SBML, BioModels.net, and SBGN

Michael Hucka

Co-director—Biological Network Modeling Center (BNMC), Beckman Institute
Senior Research Fellow—Control and Dynamical Systems

California Institute of Technology
Pasadena, California, USA
SBML background
SBML background

- Conviction that computational modeling becoming crucial
- Mechanistic modeling and dynamical simulation enables quantitative hypothesis testing
SBML background

- Conviction that computational modeling becoming crucial
- Mechanistic modeling and dynamical simulation enables **quantitative hypothesis testing**
- Not a new idea—dates to 1940’s if not earlier
SBML background

- Conviction that computational modeling becoming crucial
 - Mechanistic modeling and dynamical simulation enables quantitative hypothesis testing
- Not a new idea—dates to 1940’s if not earlier
- Today software tool support is better than ever
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

CellDesigner
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

JDesigner
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
- Editing/creating models
- Simulating/analyzing
- Visualizing
- Databasing

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma→Mi</td>
<td>MPF Inactivation</td>
<td>Mass Action</td>
</tr>
<tr>
<td>Mi→Ma</td>
<td>MPF activation</td>
<td>l_c*Mi</td>
</tr>
<tr>
<td>Ca→Cl</td>
<td>Cdc25 inactivation</td>
<td>Michaelis-Menten</td>
</tr>
<tr>
<td>Cl→Ca</td>
<td>Cdc25 activation</td>
<td>l_c*Cl</td>
</tr>
<tr>
<td>Wa→Wt</td>
<td>Wee1 inactivation</td>
<td>Michaelis-Menten</td>
</tr>
<tr>
<td>Wt→Wt</td>
<td>Wee1 activation</td>
<td>l_w*Wt</td>
</tr>
<tr>
<td>L→L2</td>
<td>Labelled inactive MFP affected by Cdc25</td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td>Labelled inactive MFP affected by Wee1</td>
<td></td>
</tr>
<tr>
<td>kc</td>
<td>Species</td>
<td>vcp*C_m</td>
</tr>
<tr>
<td>kw</td>
<td>Species</td>
<td>vwp*Wm+</td>
</tr>
<tr>
<td>vcp_</td>
<td>Species</td>
<td>vcp*Cdc</td>
</tr>
<tr>
<td>vcpq_</td>
<td>Species</td>
<td>vcp*Cdc</td>
</tr>
<tr>
<td>vcpp_</td>
<td>Species</td>
<td>vcpp*Cdc</td>
</tr>
<tr>
<td>vcppp_</td>
<td>Species</td>
<td>vcpp*Cdc</td>
</tr>
<tr>
<td>vwp_</td>
<td>Species</td>
<td>vwp*Cm</td>
</tr>
<tr>
<td>vwpw_</td>
<td>Species</td>
<td>vwp*Cdc</td>
</tr>
<tr>
<td>kmc_</td>
<td>Species</td>
<td>kmc*Cdc</td>
</tr>
<tr>
<td>kmr_</td>
<td>Species</td>
<td>kmr*Cdc</td>
</tr>
<tr>
<td>kmw_</td>
<td>Species</td>
<td>kmw*Cdc</td>
</tr>
<tr>
<td>kmwr_</td>
<td>Species</td>
<td>kmwr*Cdc</td>
</tr>
<tr>
<td>wc_</td>
<td>Species</td>
<td>wc*Cdc2</td>
</tr>
<tr>
<td>ww_</td>
<td>Species</td>
<td>wc*Cdc2</td>
</tr>
<tr>
<td>Cdc25Total_</td>
<td></td>
<td>Species Cdc25Ti</td>
</tr>
</tbody>
</table>
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

SBML Model Integration Server

A web interface to the SBML_odeSolver pro

This server will integrate a valid SBML model. At this stage the web service is experimental!!!

Instructions

- Please upload a valid SBML Model
- Please provide a valid email address (you will be notified by email)
- Your model will be validated prior to integration using the function
- If validation errors occur, please correct them and resubmit your model

Choose File: no file selected

Your Email Address

<table>
<thead>
<tr>
<th>Simulation Time (use scientific notation e.g. 1e7 for 10000000)</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Step</td>
<td>100</td>
</tr>
<tr>
<td>Absolute Error</td>
<td>1e-09</td>
</tr>
<tr>
<td>Relative Error</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Specialized software tools for computational modeling in biology

- > 100 available
- Range of capabilities
 - Editing/creating models
 - Simulating/analyzing
 - Visualizing
 - Databasing

Virtual Cell
Many common types of model representation frameworks

- (Continuous) nonlinear differential equations
- (Discrete) stochastic systems
- Boolean networks
- Bayesian networks
- Petri Nets
- others...
Ability to exchange models is critical
Ability to exchange models is critical

- Simply publishing equations is not enough
- Don’t want to transcribe equations from papers
- You want a common file format
Ability to exchange models is critical

- Simply publishing equations is not enough
 - Don’t want to transcribe equations from papers
 - You want a common file format
- Not a new idea—seems obvious
 - Still, a format hadn’t existed before year 2000
 - Each tool had its own unique proprietary format
 - (Fewer tools too)
JST ERATO
Kitano Project

One initial component: get 8–10 software systems interacting
SBML = Systems Biology Markup Language
SBML =
Systems Biology Markup Language

- Machine-readable format for computational models
SBML =
Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
- Arbitrary rate functions

\[
2 \text{ A} + \text{ B} \rightarrow \text{ C} \\
\text{ C} \leftrightarrow \text{ D} + \text{ F} \\
\ldots
\]
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
 - Arbitrary rate functions
- Models can also include
 - Compartments
 - Mathematical “extras”

\[2 \text{A} + \text{B} \rightarrow \text{C} \]
\[
\text{C} \leftrightarrow \text{D} + \text{F}
\]
...
SBML = Systems Biology Markup Language

- Machine-readable format for computational models
- Suitable for reaction networks
 - Arbitrary rate functions
- Models can also include
 - Compartments
 - Mathematical “extras”
- Declarative, not procedural

\[
\begin{align*}
2A + B & \rightarrow C \\
C & \leftrightarrow D + F \\
& \ldots
\end{align*}
\]
SBML is an XML format

- SBML defined using UML and XML Schema
- Targeted at XML, but mostly independent of it
- A **lingua franca** for software, not humans
- Think HTML
Where is SBML today?
Now the *de facto* standard

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, signaling pathways, regulatory networks, and many others.

Internationally Supported and Widely Used

SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is supported by over 100 software systems, including:

- **Supported by >100 systems**
- **Accepted by journals**
- **Nature**
- **PLoS**
- **BMC**
- **Used in textbooks & courses**
A community of modelers and software developers

- **sbml-discuss** *(275+ people)*, **sbml-announce**
- **Annual SBML Forum** meeting *(at ICSB)*
- **Annual SBML Hackathon**
A community of modelers and software developers

- **sbml-discuss** (275+ people), **sbml-announce**
- Annual **SBML Forum meeting** (at ICSB)
- Annual **SBML Hackathon**
Support by SBML Team

- Writing grants for core development
- Writing infrastructure software
 - libSBML
 - MathSBML, SBMLToolbox
- Maintaining web & mailing list resources
- Organizing workshops & other events
Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions

Andrew Finney
afinney@sbml.org
Physionomics PLC
Magdalen Centre
Oxford Science Park
Oxford, OX1 4GA, UK

Michael Hucka
mhucka@sbml.org
Biological Network Modeling Center
Beckman Institute, Mail Code 139-74
California Institute of Technology
Pasadena, CA 91125, USA

Nicolas Le Novère
lenov@ebi.ac.uk
European Bioinformatics Institute
Wellcome Trust Genome Campus, Hinxton
Cambridge, CB10 1SD, UK

SBML Level 2, Version 2, Revision 1
26 September 2006

Corrections and other revisions of this SBML language specification may appear over time.
Notifications of revisions are broadcast on the mailing list sbml-announce@caltech.edu

The latest revision of the SBML Level 2 Version 2 specification is available at

This revision of the SBML Level 2 Version 2 specification is available at
Examples of significant changes

- Many clarifications
- Simplification to the unit system
- Addition of species types, compartment types
- Addition of “constraints”
- Support for the Systems Biology Ontology (SBO)
- Recommended standard format for annotations
- “Revisions” process for handling errata
What lies ahead?
Revised SBML governance & development process

- Borrow ideas from W3C & other organizations
- Implement a better-defined, regimented process
 - Calls for proposals, etc.
 - Voting, etc.
- Have an architectural board to steer development
- Have more SBML Editors
 - Elect SBML Editors for limited terms
SBML Level 3
SBML Level 3

- Modular language extensions
- Core expected to be based “mostly” on Level 2 Version 2
SBML Level 3

- Modular language extensions
 - Core expected to be based “mostly” on Level 2 Version 2
- Layered on top of core: feature sets for—
 - Diagram storage
 - Multicomponent species
 - Models composed of submodels
 - Arrays and/or sets of components
 - Spatial geometry
 - Other capabilities
Full SBML Test Suite

- Allows developers to test implementation of SBML support
- Critical for improving software interoperability
- Currently have a partial “SBML semantic test suite”
- Needs further work to—
 - Complete coverage of SBML features
 - Improve ease of use
 - Update for Level 2 Version 2 and Level 3
 - Add web system for reporting results, comparisons, etc.
Got models?
Got models?

- Early FAQ in SBML: is there a database of models?
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
- SBML provides syntax
- But SBML doesn’t—
 - encode meaning
 - regulate use of names
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
- SBML provides syntax
- But SBML doesn’t—
 - encode meaning
 - regulate use of names
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
- SBML provides syntax
- But SBML doesn’t—
 - encode meaning
 - regulate use of names
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
- SBML provides syntax
- But SBML doesn’t—
 - encode meaning
 - regulate use of names
Got models?

- Early FAQ in SBML: is there a database of models?
- Raw model isn’t very “searchable”
- SBML provides syntax
- But SBML doesn’t—
 - encode meaning
 - regulate use of names

```xml
<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"
xmlns:math="http://www.w3.org/1998/Math/MathML">
  <model>
    <listOfCompartment>
      <compartment id="cell"/>
    </listOfCompartment>
    <listOfSpecies>
      <species id="X0" compartment="cell" initialConcentration="0.01"/>
      <species id="X1" compartment="cell" initialConcentration="0.01"/>
      <species id="T" compartment="cell" initialConcentration="0.01"/>
      <species id="S1" compartment="cell" initialConcentration="0.01"/>
      <species id="S2" compartment="cell" initialConcentration="0.01"/>
    </listOfSpecies>
    <listOfParameters>
      <parameter id="Keq" value="2.5"/>
    </listOfParameters>
    <listOfRules>
      <assignmentRule variable="S1">
        <math xmlns="http://www.w3.org/1998/Math/MathML">
          <apply>
            <divide/>
            <ci> T </ci>
            <apply>
              <plus/>
              <cn> 1 </cn>
              <ci> Keq </ci>
            </apply>
          </apply>
        </math>
      </assignmentRule>
    </listOfRules>
  </model>
</sbml>
```
BioModels.net consortium

- International collaboration to develop:
 1. A public database of **curated, annotated** models: **BioModels Database**
 2. Guidelines for curation and annotation of models: **MIRIAM**
 3. Ontology suited to computational models: **SBO**

- Main collaborators
 - Nicolas Le Novère’s Computational Neurobiology group at EBI (UK)
 - Hucka and SBML Team at Caltech (USA) and U. Hertfordshire (UK)
 - Herbert Sauro’s group at Keck Graduate Institute
 - Hans Westerhoff & Jacky Snoep’s JWS Online (ZA and UK)
 - Hiroaki Kitano’s Systems Biology Institute
BioModels Database
http://www.ebi.ac.uk/biomodels

- Stores & serves quantitative models of bio. interest
- Free, public resource
- Models must be described in peer-reviewed publication(s)
- Imports models in SBML & CellML formats
- Exports in SBML, CellML, SciLab, XPP and BioPAX
Models are curated
Models are curated

- Human curators check correspondence to publication
Models are curated

- Human curators check correspondence to publication
- Human curators add annotations
Models are curated

- Human curators check correspondence to publication
- Human curators add annotations
- General info about model, author, publication, etc.
Models are curated

- Human curators check correspondence to publication
- Human curators add annotations
- General info about model, author, publication, etc.
- References to external data resources: UniProt, KEGG, NCBI, Gene Ontology, ChEBI, BIND, Reactome
Features of BioModels Database

- **True database**: can search model content & annotations
 - SBML XML stored in XINDICE; annotations in an SQL database
 - 70+ curated, dynamical models
 - E.g.: Tyson yeast cell cycle models, Elowitz E. coli repressilator, Teusink et al. yeast glycolysis, Rohwer et al. E. coli glucose transport
 - 26 non-curated models (e.g., models lacking kinetics, such as FBA)
- Model sources: us, Nature/EMBO *Molecular Systems Biology*, repositories such as JWS Online and CellML, individual researchers
“Minimal info. requested in the annotation of biochemical models”

Proposed guidelines for basic annotation of models

- Reference correspondence, e.g.,
 - Be encoded in a public, standardized format (SBML, CellML, etc.)
 - Must be instantiated in a simulation & all quantitative attributes defined

- Attribution annotation (info about model creators, source reference, etc.)

- External source annotations (linking model element to data source)

Goal: minimal common standards enabling sharing of curation effort
SBO = Systems Biology Ontology

- Occupies a space not filled by other ontologies
 - Primarily for describing rate laws and constituents
 - Classification of rate laws
 - Each term includes a mathematical function definition
 - Controlled vocabulary for the roles of reaction participants
 - E.g.: “substrate”, “catalyst”, “competitive inhibitor”, etc.
 - Controlled vocabulary for the roles of parameters in quantitative models
BioModels.net portal
Background

- No current standard for network diagrams in biology
 - No consistency —
 - Between authors
 - Between papers
 - Between publications
Background

- No current standard for network diagrams in biology
- No consistency—
 - Between authors
 - Between papers
 - Between publications
Standardization would bring benefits

- Notations standardized in electrical/electronics, software engineering, etc.
- Taught in textbooks
- Supported by software
- Automated verification
- Consistency makes it easier to read new diagrams
SBGN = Systems Biology Graphical Notation

- Goal: bring simulation/modeling community together and develop a proposal for a standard notation for some types of diagrams
 - Starting with metabolic & signaling networks
- Begun late '05 by Kitano/Le Novère/Hucka thanks to NEDO funding
- 2 SBGN workshops held so far (Feb and Oct 2006)
 - Many groups participating: Goryanin group (U. Edinburgh), BioPAX (MSKCC New York), SRI, CellML, EML (Germany), many others
- Join if you’re interested!
- Currently working towards a first proposal
Closing
The funding

- National Institute of General Medical Sciences (USA)
- JST ERATO Kitano Symbiotic Systems Project (Japan) (to 2003)
- National Science Foundation (USA)
- International Joint Research Program of NEDO (Japan)
- JST ERATO-SORST Program (Japan)
- Japanese Ministry of Agriculture
- BBSRC e-Science Initiative (UK)
- DARPA IPTO Bio-SPICE Bio-Computation Program (USA)
- Air Force Office of Scientific Research (USA)
- STRI, University of Hertfordshire (UK)
- Beckman Institute, Caltech (USA)
<table>
<thead>
<tr>
<th>SBML Team</th>
<th>BioModels DB Team</th>
<th>SBGN Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Hucka</td>
<td>Nicolas Le Novère</td>
<td>Hiroaki Kitano</td>
</tr>
<tr>
<td>Andrew Finney</td>
<td>Chen Li</td>
<td>Nicolas Le Novère</td>
</tr>
<tr>
<td>Ben Bornstein</td>
<td>Mélanie Courtot</td>
<td>Michael Hucka</td>
</tr>
<tr>
<td>Sarah Keating</td>
<td>Lu Li</td>
<td>Akira Funahashi</td>
</tr>
<tr>
<td>Bruce Shapiro</td>
<td>Camille Laibe</td>
<td></td>
</tr>
<tr>
<td>Ben Kovitz</td>
<td>Nicolas Rodriguez</td>
<td></td>
</tr>
<tr>
<td>Hamid Bolouri</td>
<td>Harish Dharuri</td>
<td></td>
</tr>
<tr>
<td>Herbert Sauro</td>
<td>Marco Donizelli</td>
<td></td>
</tr>
<tr>
<td>Maria Schilstra</td>
<td>Alexander Broicher</td>
<td></td>
</tr>
<tr>
<td>Jo Matthews</td>
<td>Arnaud Henry</td>
<td></td>
</tr>
</tbody>
</table>

A million thanks to the SBML Community too
Where to learn more

- http://sbml.org
- http://biomodels.net
- http://sbgn.org

Upcoming:
- SBML Hackathon 2007 in June at U. Newcastle, UK
- SBGN Workshop in 2007 (probably March 2007, Gosau, Austria)
- SBML Forum 2007 in Long Beach, CA, USA, Oct. 5-6 (ICSB 2007)

Thank you!