham). The following primary antibodies were used: anti-Stat1 (1:1000), anti-Akt (1:1000), anti-PI3K (1:1000), anti-phospho-PI3K (1:1000), anti-Stat3 (1:1000), anti-phospho-Stat3 (1:1000), anti-p38 (1:1000), anti-phospho-p38 (1:1000), anti-Jak3 (1:1000), anti-phospho-Jak3 (1:1000), and anti-β-actin (1:2000). The bands were quantitated densitometrically using ImageJ software.

**SUPPLEMENTAL INFORMATION**

Supplemental Information includes Extended Experimental Procedures and five figures and can be found with this article online at doi:10.1016/j.cell.2010.08.012.

**ACKNOWLEDGMENTS**

We thank A. Ramos for the help in key experiments, Y. Liang, P. Zarín, A. Bravo, and J. Herrlich for superb technical assistance, and all members of our laboratory for discussions. This work was supported by grants from the NIH (A.Y.R. and D.B.) and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by the Program for Promotion of Innovative (A.Y.). L.-F.L. is a Leukemia and Lymphoma Society Fellow. A.C. is a Howard Hughes Medical Institute (A.Y.). SUPPLEMENTAL INFORMATION

**REFERENCES**


EXTENDED EXPERIMENTAL PROCEDURES

Primers and Probes for Quantitative PCR Analysis
For detecting mature miR-146a/b levels, Taqman miRNA assays (including stem loop primers for cDNA synthesis as well as primers and probes for subsequent qPCR reaction) for miR-146a (Assay ID: 000468) and miR-146b (Assay ID: 001097) were used, respectively. Taqman probe sets for small nuclear RNA 412 (Assay ID: 001243) were used for normalization.

Primers for detecting primary miR-146a/b transcripts: 5’ ggcttcagagtttgttcca 3’ (pri-miR-146a, forward), 5’ cctcatctggagagtctgtgt g 3’ (pri-miR-146a, reverse), 5’ gcagcatccagactgagaga 3’ (pri-miR-146b, forward), 5’ ttggagactcttgctgcc 3’ (pri-miR-146b, reverse).

Luciferase Reporter Assay
A fragment (~1 kb) of mouse Stat1 3’UTR was PCR amplified from cDNA derived from in vitro polarized mouse Th1 cells with primers: 5’ aacacgaatttctctgttgcc 3’ (forward), 5’ tgagttccagaatagccagg 3’ (reverse). The PCR products were cloned into pCR2.1 plasmid by using TOPO TA cloning kit (Invitrogen) followed by sequence confirmation. Mutations of putative miR-146a binding site in mouse Stat1 3’UTR were introduced by using Quickchange site-directed mutagenesis kit (Stratagene) with primers: 5’ ggtcatggattgaa taataagttctttgaaaaagtggggccagc 3’ (forward), 5’ gctggcccccttaatttttttttcttgaagagactttttatccatctgacc 3’ (reverse). Both wild-type and mutated mouse Stat1 3’ UTR were then subcloned (NotI and XhoI) into the psiCheck2 luciferase reporter plasmids (Promega), respectively for subsequent analysis.
Figure S1. Phenotypic Analysis of miR-146a-Deficient Mice, Related to Figure 1
Real-time PCR analysis of (A) mature and (B) primary miR-146a/b in FACS-purified CD4+CD25+ Treg cells (Tr) and CD4+CD25−CD62Lhi naive T cells (TN) from miR-146a-deficient and -sufficient mice. Flow-cytometric analysis of (C) thymus and (D) spleen in 6- to 8-week-old miR-146a-deficient mice or wild-type littermates. Percentages of different thymocyte and splenocyte subsets are shown. Cellularity of the (E) thymus and (F) spleen and the proportion and absolute numbers of (G) thymic and (H) splenic Foxp3+CD4+ T cells in miR-146a-deficient and -sufficient mice are shown. Data are representative of three independent experiments (n = 6-8); values represent the mean ± SD, *p < 0.05. Flow cytometric analysis of expression of activation markers and Ki67 in (I) Foxp3−CD4+ Teff cells and (J) Foxp3+CD4+ Treg cells in 6- to 8-week-old miR-146a-deficient (blue) and wild-type littermates (red). Data are representative of three independent experiments (n = 6-8). (K) Western blot analysis of the TRAF6 and IRAK1 protein expression. Densitometric TRAF6 or IRAK1 expression values normalized based on β-actin expression are indicated below the corresponding lanes as well as fold increase in TRAF6 or IRAK1 expression in the absence of miR-146a in the indicated T cell subsets. (L) Schematic CD4+CD25+CD62Lhi cells isolated from Mimi146a−/− mice or wild-type littermates were cultured in vitro under Th17 differentiation (TGF-β plus IL-6) or Foxp3 induction conditions (TGF-β only). Intracellular IL-17 and Foxp3 staining was assessed by FACS analysis. Data are representative of two independent experiments (n = 4-6).
Figure S2. Extensive Mononuclear Cell Infiltration in Multiple Organs of Mice Harboring miR-146a-Deficient Treg Cells, Related to Figure 1

H&E-stained sections of the skin, liver, and lung from Mirn146a+/Foxp3KO and Mirn146a−/Foxp3KO chimeric mice generated upon transfer of Mirn146a−− BM mixed with Ly5.1+ Foxp3KO BM or Ly5.1+ B6 BM 6-7 weeks after BM transfer.
Figure S3. miR-146a-Deficient Treg Cells Failed to Effectively Control IFNγ Responses upon Cotransfer with miR-146a-Sufficient Effector T Cells, Related to Figure 2

(A) CD4+ T effector cells (1.5 x 10⁶) isolated from Foxp3KO mice were transferred alone or with CD4+CD25+ Treg cells (5 x 10⁵) isolated from miR-146a-deficient mice or wild-type littermates into TCRβΔΔ/CD0/CD0 recipients.

(B) Frequencies of IFNγ, IL-4 and IL-17 secreting cells in miR-146a-sufficient Ly5.1+Foxp3+CD4+ Teff cells from mice with cotransfer of miR-146a-deficient or -sufficient Treg cells are shown (Day 40). Ly5.1+Foxp3+CD4+ Teff cells isolated from mice received only Foxp3KO T effector cells served as positive control. Data are representative of two independent experiments (n = 6–8).
Figure S4. Treg Cell-Specific SOCS1 Ablation Led to Unrestrained Stat5 Activation, Related to Figure 6

Immunoblot analysis of total Stat5 and phospho-Stat5 protein amounts. Densitometric values normalized on the basis of β-actin expression and fold increase in normalized target protein expression in the indicated T cell subsets are indicated below the corresponding lanes. Data are representative of two independent experiments.
Figure S5. Chimeric Mice Harboring SOCS1-Deficient Treg Cells Developed Accelerated Kinetics and Increased Severity of Autoimmune Disease, Related to Figure 7

(A) Schematic of generation of mixed BM chimeras.

(B) Kaplan-Meyer survival plot of mixed BM chimeras generated upon reconstitution of irradiated Rag2−/− (or TCRβ−/−) recipients with 1:1 mixtures of indicated BM cells. 50% of mice in Foxp3creSOCS1fl/fl/Foxp3KO group died before the day of analysis (arrow). The rest of the mice in this group along with other control groups were euthanized and analyzed.

(C) Frequencies of IFNγ secreting cells within Ly5.1+Foxp3−CD4+ T cell population isolated from indicated chimeric mice are shown.

(D) Flow cytometric analysis of expression of activation markers and Ki67 by Ly5.1+Foxp3−CD4+ T effector cells from indicated chimeric mice are shown. Data are representative of two independent experiments (n = 8).