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1. INTRODllCTION 

The purpose of this paper is to provide a des­
cription of some problems and recent results in the 
theory of distributed bilinear control systems. The 
paper is in no way comprehensive and should be viewed 
only as an introduction to selected problems in con­
trol theory. Details may be found in Ball, Marsden, 
and Slemrod (1] and Ball and Slemrod [2]. 

As a motivation for our later analysis consider 
the following problem arising in the control of the 
transverse displacement w(x,t) of a vibrating beam of 
length ~ where we use axial force pet) as a control. 
A simple model of this situation is provided by the 
equation 

Wtt + wxxxx + pet) Wxx = o. 

Assume the beam has clamped ends so 

w ; w ~ 0 at x = O,~. 
x 

(l) 

If P is a constant two possibilities exist: either 
p is subcritica1 and the beam has undamped oscilla­
tory motion or p is supercritical and the equilibrium 
state {w,w } ; [O,O} is unstable. Hence if it is 

t 
our goal to stabilize the motion so the lW,Wt}~{O'O} 

as t~ (in some sense). a choice of constant p is 
doomed to failure. Similarly if we desire to control 
the motion to some full neighborhood of a given state, 
a constant p will allow us to reach only a highly 
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restricted set of states. For these reasons we are 
led to consider the following two mathematical prob­
lems where pet) is time varying. 

Controllability: 
Can we find a pet) such that on a finite time 

interval [O,T] we can bring w(x,t), wt(x,t) to a 

prescribed function values, i.e. 

w(X,T) = "'l(x), Wt(x,T) = w
2

(x). 0 < x < ~? 

Stabilizability: 
Can we find pet) such that on the 

interval (O,~) pet) can be written as 
functional of w,wt in such a way that 

t~ (in some sense)? 

infinite time 
a (feedback) 
{w,w }+{O,O} as 

t 

We note that since {w,w } '" {O,O} is an €quili=--
t 

rium point of (1). (2) any reasonable uniqueness 
theorem will preclude us from being able to control 
to the state tw

1
,w

2
} = {O,O} in finite time. 

What methods should be used to attack the control­
lability and stabi1izability problems? A state space 
theory based on evolution equations in abstract inf~ 
ite dimensional vector spaces is one useful way to 
proceed. Such an approach provides both the structure 
to prove relevant theorems, yet the generality to 
cover many interesting examples. 

2. THE ABSTRACT EVOLl.iTION EQUATION 

Consider the abstract evolution equation 

dUCt) 
at Au(e) + pet) 6(u(t», 

u(O) u • 
o 

(3) 

(4) 



o Here A generates a C semigroup on a Banach space 

S ' 1 ' X, : X~X lS a C map and the control p lS real valued 

2 

f',mction of t. To see that (1), (2) is actually in 
the form (3) we set 

U' (:,)- Au .(~;: :)-. 

aod Su • (~;: : ) •• nd 1., 

? 2 
X be the Hilbert space H~IO,l)xL (0,1) 

with inner product 

.. * 11 * * * < (w1 ,w
2
), (w1 '''''2) >x : (wl WI ....... 2w2) dx. 

o XX xx 

Here H2(O,~) denotes the Sobolev space made up of 
o 

functions in L2 (O,2.) whose first and second general-

ized derivatives lie in L
2

(O,2.) and satisfv (2). (A 
good reference for Sobolev spaces is the ~ok of 
Adams (3]: good reference on semigroups are the notes 
of Pazy (4] and the book of Balakrishnan (5).) 

Of course many other physical problems can be 
put in the form (3), (4). A list of such problems 
may be :o~~d in the papers of Ball and Slemrod [21, 
(61. 

3. Controllability: 
Having argued that (3), (4) is natural way to 

view distributed bilinear systems, we now proceed to 
the question of controllability of (4) with an eye 
to providing a taste for the methods and problems 
involved in developing an adequate theory. 

For (3), (4) the variation of constants formula 
gives 

t 

At f A(t-s) e u 0 + e p ( s) B ( u Is; p , uo» ds. 

o (5) 

At 
Here e denotes the s~~igroup generated by A and 
u(t;p,u

o
) means that the state vector u is evaluated 

at time t with control p and initial datum u . 
o 

One iteration of 

At ft u(t;p,u ) =e u + 
o 0 

o 

(5) yields the equation 

A(t-s) ( )s( As e p s e U
o 

+ 

A(S-T) e p(T)B(u(T;P,Uo»dTJds. 

(6) 

Continuing in this faShion we see that at least for­
mally we can write 

At ft A(t-s) As u(t:p,u ) = e u + e p(sIB(e u) ds 
000 

o (7) 

+ higher order terms in p. 

(Actually this idea is due to Volterra (7]). 
for small p we could take 

t 
- At 1 A(t-s) As u(t;p,u ) - e u + e p(s)S(e u) 

o 0 0 
o 

Hence 

ds. (8) 

Thus a linear approximation to our control problem of 
finding a p such that 

(9) 

for h f X prescribed is the problem of finding a p 
such that 

AT iT e uo + 

o 

A(T-s) ( )B( As ) ds e p s e u
o 

If we set 

Lp i I 
(10) can be rewritten as 

AT 
Lp : h - e u 

o 

h. (10) 

(11) 

Here L is a linear operator acting on the space '~ere 
the p'S lie. If we were able to solve the linear 
approximating problem (11) for all h (X, then an 
application of the generalized inverse function 
theorem [a) would tell us that the original equation 

(9) could be solved for p as well if h - eATu
o 

is 

sufficiently small. 

All this sounds rather easy. However it is not 
usually simple to check the surjectivity of L except 
in rather special cases, e.g. A,B bounded linear 
operators a~~ X finite dimensional. The reason for 
this difficulty is that typically L will map the 
space of p's into but not onto X. In such situation~ 
X must be modified to a smaller space appropriate to 
the problem. We investigate this subject in detail 
in [1]. 

As mentioned above, the surjectivity of L is 
relatively easy to check if L has closed range R(L) 
and the Fredholm alternative holds. For instance, 
if X is finite dimensional X '" R (L) €I N (L*) (and not 
just X : RIL) <3 N(L*)). Hence if X is finite dimen­
sional, N (L") '" {O} implies R (L) '" X and surjecti'.'ity 
holds. But if the space of controls/is, say 

p (L
2 (O,T], then it is easy to see L*q = 0 if and 

-As As > only if <q,e Be u = 0 for 0 < s < T. Expansion 
o 

of 

-AsS As s2 
e e Uo '" Suo - s [A,B] uo + ;! (A, [A,6]]u

o 
..... 

where [A,B] ~ AS - SA yieldS the well known control­
lability result {9]: 

Assume X = itn and that dim span 
{Su , (A, 5) u , [A, [A,Bll u , ... ! = n. There is an 
000 

II AT '1 ( > 0 such that if e u
o 

- hi < (then there is a 

2 PC; L [O,T) such that U(T;p,u
o

) - h. 



4. Stabilizability: 
The theory of stabilizability of (3), (4) is 

much more developed. It has been covered to a large 
extent in the papers of Ball and Slemrod [2), [6). 
We shall not go into very much detail here, only 
sketching the main ideas and open problems. 

Assume that A is dissipative, i.e. <Aw,'~ >X ~ 0 

for all ~ (D (A). For example in (1), (2) <A"" 1lJ > x=O). 

Let us now (at least formally) compute: 

1 d 2 
---llu(t)11 = <u,Au> + p(t)<u,B(u»x' 2 dt X X 

Since A is assumed to be dissipative we have 

2 
d~j ju(t)il x ~ 2p(t) < u,8(u) >X· 

Hence if we choose 

then 

p (t) - <u,8(u» 
X 

2 2 
~I luCt) I Ix ~ -2 <u(t) ,8(u(t»>x 

2 

(12) 

and I luCt) I Ix is non-increasing. If we knew that 

u(t), 0 < t < =, belonged to a compact subset of X, 
then Hale's generalization [101 of LaSalle's Invari­
ance Principle [111 would tell us that ~, uCt) 
approached ~~e set of y such that 

<yCt),B(y(t»>x = 0 for all t> 0 (13) 

where yCt) is a solution of (3) with pet) = 
-<y(t),B(y(t»>. But this means that 

At At <e y ,B(e y l> = 0 for all t > 0 
o 0 X 

(14l 

where yeO) = Yo' Hence we may conclude that if u(t) 

belonged to a compact subset of X and the only solu­
:ion to (14) is Yo = 0, then u(t)~ as ~ in ~~e 

strong (norm) topology of X. Unfortunately it is 
not clear in general that u(t) will belong to a com­
pact subset of X. To overcome this difficulty Ball 
and Slemrod [2), [6] resorted to use of the weak 
topology on X. They were then able to sho\" under 
natural assumptions on A and B, that if the only 
solution to (14l is Yo '" 0 then u (t)+O as t" co 

weakly. Strong convergence is still an open question 

For example this weak topology approach leads 
for (1), C2l to the following result 

(Theorem 4.3 of [21): 

Set oCt) "'f~ w w ax. Then for all initial 
- 0 t xx 

data {w .w j (H2 (0,1) x L'(O,).), (ll. (2l possesses o 0 0 __ ~ __ --..-___ _ 

a unique weak solution ;.w'·"'tJ (C «(O,eo); H~ (0.1) x 

i:"2 (0,2.) and '~w'Wt} + ~~o,o1 weakly in 

H2(O.J.) x L2(0,;:'1 as t+"". 
Q 

Unfortunately this is not as nice as it looks. 
Even if we ignore the fact that we have only proven 
weak decay there is a more important difficulty, 
namely pet) as given (12) in general or 

~ r w w dx in our example depends on complete know­
)0 t xx 

ledge of uCt), i.e. full state feedback. In practice 
we can only sense a finite dimensional projection of 
u. Thus it would be desirable to have a theory in 
which pet) could be chosen with less than a full 
knowledge of u. Based on ideas of Balas (12), [13] 
it seems unlikely that this can be done if the uncon­
trolled system has no damping since "spill-over" of 
energy from controlled to uncontrolled modes will 
occur. Nevertheless this problem and its understand­
ing may be crucial in real world applications of the 
abstract theory. 
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