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Distance-Dependent Kronecker Graphs
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Abstract—This paper focuses on a generalization of stochastic
Kronecker graphs, introducing a Kronecker-like operator and
defining a family of generator matrices dependent on dis-
tances between nodes in a specified graph embedding. We prove
that any lattice-based network model with sufficiently small
distance-dependent connection probability will have a Poisson
degree distribution and provide a general framework to prove
searchability for such a network. Using this framework, we focus
on a specific example of an expanding hypercube and discuss
the similarities and differences of such a model with recently
proposed network models based on a hidden metric space. We
also prove that a greedy forwarding algorithm can find very short
paths of length ����� ��� ��� on the hypercube with nodes,
demonstrating that distance-dependent Kronecker graphs can
generate searchable network models.

Index Terms— Distributed algorithms, graph theory, networks,
search methods, social factors.

I. INTRODUCTION

B EGINNING with the simple Erdös-Rényi model of
random networks [1], network science has attempted to

capture the key characteristics of complex networks such as
power networks, the Internet, protein interaction networks, and
social networks with a simple, mathematically tractable model.1

Social networks in particular have generated much interest due
to the consistency of their characteristics. These networks tend
to exhibit small diameter, high clustering, scale-free degree
distributions, and perhaps most importantly, they are searchable
by a local greedy algorithm; see [3]–[5] for thorough surveys
of this area.

The Erdös-Rényi random graph maintains a small diameter
but fails to capture many of the other key properties [1], [6].
The combination of small diameter and high clustering is
often called the “small-world effect,” and Watts and Strogatz
(see Section III) generated much interest when they proposed
a model that maintains these two characteristics simultane-
ously [7]. Several models were then proposed to explain the
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1A preliminary version of many of the results of this paper first appeared in
[2].

heavy-tailed degree distributions and densification of complex
networks; these include the preferential attachment model [8],
the forest-fire model [9], [10], Kronecker graphs [11], [12], and
many others [3]. As demonstrated by Milgram’s 1967 experi-
ment using real people, individuals can discover and use short
paths using only local information [13]. Kleinberg focuses on
this searchability characteristic in his lattice model and proves
searchability for a precise set of input parameters, but his
model lacks any heavy-tailed distributions [5], [14], [15]. The
Kronecker graphs described in [11], [12], and [16] are simple
to generate, mathematically tractable, and have been shown to
exhibit several important social network characteristics such
as heavy-tailed degree and eigen-distributions, high clustering,
small diameter, and network densification. However, Kronecker
graphs are not searchable by a distributed greedy algorithm
[16].

In this paper, we extend the model proposed in [2], a general-
ization of stochastic Kronecker graphs that can generate search-
able networks. Instead of using the traditional Kronecker op-
eration, we introduce a new “Kronecker-like” operation and a
family of generator matrices, , both dependent upon the dis-
tance between two nodes. This new generation method yields
networks that have both a local (lattice-based) and global (dis-
tance-dependent) structure. This dual structure is what allows a
greedy algorithm to search the network using only local infor-
mation. Additionally, the networks generated have a high clus-
tering (due to the lattice structure) and a small diameter (due to
the addition of long-range links).

As part of the analysis of this new model, we provide a gen-
eral framework for analyzing degree distributions and the per-
formance of greedy search algorithms on a general lattice-based
network. We use this framework to study one example in detail:
an expanding hypercube with distance-dependent long-range
connections. We give an explicit description of its degree dis-
tribution, the circumstances under which it will be searchable
by a local greedy algorithm, and a lower bound on its diam-
eter. We support our findings with simulations. This example
is chosen because it mimics the defining feature of tree met-
rics and hyperbolic space—exponentially expanding neighbor-
hoods—which are thought to be representative of both the In-
ternet and social networks [17]–[20]. Exponentially expanding
neighborhoods lead to very small diameters ( as op-
posed to ) and we can show that, as in [21], a local
greedy algorithm on the hypercube will find ultrashort paths,

.
This paper is organized as follows. Section II briefly defines

some key concepts frequently used in social network literature.
Section III describes in detail our model and its relation to the
original Kronecker graph model and other traditional models.
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Section IV explores the connection between a Kleinberg-like
expanding hypercube example and the hidden metric space
models proposed in [17]. Section V describes a general analysis
of degree distributions for lattice-based networks and gives a
theorem showing that all such networks will have a Poisson
degree distribution provided that is sufficiently small,
and gives the relevant degree distribution for the expanding
hypercube example. Section VI gives a general framework
for proving searchability of a lattice-based distance-dependent
network model and recovers the searchability result of [14]
and finally proves that the expanding hypercube is in fact
searchable. Section VII explores the diameter of the expanding
hypercube example and Section VIII concludes with proposed
future work. The Appendices support the proof of searchability
for the expanding hypercube example in Section VI.

II. PRELIMINARIES

Before continuing further, it will be useful to define several
terms commonly used in social network literature. A social net-
work is represented by a graph , where and are
the sets of vertices and edges, respectively. There is one vertex
for each agent, or person, in the network, and the edges repre-
sent the relationships between individuals. These relationships
can be summarized in an adjacency matrix where

if nodes and are connected
otherwise.

We note that while we will be working with undirected and un-
weighted graphs, in general, the edges in an adjacency matrix
representing a social network can be both directed and weighted,
showing the direction and the values of different relationships.
The neighborhood of a node is defined as the set of its
immediately connected neighbors. The degree of a node is
defined as the size of its neighborhood. We define the geodesic
between two nodes and as the shortest path connecting them.
The diameter of a network, for our purposes, is the length of the
maximum geodesic for that network. Note that in some cases,
what is meant by diameter is the average of all geodesics; how-
ever, for this paper we focus on the maximum. In social and
most complex networks, the diameter of the network grows log-
arithmically with the number of nodes int the network [7], [22].
Another useful and commonly used term is clustering, which
measures the amount of community structure present in a net-
work. For an individual node, we define a clustering coefficient

where

The clustering coefficient for the entire graph is then the average
of the clustering coefficients over all nodes [7]

Finally, we call a network searchable if a distributed search al-
gorithm can find paths through the network of length on the
order of the diameter. For example, in Kleinberg’s lattice model,
a network has diameter , and is called searchable if

a distributed algorithm can find paths of length
[14]. For more details on the distributed search algorithm, see
Section VI.

III. DISTANCE-DEPENDENT KRONECKER GRAPHS

In this section, we describe the original formulation of sto-
chastic Kronecker graphs as well as our new “distance”-depen-
dent extension of the model. We then present a few examples
illustrating how to generate existing network models using the
“distance”-dependent Kronecker graph.

A. Stochastic Kronecker Graphs

Stochastic Kronecker graphs2 are generated by recursively
using a standard matrix operation, the Kronecker product [11].
Beginning with an initiator probability matrix , with
nodes, where the entries denote the probability that edge

is present, successively larger graphs are
generated such that the th graph has nodes. The
Kronecker product is used to generate each successive graph.

Definition 3.1: The th power of is defined as the matrix
, such that

For each entry in , include an edge in the graph be-
tween nodes and with probability . The resulting binary
random matrix is the adjacency matrix of the generated graph.

Kronecker graphs have many of the static properties of
social networks, such as small diameter and a heavy-tailed
degree distribution, a heavy-tailed eigenvalue distribution, and
a heavy-tailed eigenvector distribution [11]. In addition, they
exhibit several temporal properties such as densification and
shrinking diameter. Using a simple 2 2 , Leskovec demon-
strated that he could generate graphs matching the patterns of
the various properties mentioned above for several real-world
datasets [11]. However, as shown by Mahdian and Xu, sto-
chastic Kronecker graphs are not searchable by a distributed
greedy algorithm [16]—they lack the necessary spatial struc-
ture that allows a local greedy agent to find a short path through
the network. This is the motivation for the current paper.

B. Distance-Dependent Kronecker Graphs

In this section, we propose an extension to Kronecker graphs
incorporating the spatial structure necessary to have searcha-
bility. We add to the framework of Kronecker graphs a notion
of “distance”, which comes from the embedding of the graph,
and extend the generator from a single matrix to a family of ma-
trices, one for each distance, defining the likelihood of a con-
nection occurring between nodes at a particular “distance.” We
accomplish this with a new “Kronecker-like” operation. Specif-
ically, whereas in the original formulation of Kronecker graphs
one initiator matrix is iteratively Kronecker-multiplied with it-
self to produce a new adjacency or probability matrix, we define
a “distance”-dependent Kronecker operator. Depending on the
distance between two nodes and , , a different

2For a description of deterministic Kronecker graphs, see Leskovec et al.,
[11].
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matrix from a defined family will be selected to be multiplied
by that entry, as shown as follows:

...
...

. . .
...

where

So, the th Kronecker power is now

In the Kronecker-like multiplication, the choice of from
the family , multiplying entry , is dependent upon the
distance . Note that our is not a true distance mea-
sure—we can have negative distances. Further, is not
symmetric since we need to maintain sym-
metry in the resulting matrix. Instead, and

.
This change to the Kronecker operation makes the model

more complicated, and we do give up some of the beneficial
properties of Kronecker multiplication. Potentially, we could
have to define a large number of matrices for . However, for
the models we want to generate, there are actually only a few pa-
rameters to define, as and a simple function defines
for . The underlying reason for this simplicity is that the
local lattice structure is usually specified by and , while
the global, distance-dependent probability of connection can
usually be specified by an with a simple form. So, while we
lose the benefits of true Kronecker multiplication, we gain gen-
erality and the ability to create many different lattices and prob-
ability of long-range contacts. We note in passing that the gener-
ation of these lattice structures is not possible with the original
formulation of the Kronecker graph model. For example, it is
impossible to generate the Watts–Strogatz model with conven-
tional Kronecker graphs. However, it can be done with the cur-
rent generalization. This is illustrated in our examples below.

Example 1: Original Kronecker Graph: The simplest ex-
ample is that of the original Kronecker graph formulation. For
this case, the “distance” can be arbitrary, and the family of ma-
trices is simply , the same used in the original defini-
tion. Thus, we define

Example 2: Watts–Strogatz Small-World Model: The next ex-
ample we consider, the Watts–Strogatz model, consists of a ring
of nodes, each connected to their neighbors within distance
on the ring. The probability of a connection to any other node
on the ring is then [7]. To generate the underlying
ring structure with , start with an initiator matrix , rep-
resenting the graph in Fig. 1(a).

Fig. 1. Generating the Watts–Strogatz model.

In order to obtain the sequence of matrices representing the
graphs in Fig. 1, we define a “distance” measure as the number
of hops from one node to another along the ring, where clock-
wise hops are positive, and counterclockwise hops are nega-
tive. Recall that the definition of “negative distance” is required
only to keep the matrix symmetric. The “negative” matrix is
just the transpose of the matrix defined for the “positive” direc-
tion. After each operation, the distance between nodes is still
the number of hops along the ring, though the number of nodes
doubles each time. We then define the following family of ma-
trices: :

Note that . So, starting from the initiator matrix in
Fig. 1(a), we have the following progression of matrices:

Note that the W-S model is not searchable by a greedy agent;
however, if , it becomes searchable [5],
[14]. It is possible to model this by simply adjusting

, as follows:

As in the previous examples, . The different defini-
tion for the middle node in the ring is due to the fact that we
need the probability of a connection to reach a minimum at this
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point, and then start to rise again. With this new definition of
, , we have the following progression of matrices:

This example already illustrates that the generalized operator
we have defined allows the generation of searchable networks,
but we will provide another more realistic example in the next
example.

Example 3: Kleinberg-Like Model: The final example we
consider, Kleinberg’s lattice model, is particularly pertinent as
it was shown to be searchable [14]. In the original formulation,
local connections of nodes are defined on a -dimensional lat-
tice, and long-range links occur between two nodes at distance

with probability proportional to . We focus on a “Klein-
berg-like” model here, where instead of a -dimensional lattice,
we have an “expanding hypercube” as our underlying lattice.

In this example, at any point, the graph is a hypercube with
some extra long-range connections, and when it grows, it grows
by doubling the number of nodes and adding a dimension to
the hypercube. Note that we will have nodes arranged on a

-dimensional hypercube. This example is of particular
interest due to recent work suggesting that many networks have
an underlying hyperbolic or tree-metric structure [18], [19]. The
expanding hypercube captures the key feature of these topolo-
gies, as the number of nodes at distance grows exponentially
in . This example is also very naturally represented using our
“distance”-dependent Kronecker operation and a Hamming dis-
tance as our “distance” measure.

To define the expanding hypercube, we define a graph with
nodes, numbered , where each node is labeled with its

corresponding -length bit vector. We define the “distance”
between two nodes as the Hamming distance between their la-
bels. The family of matrices is as follows:

for all

where normalizing constant, .
The graph may or may not be searchable depending on .
To mimic Kleinberg’s model, we let , so that

Fig. 2. Example: the growth of an expanding hypercube.

. Thus, for the sequence of graphs shown in Fig. 2,
we have the following sequence of matrices:

From the matrix, we can tell that in each step

if
otherwise.

In the original -dimensional lattice, a distributed algorithm (as
defined in Section V), can find paths of length only if

[14]; in the modified case presented above, we will see
in Section V that we need a different probability of connection
to find short paths.

IV. CONNECTION TO HIDDEN HYPERBOLIC SPACE MODEL

As mentioned previously, the expanding hypercube model in
Example 3 resembles models proposed in [17] and extended in
[18], [21], and [23]. In [17], every node in the network has a
hidden variable—their location in a hidden metric space. The
probability of a connection between two nodes is based upon the
distance between them in this hidden space. The resulting de-
gree distribution depends on the curvature of this hidden space;
if the space has negative curvature, the degree distribution will
be scale-free with [24].

In the distance-dependent Kronecker graph described in this
paper and [2], the probability of a connection is based on the
distance between two nodes in the given lattice, defined usually
by and in the family of matrices . As a result, the lat-
tice, or metric space, is not really hidden since neighbors are ex-
plicitly connected in the lattice. It is important to note that both
models incorporate a distance-dependent probability of connec-
tion. As will be defined formally in Section V, a local greedy
search algorithm can take advantage of this embedding into a
hidden or physical space to forward a message to a destination.
If a given node has a message to forward to a destination , it
can use its knowledge of the embedding to forward the message
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to its neighbor closest to the destination in the embedding. It is
not necessary that the embedding be physical, as shown in [18]
and [21]; rather, what is necessary is that the the probability of
a connection between two nodes is dependent on the distance
between them. In most social networks the abstract distance is
a measure of “social distance”—the likelihood of two individ-
uals being connected depends on their memberships in various
groups, among other factors.

In addition, in the models of [17], a hyperbolic space results
in exponentially expanding neighborhoods around each node. In
the distance-dependent hypercube example, there are nodes
at each distance , also resulting in exponentially expanding
neighborhoods. However, the hidden metric space model nec-
essarily includes the notion of a core and periphery of the net-
work, where high-degree nodes form the core connecting many
low-degree nodes at the periphery [21]. In the hypercube ex-
ample, all nodes are homogeneous in expected degree—there is
no notion of a core.

In [18], as nodes are located further from the origin in the
hidden hyperbolic space their expected degree decreases expo-
nentially . When this is combined with the exponen-
tially expanding neighborhoods , the result is a scale-
free distribution with . It is important to note that
an exponential decrease in expected degree is not strictly nec-
essary; to see this, let the number of nodes at distance from a
reference origin in the hyperbolic space be

Let the average degree of nodes at distance be

so that

Using

we have

which asymptotically behaves like a power law with
. In the hypercube example, despite the exponential expan-

sion of neighborhoods, the resulting degree distribution will al-
ways be Poisson as long as the probability of connection is suf-
ficiently small, as shown in the next section.

Nevertheless, the connection between this model and those
based on tree-metrics and hidden metric spaces is important to
note, as one key factor emerges: a distance-dependent relation is
necessary for a greedy algorithm to succeed in finding shortest
paths.

V. DEGREE DISTRIBUTION

In this section, we describe a general characteristic func-
tion-based analysis of degree distributions for lattice-based

networks, and apply it to the expanding hypercube example in
Section III. In general, any lattice-based network with a dis-
tance-dependent probability of connection will have a Poisson
degree distribution, as long as the probability of a connection
at a distance is sufficiently small. Formally:

Theorem 5.1: The degree distribution of a general lattice-
based network with a distance-dependent probability of connec-
tion and maximum distance will have the following
degree distribution:

where

(1)

and number of nodes at distance from a reference node
in the lattice. We note that if , then the
degree distribution is Poisson.

Proof: Let denote the degree of an arbitrary node in
a general lattice-based network with nodes. Thus,

where

if link to node
otherwise.

We define the characteristic function of the degree distribu-
tion as

We can then group the expectations

(2)

Thus, we can pull out the first term and using binomial approx-
imation of , we have
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Expanding, we see that the characteristic function is

From such a representation of the characteristic function, we can
clearly see the degree distribution as

We now turn to a specific lattice-based network, the hy-
percube distance-dependent Kronecker graph described in
Example 3 in Section III. In this example, , and
the maximum distance in the network is . We use
a particular optimized for
searchability, as determined in Section VI.

Theorem 5.2: The degree distribution of the expanding hy-
percube is given by the following Poisson distribution

where (3)

Proof: We use the same framework as in the proof of The-
orem 5.1, and let for simplicity. In this case, the char-
acteristic function becomes

so that

To calculate , we use the entropy approximation
, which holds as when ,

so that

We can approximate the sum by using saddle point integration

(4)
where is the saddle point of the function , i.e., the point
at which .

We rewrite the sum in nats, leaving out the constants in
front

and then we let ,

so that, with the saddle point approximation of line (4),
and .

Using Mathematica, we find

yielding

(5)

So, our is now

With the results of Theorem 5.1, we have a Poisson degree dis-
tribution with parameter .

A. Expected Degree

From the characteristic function, we can also determine the
expected degree

Thus, the expected degree of the expanding hypercube example
is a growing function of .

B. Simulation of Expanding Hypercube Example

Simulating the expanding hypercube with the deter-
mined in Section VI yields results that match well, within a con-
stant, the analysis above. Fig. 3 shows the comparison of the
theoretical and simulated expected degrees, while Fig. 4 shows
an example histogram of the degree distribution, both theoret-
ical and simulated, with . The Poisson nature of the
distribution is clearly visible, as is the growth of the expected
degree as a function of .

VI. PROVING SEARCHABILITY

While the distance-dependent Kronecker graph model is
more complicated than the original Kronecker graph model, it
can capture several existing network models, and it incorporates
“distance” into the probability of connection, allowing for sev-
eral cases in which searchability can be proven. In this section,
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Fig. 3. Expected degree of expanding hypercube.

Fig. 4. Example histogram with � � ����.

we first give a general framework within which a lattice-based
network can be proven searchable and then proceed to the
specific cases of the Kleinberg model [14] and the expanding
hypercube model of Example 3 in Section III.

A. General Searchability Theorem

We define a decentralized algorithm similar to [14]. In
each step, the current message-holder passes the message to a
neighbor that is closest to the destination, . Each node only has
knowledge of its address on the lattice (given by its bit vector
label in the case of the expanding hypercube), the address of the
destination, and the nodes that have previously come into con-
tact with the message. For the graph to be searchable, we need to
have that the distributed algorithm is able to find short paths
through the network, which are usually , where is the
diameter of the network.

Let the current message holder be node and the destination
node . We will say that the execution of a decentralized search
algorithm is in phase when , where

is the distance between node and node . Thus, the
largest value of in a general lattice-based network is

, where denotes the maximum geodesic in the
network. For example, in a hypercube, the maximum geodesic

Fig. 5. Relative positions of nodes �, �, and � in phase � .

is , so . We define
and

.
Theorem 6.1: A decentralized algorithm will find short

paths of length , when the probability of a con-
nection is

(6)

where .
Proof: Suppose we are in phase with current message

holder node ; we want to determine the probability that the
phase ends at this step. This is equivalent to the probability that
the message enters a set of nodes , where

message enters

In any network model, enforcing searchability boils down to
determining this , the minimum number of nodes at
a distance from a given node within a ball of nodes cen-
tered around the destination, , as illustrated in Fig. 5. Once this

is found, if we set the probability of a connection
between two nodes distance apart as in Theorem 6.1, with
an appropriate constant, we will find that each phase described
above will end in approximately steps, and, as there are
only such phases, our greedy forwarding algorithm will
be able to find very short paths of length .

Thus, we have

msg enters

(7)
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(8)

where the approximation in line (7) requires that
, which holds with the as

specified in line (6) (see proof of Theorem 5.1 for extra order
terms), and line (8) comes from the power series expansion of

. Let denote the total number of steps spent in phase
. Then,

Let denote the total number of steps taken by the algorithm

and

(9)

where line (9) holds , .
With this framework, we can explore the searchability of any

lattice-based network model with distance-dependent connec-
tion probability.

B. Searchability in Original Kleinberg Model

In the original Kleinberg two-dimensional lattice [14], the
number of nodes at a distance from a reference node is ap-
proximately , ignoring edge effects. The maximum distance
between any two nodes is , so . Additionally,
the diameter of the graph is on the order of . In general,

for a fixed , resulting in the probability of con-
nection optimized for searchability, .
Using this

(10)

(11)

where line (10) holds for the specified, and line (11) comes
from the power series expansion of . Therefore,

and

(12)

where line (12) holds , .

C. Searchability in Expanding Hypercube Example

In the expanding hypercube example of Section III, each node
has neighbors from the lattice itself. With the addition of
long-range links, we expect the diameter to be ,
similar to [18]. Note that with this example,

and the number of nodes at distance equals . Using
Theorem 6.1, we can prove the following result:

Theorem 6.2: A decentralized algorithm will find paths
of length in the expanding hypercube example
when

(13)

such that the probability of a connection is

if

if
(14)

Proof: Using Theorem 6.1, all that remains is to find
and to determine the appropriate constants to use.

Without loss of generality, we assume that the destination node
is the all-zero node (i.e., its label is the zero vector) so that we

can write . To determine in our case,
since the distance measure is a Hamming distance, we must
count the number of possible bit vectors that are at a specific dis-
tance from a node while still being within a certain distance
of the destination. We prove that in
Appendix A. We then let for reasons that will be
clear below. Using the same framework as in Theorem 6.1 we
have that

(15)

(16)
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Fig. 6. Average path length found by greedy algorithm using local information.

where line (15) holds for the specified, and line (16) comes
from the power series expansion of . Therefore, we have

and

Since the expected number of steps in phase is , and there
are at most phases, the expected amount of steps taken by
the algorithm is at most . So, with this definition of

, the distributed algorithm provides searchabilty.

D. Simulation of Distributed Search Algorithm

We simulated the local greedy algorithm described above in
MATLAB for with the probability distribution
as in Theorem 5.2 and appropriate floor functions. We found
that the greedy algorithm finds a path between two nodes with
an average length of a constant factor away from the diameter
of the simulated network, where diameter is defined as the max-
imum geodesic in the network. Note that the two nodes selected
for the simulation are actually the “worst case” nodes—the dis-
tance between them in the network is exactly the diameter. Fig. 6
illustrates the results of the greedy algorithm simulations.

E. Path Length With Sub-Optimal P(d)

In this section, we analyze the performance of the local
greedy search algorithm on the expanding hypercube when

is not optimal, as in Theorem 6.2. For this example, let
, which is clearly not from

Lemma 9.1. We will show that this suboptimal also allows
for searchability.

Using the same framework as in Theorem 6.1

msg enters

(17)

where line (17) holds for the specified and where

(18)

where we have used the approximation , which
holds as when , in line (18). Since
the exponent is convex in , the maximum will be at either the
upper or lower bound of the sum. For the lower
bound yields the maximal exponent. So, we have

msg enters

where we have used the power series expansion of and
where

(19)

Continuing with the proof of searchability, we have

and

since is convex but its minimum occurs close to .
As a result, even for suboptimal , a local greedy algorithm
can find short paths. However, the bounds used in the analysis
above are looser than those in previous sections, so the final ex-
pected number of steps taken by is not as tight. This analysis
is supported by simulation results as shown in the figure Fig. 7.

Finally, if , using the same sort of
techniques as above we can show that for
a large enough . Note that in this case, the paths found will be
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Fig. 7. Performance of greedy algorithm when � ��� � ���� � � .

Fig. 8. Performance of greedy algorithm when � ��� � �� ��� � � .

, which are longer than before. Simulation re-
sults with this are shown in Fig. 8.

VII. BRIEF DIAMETER ANALYSIS OF HYPERCUBE

In this section, we briefly discuss the diameter of a general
random graph. Finding the actual diameter, defined as either the
maximum or the average geodesic in the network, can be very
complicated. We discuss a simple lower bound of the hypercube
example here, which can be applied to any random graph.

If we assume that the expected degree of the hypercube ex-
ample in Section III is polynomial in , say , similar to what
was found in Section IV for the expanding hypercube, we can
lower bound the diameter as follows. We assume that at each
step, every node has neighbors and that it takes steps to
reach all nodes. Therefore, to reach all nodes in the net-
work, we have

Constant diameter.

Fig. 9. Simulated and theoretical diameter of expanding hypercube.

Thus, a simple lower bound for the diameter of a graph with
polynomial expected degree is some constant, . We can also
work backwards, assuming a diameter. In this case, we
have

which is less than a polynomial in , but still grows with .
Fig. 9 compares the simulated diameter of the expanding hyper-
cube example with the two lower bounds discussed above. For

, both lower bounds appear to be a good match.

VIII. CONCLUSION

We have presented a generalization of Kronecker graphs
by defining a family of “distance”-dependent matrices and a
new Kronecker-like operation. As a result, the network model
defines both local regular structures and global distance-depen-
dent connections. Though the model is more complicated than
the original Kronecker graph model, it is more general, as it
can generate existing social network models, and more impor-
tantly, networks that are searchable. These properties emerge
naturally from the definition of the embedding of the nodes
and the probability of connection within the family of matrices

. Any lattice-based network model with distance-dependent
connection probabilities can be analyzed using the framework
described in Sections V–VII for exploring degree distribution,
diameter, and searchability. Most importantly, the searchability
analysis shows how to make any network model searchable by
defining the appropriate probability of connection based upon

. The particular expanding hypercube example explicitly
described here shares characteristics with those based upon
hidden hyperbolic spaces [17], [18], though it has one major
difference—degree homogeneity across nodes. Nevertheless,
its exponentially expanding neighborhoods and distance-de-
pendent probability of connection make it a good model for
social networks as people tend to exhibit strong homophily,
i.e., associating with other people most like themselves. In
addition, in contrast to Kleinberg’s lattice-based model [14],
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the searchability of the expanding hypercube is not too sensitive
to the choice of .

Though this paper gives a near complete description of the
characteristics of “distance”-dependent Kronecker graphs, there
are many interesting questions that remain. These include how
to parameterize the model from real-world data sets, and how
to incorporate network dynamics. Ideally, given any data set,
we would like to be able to find an appropriate family of dis-
tance-dependent matrices to match any desired characteristic of
the data set. Additionally, while the current model incorporates
some measure of growth, growing from a small initiator matrix
to a final adjacency matrix, we would like to better in-
corporate mobility into the model so that it is not just a static
description of the network at one point in time.

APPENDIX A
CALCULATING THE SIZE OF

In this appendix, we show a lower bound for , the
number of nodes at distance from a given node , still within
distance of the destination, .

Lemma 9.1:
Proof: We first count exactly the number of nodes in

, the number of nodes at a distance from a given node
within a ball of nodes centered around the destination, , as

illustrated in Fig. 5. Without loss of generality, define as the
all zero node, . Arrange the label of such that

. Define according to
this partition of , so that and have “1” entries and
and have “0” entries. Let denote the weight, or number
of ones, of the label of node . We know the following:

We can solve in terms of , yielding

We also know that we must satisfy the following:

From these bounds we have

Note that the second and third bounds do not affect .
Counting the number of nodes in the ball, we have

where we have substituted and , for the upper and lower
bounds above, respectively. We can now approximate the
number of nodes in , using the entropy approximation
for combinations. Let , , , .
Using this notation, we have

(20)

where

(21)

subject to

Note that line (20) is true as when .
Note that the function is concave in , so unconstrained op-

timization yields the two solutions below, each giving different
values of

when

yielding

when

yielding

The resulting are derived in Sections A and B
below. As the second solution yields a smaller ,
we have an overall .

A. Solution 1:

In this region, the solution to the unconstrained problem,
gives us the maximal . Substituting in for the
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size of and using the same entropy approximation as
before, we have

B. Solution 2:

In this region, we choose one of the boundary points,
, as the solution to the maximization problem.

Substituting this solution for in , we obtain

This gives us a function of , so we want to find the
worst case that minimizes . The new optimization
problem is thus

(22)

Note that the bounds for this region are as follows:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;

where 1) and 2) come from the bounds on , 3) comes
from the bounds on , and 4) and 5) come from the ranges
for and the size of the network. Note that 1–5 are always true,
not just in this region. 6),7), and 8) come from the fact that our
solution is minimal in this region. Note that 8) implies 7).

Computing the Hessian of the function in line (22) shows that
it is concave in both and ; the derivation is in Appendix B.
Since our function is concave, the is found from
the boundary points of Region 2. Rearranging the bounds from
before in terms of we have the following:

1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) when ;
9) when .

Fig. 10. Boundaries of ���� when � � �����.

Fig. 11. Boundaries of ���� when � � �����.

When , only bounds (1,2,3,4) apply to ,
yielding 5 points that we need to examine, as shown in Fig. 10.
If , then is minimal at point (1), ,
yielding

(23)

where line (23) holds for large , using the entropy approxima-
tion . If , then is minimal at
point (5), , yielding

When , only bounds (2,3,4, and 8) apply to ,
yielding 4 points that we need to examine, as shown in Fig. 11.

For this region, is minimal at point (1), matching point
(5) in the previous region, yielding

(24)

where line (24) holds for large , using the entropy approx-
imation . Thus, when , we
have , and when , we have

. Finally, we have that when
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, we apply Solution 2, and we have
when Solution 2 is valid. Com-

paring the Solution 1 with Solution 2, we have again that
.

APPENDIX B
CONCAVITY OF FOR SOLUTION 2

Lemma 10.1: The function
is concave in both and .

Proof: To prove that the function is concave in both and
, we need to see if the Hessian is negative definite. Let

Taking derivatives with respect to , we find

and

From the bounds for this region, we can see that the function
is concave in .

Taking derivatives with respect to , we find

and

From the bounds in this region, we can see that the function
is concave in .

Taking derivatives with respect to both and , we find

The Hessian is

We want to show that the Hessian is negative definite, i.e.,
that . We have already shown that , so it

remains to show that the second leading principal minor of is
positive definite. This is just the determinant of

We rewrite the second derivatives as

where, from above,

So, our determinant is now

Simplifying, this is just

which, from our bounds, is positive. Since the determinant of
is positive, and since is negative, we can say that is
negative definite, and the function is concave in both and .
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