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ABSTRACT 

The problem of measuring cable drag coefficients at low to 

moderate Reynolds numbers (100 < Re < 30,000) is addressed and 

alternative methods of measurement are analyzed. The very low 

forces and pressures involved at the lower Reynolds numbers render 

conventional measurement methods less suitable candidates. Laser 

Doppler velocity measurements, however, of the momentum defect in 

the wake appear capable of yielding sufficient accuracy « ± 5%) in 

the determination of the drag coefficient. This conclusion assumes 

that a test facility can be utilized with a sufficiently uniform 

flow field, low turbulence level and a free stream velocity which 

either remains stable during the wake survey measurement time 

interval or can be monitored independently. Water and air appear 

as almost equal in their merits as working fluids. with water 

slightly preferable as not requiring scattering particle seeding. 
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I. Conventional measurement"s of cable" drag at low to 

moderate Reynolds numbers 

1. Force measurements 

Direct force measurements of the drag of cables at low Reynolds 

number become very difficult because the forces per unit span can be 

very small. The situation is illustrated by the behavior of the circu-

larcylinder, whose drag coefficient 

D/b 
(1) 

% P U2 d co 

where 

D drag 

b cylinder span 

p fluid density 

Uco fluid velocity at infinity 

d cylinder diameter, 

is dominated by the vortex shedding mechanism and very nearly Reynolds 

number independent~for a very large range of Reynolds numbers. In 

fact, as can be seen from figure 1, 

0.9 < cD < 1.5 (2a) 

for 

40 < Re < 2x10 5 (2b) 

where Re is the Reynolds number based on the cylinder diameter and U
oo 
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and given by 

Re - (3) 

where 

Uoo fluid velocity at infinity 

d cylinder diameter 

V kinematic viscosity (= vip) 

11 absolute viscosity 

p fluid density. 

Surprisingly enough, the drag of a cylinder for a given Reynolds num-

her is not all that different in air and water. From equation 1 we 

have, 

D/b 
CD 

= "2 p U~ d . 

Substituting from equation 3, we have 

and consequently, 

D/b = 

V Re 
d 

2 

(R: ) (4) 

The ratio of the quantity pv2 for water and air is given by (see 

Appendix 1), 

at 22°C and 1 Atm. 

(PV
2

)water 

(pv
2

) air 
3.30 (5) 
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The drag per unit span of a I em (0.394 in) cylinder is plotted 

in dimensional units in figure 2~ as a function of Reynolds number, 

assuming a constant drag coefficient of Co ~ 1.2. It can be seen 

that the forces, at the lower Reynolds numbers, are extremely small. 

It should also be pointed out that the dependence of the drag for a 

given ReynoZds number, on the recip+ocal of the cylinder diameter should 

be interpreted with some care (equation 4). In any practical situation, 

a cylinder that is too small will pose measurement problems. This be-

comes clear if one takes into account the tare drag of the supporting· 

structure or metric sections of the tunnel. Closely t.ied with this 

problem is the difficulty of providing truly sectional estimates of 

the drag per unit span of the cable, when making direct force mea-

surements at low Reynolds number. 

2. Pressure measurements 

It is also possible to measure the drag on a cylinder-like 

structure by making pressure measurements along its perimetry yielding 

data of p(¢) - Poo on the body surface. The drag per unit span can 

---
x 

---
then be estimated by integrating the data numerically (neglecting 

viscous forces) to obtain, 



'IT 

D/b = d j(rp(¢) - Pro] cos¢d¢ 
o 

(6) 

One major advantage of this technique is that it allows truZy 

sectionaZ measurements of the drag, free of end effects due to the 

supporting structures. 

The pressure difference. 

flip - P - Pro ' (7) 

is usually normalized by ~ P U! to yield the pressure coefficient 

c 
p 

(8) 

It can be shown theoretically and verified experimentally that the 

pressure coefficient, in this case, is of the order of unity, i.e. 

Ie I ~ 1 . p 
(9) 

Consequently, to measure the drag per unit span of a cylinder, requires 

measuring pressure differences of the order of 

or, for a given Reynolds number, 

( Rde22
) P" 2 P - Pco 'V ~ v (10) 

It may again be a surprising result that, f~r a given Reynolds 

~ the pressure differences in air and water are about the same 

(see equation 5). The right hand side of equation 10 is plotted in 
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dimensional units in figure 3 as a function of Reynolds number. for a 

cylinder of d = 1.0 em. It can be seen that the pressures at low 

Reynolds numbers (see Appendix 1.3) are very low indeed. Nevertheless. 

modern electronic manometers are capable of accurate measurements down 

to 10- 3 - 10-~ mm Hg and would be suitable for the measurements in air. 

Such a scheme might be a viable possibility if the aost of instpument­

ing the aabZes with pressupe taps~ in every aase~ is not prohibitive. 
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II. Momentum defect measurements of cable drag at low to 

moderate Reynolds numbers 

1. Theoretical considerations 

Consider a fluid moving uniformly at infinity, with a velocity 

Uoo in the x direction, and a cylinder - like body on the z-axis. 

Consider also a contour ABC D E F G H on the z = 0 plane around 

the body, as shown in the sketch. 

y 

------- t 

---
---.. G 

~ 

---
~ A --

Uoo Do 

From the momentum equation, we have, 

d u + V· u u + 1. (Vp 
at P 

VeT ) o , (11) 

where ~ummation is implied over r~peated indice~ 

8 
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(12) 

is the gradient operator, 

(13) 

is the velocity vector and ,l is the viscous stress tensor, given for 

incompressible flow by, 

(14) 

where ~ is the absolute viscosity. 

Consider now a rectangular volume V of span b along the 

z-axis, whose z = 0 intercept is the interior of the contour 

ABC D E F G H , and integrate the momentum equation 11 in the interio~ 

of the volume. This yields, 

J[ 8 u + V'-uu + Ip(V'p - V'-T)]dV 
tit -

V 

o (15) 

or, using Gauss' theorem and choosing .the pressure at infinity as the 

origin in pressure, we have 

+ J u u - dS + ~ Jep - Pee) dS o (16) 

S S 

where dS is a vector directed along the outward normal, of magnitude 

equal to the surface element dS, i.e. 
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(17) 

We now take the x - component of equation 16 to obtain 

~ J~-u dV + Jex·u u -dS + - p )e -dS -co x _ - e'·T-d.S=O If'" pX = -

V S S 

or 

'(;at J udV +Ju u·dS· + 1f(p -' p ) dS 
1. 1. P co X 

V S S 

.. (18) 

where \) == II / p is the kinematic viscosity and sunnnation over re-

peated indices is implied. 

Consider now the time average of equation 18. The first inte-

gral vanishes and we are left ~~h, 

dffi 

+ 8: ) dS i = 0, (19) 

Each of the surface integrals can be computed as the sum of integrals 

over each section, i.e. 

S AB Be CD DE EF FG GH HA 

Note that the contributions from the two integrals D E and F G 

cancel, if we choose the distance I E to be infinitesimally small, 

F=-. 
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and that minus the integral E F is equal to the dx>ag divided by the 

fluid density. Consequently, 

D/P=-J= J+ J+ J+ J (20) 

EF AB BC CH HA 

If we now choose the edges of the surface to be sufficiently 

far away from the body all mean velocity gradients can be neglected 

and we have, 

Dip = J7 dydz + !uvdXdZ + JU.2 
dy dz 

AB BC CH (21) 

+ fuv dx dz + ~J(p - Pc.) dy dz + ~ Jep - Po:) dy dz 

HA AB CH 

Dividing equation 21 by 1: U2. bd 
2 co ' we have 

CD 
Dlb = 2{J+ f}~ dn d~ -

~ P U!d 
AB CH 

+ 2(J+ J}~ d~ d~ (22) 

BC HA 

+ {f+ J}C; dn ds 

AB CH 

where C-p is the (time averaged) pressure coefficient 

p - Pco 
c; = 

~ p U;, 
(23) 
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and S = x/d, n - y/d, I;; = z/b are the normalized dimension-

less coordinates. 

We can use the continuity equation~ for an incompressible fluid, 

(24) 

integrated over the volume V 

!veu dV': ! ued~ = 0 , (25) 

V S 

to rewrite equation 22. Multiplying equation 25 with 2/U and 
0::> 

subtracting it from equation 22 yields, 

CD = 2{f + fr-u :_2
UoU 

dn dl;; 

AB CH 0::> 

(26) 

BC HA 

+ {J + f} C p dn d1; . 

AB CH 

2. Assumptions and simplifications 

a. Upstream conditions. In practice, we can usually place the up-

stream edge A B of the integration surface sufficiently far from the 

body for the conditions to be essentially equal-to the conditions at 



A 

infinity~ i.e. U ~ ex Uoo and p ~ Poo. In that case, we have 

and 

J _U_2_----".U_<:o_u_ d n d s 
U 2 

AB 00 

J C p . dn ds = 0 . 

AB 

o (27) 

(28) 

Let us now decompose the velocity into its mean value and fluc-

tuating part~ i.e. 

(29a) 

(29b) 

(30) 

(31) 

The product uv appears only in the integrals B C and H A 

whose paths can be chosen well outside the region where fluctuations 

occur. In that case, the Reynolds stress u'v l is zero along 

those two paths of integration and, consequently, uv ~ u v there. 

With these substitutions and simplifications we have, 

13 



~ 2J ~ ( 1 - ~ ) dn dZ; 

HC 

-J c p dn dZ; 

HC 
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+ 2 {J + J}~ (1 (32) 

AH CB 
where the directions of integrations have been reversed. 

b. Finite test section effects. For measurements performed in 

test sections with top and bottom walls that can be set for zero 

pressure gradient (constant velocity) in the absence of any blockage, 
~ 
it is possible to align everything so that there is no perpendicular 

velocity component along the top and bottom edges of the rectangular 

measurement contour. 

//JljIIIJIIII/I!JIIIIIIIIIII/I 11/1/1111111/11/11/1{ ----..-
B 

1 
-----------~ 
~ 

--:-JIo --...:.....-
,~ 

h 
~ 

@) 

All H 

c 

-"---

Do 
'IJI17l7l111 117717177/T1l/1777 1/11 i///IIIIIIII71!l11t 

In that case, the integrals along A Hand C B , in equation 32, 

will vanish since V = 0 along the path of integration. 

It is possible to use the fact that there is no mass flux 

through B C and A H to simplify some of the expressions. In 

particular, define 81 ' the displacement thickness, at the down-

stream contour C H , such that 

u 



r 

h(h - 0l)Uo - JU dy dz 

He 

(33) 

where Uo is the velocity at the downstream station outside the 

wake. Since we have assumed that there is no mass flux through the 

top and bottom edges of the contour, we have 

and therefore, 

U 1 
o 

(34) 

c. The pressure coefficient. We can separate the effects of free 

stream acceleration due to the displacement thickness (equation 34), 

from vressure differences across the wake, namely 

c 
p 

P - Pro 

.:kpU 2 
2 00 

= 
Po - Poo P - Po 

+ 
.:kpU 2 2 00 

.:kpU 2 
2 00 

- c 
Po 

+ c 
Pw 

We can now use Bernoulli's equation, which is applicable outside the 

wake, to compute cpo. This yields 
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To compute the pressure coefficient across the wake, i.e. 

P - Po 
- ~ U·2 ' 

2 P 00 

(35) 

(36) 

(37) 

consider the y-component of the momentum equation (11) in the far 

wake (x/d» 1). Taking the time average and neglecting viscous 

forces, we have 

a -t d -t a -t 1 d -t 
-·-uv +_v 2 +-uw ~ ---P ax ay az p ay (38) 

If the body has spanwise variations, the a/az derivative need not 

be zero even in the far wake (streamwise vortices are possible). We 

can average once again, however, in the spanwise direction to obtain 

/ 
a -t,z a -zt,z 

uv .+ v ~ ax ay 

1 d -t,z 
-p 

P dy 

To a good approximation in the far wake, we can neglect the 

first term (Townsend 1976) to obtain 

(39) 



where the averaging superscripts are implied. Integrating with 

respect to y~ we have 

(40) 

Consequently, the pressure coefficient across the wake becomes 

p - p ____ 0 !::! 
(41) 

:.:. p D 2 
2 00 

d. The drag coefficient in terms of downstream quantities. Using 

equations 32, 34, 36 and 41 we have) after a little algebra, 

-(l---~-l-/h-)-·l i ~ (1 - ~ ) dTj dl;; 

i UIT - :;z + 
- Do 2 dTj dl;; 

He 1 
(42) 

2hd 

The displacement thickness 01 can be estimated as follows. 

From equation 33 we have 

~ ) dTj dl;; 

for large xl d as u/Do + 1 . But, neglecting terms of order 

0l/h and the integral over the velocity fluctuations, we have 
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and therefore 0 1/ d TV CD / 2 . 

For wide test sections 0
1 
/h + 0 and equation 42 reduces to 

e. The integral over the velocity fluctuations. The contribution 

from the integral over the velocity fluctuations decreases in the 

far wake~ as xl d + co. This can be shown by the following argument. 

The velocity profile in the far wake is approximately similar, i.e. 

(44) 

where U o (x) is the velocity defect on the centerline, and a(x) is 

the wake half width, i.e. 

f(l) = 3:2. (45) 

To a good approximation, in fact (Townsend 1976), 

fey/a) (46) 

We can normalize a(x), the wake half width, with the body diameter, 

to define a dimensionless wake half width, 

0; (x) -
a(x) 

d 
(47) 

and express the velocity profile in terms of the dimensionless coordi-



nate n == Y / d, 1. e. 

(48) 

Under the same basic assumptions, we should also expect the velocity 

fluctuation profiles u,2 and V l2 to be approximated by 

and 

where c 1 and c 2 are constants. Consequently we have 

f un -7 
dn 

U 2 
HC 0 

U 2£ ~ _._0 [c 2 g 2 
U 2 1 1 

o 
. C 

(49a) 

(49b) 

(50) 

= a, (x) u0
2
.(X)}[C 1

2 g12 (n') - C2
2 g22 (nt)]dn'. 

U 2 
o 

HC 
For a two dimensional wake we find (e.g. Townsend 1976) that 

a,(x) Uo(x) ~ const. (51) 

and, in particular 

( )

-1:-
Uo (x) /U 0 0:: X ~ xo 2 (52) 
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20 

and 

~ 

a (x) p; (X ~ Xo ) 2 • (53) 

Consequently, we have 

-~ 

( X d- XO) . dn 0:: canst. (54) 

He 
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III. Measurement procedure 

From equation 42, it can be seen that the drag coefficient cD 

can be estimated from measurements across the wake~ at some downstream 

location Xl such that xl/d is large enough for equation 41 

to be valid. If there are no spanwise variations in the body to be 

measured3 it is SUfficient to measure at one spanwise location zl ' 

the following quantities: 

(ii) -h/2 < y < h/2 

in order to evaluate (equation 33) 

h/2 , 

f( 1 - u ) dy , 
Uo 

-h/2 

(56) 

and cD (equation 42) 

h/2d 
2 I I[~o (1 

'u '2 - ,,2 
] d-n1 + 

0 2-

I ' -,~ ) CD ~ 
-L-

(1 - o Ilh) 2 
U 2 2hd 0 Q 

-h/2d 
(57) 

where n = y/d 

If there are spanwise variations in the body (e.g. twisted 

cable) it is necessary to measure at several locations z within 

the spanwise period b , i.-e. 



2ll 

(i) U(X 1 , Y ,z) 

1 
-h/2 < Y < h/2 

(ii) U
f2

(Xl' y,z) 
-b/2 < z < b/2 

(iii) V
2 

(Xl' Y ,Z) 

and use the full equations 33. and 42. 

It should be possible to improve the accuracy of the measurement 

of the drag coefficient CD' as computed from the data on the basis 

of equation 42 or 57, and also estimate the confidence level for the 

measurement, by measuring at several downstream stations. 
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IV. Measurement specifications 

1. Velocity measurement requirements 

The very small percentage defects in the two dimensional wake 

at large x/d necessitate extremely accurate velocity measurements. 

Using equation 48 we have, at large x/d , 

c '~ 2 UO(X)jf(n/a) 
D Uo [ 

Uo (x) ] 
1 - U

o 
fen/a) dn (58) 

or, to first order in uo(x)/Uo , 

2 a(x) U o (x) f 
cD "v U

o 
fen') dn' (59) 

-00 

Using the empirical form for fen'), as given by equation 46, we have 

(60) 

and therefore 

(61) 

We can use an empirical estimate for the wake width a(x) , 

given by (Schlichting 1968), 

( 
X - Xo )~ 

a(x) "v ~ cD d ' (62) 



to obtain an estimate for the centerline velocity defect uo(x) • 

Substituting equation 62 into 61 yields 

Uo (x) • (X - Xo ) -~ ~ 0.94 ... 
Uo c n d 

(63) 

It can be seen "that at large x/d the velocity defect uo(x) 

is only a few percent of the local free stream velocity Uo • 

Consequently, accuracies of fractions of a percent are required to 

measure the quantities of interest. This is dictated by the require-

ment that the edges of the wake be accurately determined to permit a 

reliable evaluation of the necessary integrals. The required ac-

curacies, as can be deduced from equation 63, will be a function of 

x/d. Generally speaking, however, measurement accuracies, for the 

three quantities of interest, namely u, u,2 and v 2 , should 

be of the order of 

and 

eu 
- '"v ± 0.05% 
Uo 

'"v ± 1% 

(64a) 

(64b) 
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'"v ± 1% (64c) 

2. Averaging intervals 

The time averaging intervals required to establish an accept-
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ably accurate estimate of-the mean velocity will, in practical situ-

ations, be determined by the characteristics of two aspects of the 

flow, namely 

(i) amplitude and temporal properties of the velocity 

fluctuations in the wake, 

and 

(ii) turbulence spectrum and intensity of the test section 

free stream. 

The temporal properties of the velocity fluctuations in the 

wake are dominated by the vortex shedding mechanism. For a cylinder 

at Re > 40 , the dimensionless vortex shedding frequency, or Strouhal 

number, S, is given by (Roshko 1954), 

s == 
d - 0:21 

where T -1 is the vortex shedding frequency. To estimate the 
v 

'length Ta of the time averaging interval required for a given 

(65) 

accuracy, we must compute the variance of the mean velocity estimator 

_ 1 a I
T 

u(Ta) == T u(t) dt 
a 0 

Note that, for long averaging intervals, we have 

lim 
Ta+oo 

(66) 



Now the variance of u(Ta) is given by~ 

2 

U, (67) 

where E is the expectation operator. Substituting for u(Ta) , we 

have, after a little algebra 

(68) 

where Ru(T) is the autocorrelation function, 

(69) 

of the velocity fluctuations. 

We can approximate the autocorrelation function by assuming 

that the velocity fluctuations due to the vortices in the wake are 

uncoupled from the free stream turbulence, i.e. 

-YT 
e (70) 

where U'2(X,y) is the turbulence level due to the velocity fluctu-

ations in the wake, Tv is the vortex shedding period, m is the 

number of vortex shedding periods that it takes to decrease the 
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wake autocorrelation amplitude to l/e , u t2 is the free stream 
f 

turbulence level and y-l is the correlation time of the free stream 

turbulence. Substituting equation 70 into equation 68 we have 

var u a IV --- -. - , {·C~(T ')}.: . [u 12 (x, y) Tv + 2U~2] 1 

2 'IT2 m y Ta 
(71) 

where we have assumed that mTv « Ta , (2'ITIDy2» 1 

Consequently, the relative error in determining the mean velocity 

after an averaging interval Ta , is given by 

--- ~ 

au 
tV 

U o ex) 
_ f .(72) 2 . U t 2 J~ 

(YTa)uo2 (x) 

Using equation 72, we can estimate the required averaging 

interval Ta , for a required relative error au/uo(x). Several 

conclusions can be drawn from equation 72. 

(i) The required averaging interval decreases with the 

vortex shedding period. Consequently, for a given 

ReynoZds number~ mnaZZer diameters are to be preferred 

over Zarge ones and air is preferrabZe to water as a 

working fluid. 

(ii) The required averaging interval is considerably shorter 

at the wake edges, where u I2 (X,y)/uo 2 (x) is small. 

(iii) The free stream turbulence level should be small and it 

should have no low frequency components, i.e. 

U;2/U 0
2 (X) « 1 (73) 
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and 

(74) 

It should be mentioned that unless the free stream velocity 

is monitored in real time, and recorded with the velocity data in the 

wake, no drift in the free streOJ7l velocity can be tolerated~ during 

the time it takes to traverse the wake~ at least not larger than the 

accuracy with which the mean velocity must be determined with 

respect to U 0 (:::; 0.1%). 

3. Flow uniformity requirements 

The free stream mean velocity outside the wake should be 

sufficiently uniform to per1nitan accurate determination of Uo , 

as it enters in equation 42. An error oUo in determining Uo will 

result in. an error for cD of the order of 

(75) 

By way of example a 3% measurement maximum error of the drag 

coefficient due to this difficulty, for a d'V 0.5" in a h'V 20" 

test section requires .that 

<5 U 0 < ~ ( d ) <5 C < 0 04CTI U ~ 2 h D • 10 
. 0 

(76) 

It is anticipated that this will be one of the main sources of error 

in the final determination of the drag coefficient. 



4. Positioning requirements 

The small cable diameters that are of interest here, namely 

O.12STI < d < 4" , 

necessitate that the positioning mechanism be capable of scanning 

the y-axis in steps of at most 0.005". The requirements for the 

z-axis will be dictated by the spanwise period of the structure of 

the cable under examination. It should be possible to position 

the measurement point at ten stations within the spanwise period of 

the cable. The requirements for measuring the streamwise coordinate 

are not very strict, as that quantity does not enter in the cal­

culation of CD (equation 42). It would be desirable, however, to 

know the distance from the cable to wi·thin ±d for documentation 

purposes and also because it might be possible to use the similarity 

properties of the wake~ e.g. equations 54~ 6l~ 62 and 63 and estimate 

CD by ex-trapoZating to x/d + 00 the measurements of the first and 

third terms only~ of equation 42~ which only require that the mean 

streamwise velocity be measured. 
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V. Laser Doppler velocimetry 

1. General considerations 

The high accuracy required by the velocity measurements suggest 

laser Doppler velocimetry as the recommended method for determining . 

the quantities of interest. The system should be designed to mea-

sure u, to the accuracies specified by equation 64. 

A variety of systems can perform such a task, ranging in cost . 

by an order of magnitude, at least. The· system that will be described 

here is a "bareboneslf system that· can perform these measurements. 

Such a system, however, is labor intensive and whether it is the 

optimal final configuration depends on the anticipated volume of 

testing. The trade-off is between labor expense versus instrumenta-

tion automation, complexity and cost. It is not possible as of 

this writing, to explore the optimal system on the basis of cost 

effectiveness. 

The lfbareboneslf system should be able to yield measurements 

of the streamwise component u, as well as 

1 
u+ = 12 eu + v) (77a) 

and 

u 
1 
12 eu - v). (77b) 

The data can best be derived from discrete particle measurements of 
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the corresponding velocity, i.e. 

{CUi)' i 1, N } C78a) 

{CU+j ), j = I, N+} C78b) 

{Cu_k ) , k = 1, N_} C78e) 

at each.measurement location. 

From these data, it is possible to compute the'quantities of 

interest, namely 

U """ <U> 

U I2 = <u 2 > - <U>2 

v 2 <u 2> + <U 2> - <U>2 
+ , 

where the angle brackets denote ensemble averages, i.e. 

<u> 

<u2 > 

<U 2 > + 

= 

= 

1 
N .~Ui 

]. 

1 L 2 
N Ui 

i 

(79a) 

(79b) 

(7ge) 

C80a) 

(80b) 

(SOc) 

(SOd) 

In computing the various terms of equations 79 and 80, care must be 



.i''''' 

exercised to carry a sufficient number of significant figures so as 

to be able to compute reliably the differences of the large, and 

almost equal, numbers that are required. 

Problems due to laser Doppler sampling bias (DiJil.otakis 1976) 

are not expected to arise in the far wake, since the velocity mea­

surements will always be close to the free stream velocity outside 

the wake, Do (or Do/12 for u+ and u_). 

2. Optical arrangement 

The envisaged optical system utilizes the LDV dual (forward) 

scatter mode. The velocity component selection can be implemented 

by generating three parallel beams, of equal intensity, which are 

incident on the transmitting lens. These should be located, as 

closely as possible, on the vertices of a right isosceles triangle 

whose hypotenuse is aligned with the streamwise vector and whose 

three vertices are on a radius from the optical center of the lens 

(see figure 4). A mechanical device (e.g. a reed mounted on a 

stepping rotary relay) can be employed to block one of the beams at 

a time, so that in anyone configuration, two beams are transmitted 

which intersect at the common focal point (recall that the three 

beams are parallel) and selecting the corresponding velocity compo­

nent. 

A single, large aperture (3 < f# < 5) collecting lens can 

image the common focal point of the transmitting system through an 

appropriately sized pinhole and on a photodetector. See figure 4. 

The whole optical system should be so connected mechanically as to 

32 



minimize diffe~ential vib~ations be~en the ~ansmitting and col­

lecting optics platforms. 

It could be argued that a backscatter arrangement would be 

'simpler, in this case, obviating the collection optics lens and 

separate platform. I believe, however, that the disadvantages 

the backscatter system, namely 

(i) loss of signal of two orders of magnitude, 

(ii) sensitivity to window scattering, 

requiring a 0.5 W laser (versus 5 mW which should be adequate for 

the forward scatter system) and high quality w:indows to minimize 

window scattering, render this choice a less desirable one. 

We can summarize the optical requirements as follows: 

(i) The three beams should be aligned before the transmit­

ting lens so as to have a common crossing point in 

pairs. 

(ii) The divergence of the three beams, before the transmitting 

lens, should be such as to ensure that the beams foeus 

and c~oss at the same region in space. If this is not 

the case, the fringes in the focal volume will not be 

parallel and equidistant, resulting in an apparent spread 

8uopt • of the velocity distribution that will, in general, 

be indistinguishable from turbulent fluctuations. 

(iii) If the dual forward scatter LDV mode is used, the 

optical requirements on the windows are rather lenient. 

Generally speaking it should be possible to have an 

undistorted view through them to avoid beam bending away 
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from the common focus, and sufficiently smooth to 

avoid diffuse scattering from the surfaces which will 

raise the shot noise level at the photodetector. 

3. Signal processing 

The output from the photodetector (photomultiplier tube; or 

avalanche photodiode + transimpedance amplifier) is amplified in a 

low-noise preamplifier and band-pass filtered, to eliminate fre~ 

quencies outside .the range of the Doppler frequencies that the 

signal can assume. The filtered signal is then processed by a 

counter type processor (DISA , TSI 

yield the time of flight ~ti' of the 

fringes. The velocity is then given by 

n. 
1. 

u. = S 
1. ~ t. 

or GALCIT Mk IV) to 

ith particle for n. 
1 

1. 

where s is the fringe spacing 

s = e ' 
2 sin 2 

and where A is the laser wavelength and e the angle between the 

intersecting beams. 

Generally speaking the signal processing system should have 

the following capabilities: 

(i) It should be capable of measuring the Doppler fre-

quencies VD anticipated in this experiment. In 

(81) 

(82) 

34 



parttcular, Vn -is given by 

s 
(83) 

where u-'- is the velocity component perpendicular 

to the fringe planes and s is the fringe spacing 

(equation 82). Generally speaking, for most laboratory 

situations and common laser wavelengt.hs (see equation 

83) , 

l/s '\; 1 k Hz I (eml sec) . 

With water as the fluid medium (see abscissa of figure 2), 

the range of Doppler frequencies is then 

'\; 1 kHz < (vD) t < '\;; 300 kHz wa er 

and for air 

(8Sa) 

(8Sb) 

(ii) The analog signal handling electronics (preamplifiers, 

bandpass filters, etc.) should be such as not to 

further degrade the signal-to-noise ratio due to the 

unavoidable photodetection shot noise. Since the latter 

contributes a signal-to-noise (power) ratio that de-

creases inversely as the signal bandwidth, we have 

(SIN) h ~ I/BW ~ I/v ~ l/u . 
s ot D 

(86) 
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Consequently, this is more of a problem at the high 

velocities than at the low. This problem can be offset 

with higher laser powers, since we also have 

(87) 

rhe effect of noise on the analog signal is to render 

the zero crossings of the Doppler burst less well 

defined, resulting in an uncertainty in the measurement 

of the time of flight ~ti' and an uncertainty eUnoise 

in the velocity measurement. 

(iii) The clock periad that is utilized by the time af flight 

counter that determines ~ti (equatian "81) must be 

sufficiently small so. as not to. be the resa1utian deter-

mining factor. If lC is the clock periad, the apparent 

spread in the velocity distribution due to finite time 

af flight measurement reso1utian is given by 

eu 
lC 

= u. clock 
~ti l 

(88) 

ar, using equation 81, 

eu 
lC 

2 
clack SUi 

U
i 

(89) 

where n. 
J. 

is the number of fringes that are utilized 

in the measurement. Evidently, the problem becames mo.re 

severe as the velocity increases but is nat expected to. 



to be an important one considering the capabilities 

of presently available processors ('t I\) 10- 6 sec). 
c 

To the extent that the three sources of error are independent: 

optical imperfections + ou 
opt. 

shot & electronic noise + OU noise 

finite clock period + ou clock , 

their variances add, yielding an instrumental width ou 
instr. 

by, 

ou. t lns r. 

~ 

( 8u~Pt. + oU~oise + OU~lOCk) 2 

given 

(90) 

This instrumental width is indi~tinguishable from the spread in the 

velocity distribution due to turbulent fluctuations (unless spectra 

are computed in which case it appears as a base line background white 

noise level), Consequently the measured mean square fluctuation is 

given by, 

U T2 ~ U T2 + ou~ 
meas. turb. lnstr. (91) 

If we include this effect in the cal'culation of the expected 

accuracy for the mean velocity after an averaging interval Ta' 

we have (see equation 72), 
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eu [c "T;m T ) 
U T2 (X,y) 2 u f 2 

IV + (~) 
. f 

u o (X) U c 2 (X) U
0

2 (x) 
a a 

(;s) 

0U2 r + ,;; instr. 
(92) 

U o 2{X) 
a 

where Ts is the mean time between velocity samples (T -1 _ data 
s 

rate). 

It should be noted that~ whereas the accu:raey in determining 

the mean veLocity can a'lways be improved by a 'long averaging interva'l 

(equation 92)~ the mean square j1uci;uation measurement wiL'l~ at 

best~ be given by equation 91. It should be noted that even though 

eu2 can be subtracted from the measured mean square fluctu-
instr. 

ation (by measuring it, for example, outside the wake) it is desir-

able to keep it as small as possible and, in this case in particular, 

consistent with the specifications of equation 64. By way of 

reference, moderately careful laser Doppler measurements to date at 

the GALeIT Free Surface Water Tunnel have achieved 

eu. lnstr. 
U 

SO.5% . 

(There is no reason to believe that this could not be improved, 

should the need arise, by almost an order of magnitude.) 

4. Data acquisition 

The data rate should be controlled so that a sufficient number 
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of velocity samples is recorded during the averaging interval T 
a 

39 

This will generally require an automated data acquisition system that 

can record the (digital) time of flight f:, t . 
:I. 

(and the number of 

fringes n i , if required) for each particle. This can be on mag-

netic tape, with subsequent computer data reduction, or an on-line 

computer, if real time data reduction is found to be necessary. 

4. Fluid medium 

Almost any fluid can be used to perform this measurement. The 

low velocities that would have to be utilized in water (u > 1 em/sec) 

do not present a measurement problem (~ 2 mm/sec have been measured 

by the author at the GALCIT Free Surface Water Tunnel). Correspond-

ingly, the higher velocities that would have to be utilized in air 

(u < 45 m/sec) do not present a problem either (~ 500 m/sec have 

been measured by the author in the JPL 20 tl supersonic tunnel, with 

accuracies that meet the present specifications). The main differ-

ence, as far as the laser Doppler velocity measurement is concerned, 

is that air has to be seeded uniformly with appropriate scattering 

particles. While this is not difficult in a closed circuit wind 

tunnel, it is a major undertaking to do weUin an open circuit wind 

tunnel without compromising thefiow quality. Consequently, it can 

be seen that the deciding considerations are not dictated by the 

velocity measurements, but by relevant features of the candidate test 

facility. In particular, 

(i) flow quality in the test section (see section IV.3), and 

(ii) accessibility from both sides of the test section, 



through windows of adequate size and quality (see 

section V.2). 
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VI. Suggested program 

The proposed method of drag coefficient measurement is relative­

ly straightforward and likely to yield~ with adequate care, accuracies 

quite a bit better than the ±5% specification goal. It would be wise, 

however, at this stage, to conduct a pilot calibration program using 

a cylinder whose drag coefficient is accurately known throughout 

the range of Reynolds numbers of interest. To conduct such a 

program, a test facility should be chosen which either meets the 

flow quality specifications, or can easily be .modified to that effect. 

It would be inadvisable, in my opinion, to start from scratch 

and design or purchase the LDV laser, optics, positioning, signal 

processing, data acquisition and data processing system. A rough 

figure for such a system, including the man hours to design and 

assemble i~would be approximately $100,000. It would be preferable 

to rely heavily on existing equipment for the proof-of-concept 

program and decide, from its results and the anticipated test pro­

gram size, on an optimal instrumentation package that will perform 

the specified task. 
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Appendix 1. Useful numbers and units. 

1. Properties of air at 22°C (71°F), 1 Atm. 

fP = 1.197X10- 3 g/ em3 

f.I!.. 1.822x10-4 g/em·see 

V = ~/p = 0.152 em2 /see 

2. Properties of water at 22°C (7l0F). 1 Atm. 

P = 0.9978 g/em 3 

11 = 0.9548 X 10-2 g/ em· sec 

V = 11/ P = ,,0/.957 X 10-2 em2 
/ sec 

PV 2 = 9.14x10- S g·em/see 2 

3. Units of pressure 

1 dyne/em2 = 7.50 X 10-4 mmHg (OoC) 

4.01 x 10-4 in R (4°C) 

= 1.45x10-s 1bs/sq.in 

4. Units of velocity 

1 em/sec 1. 00 x 10- 2 m/ sec 

1 knot 

3.2sx10-2 ft/sec 

1. 94 x 10-2 knots. 

51.4 em/sec 

1.69 ft/see 

0.514 m/see. 
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FIGURE 4. Optical arrangement. Shown configured for (u + v) I /2 measurement. 


