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and SI, S2, S3 are constants determined as part of the analysis. Sim­
ple closed-form results cannot be obtained, although some inequal­
ities exist setting limits on the allowable ranges of parameters for 
existence. No simple statements can be made about stability. 

Numerical results show when the IR mode is accounted for, the 
amplitudes of the I T and 2T modes are greatly reduced from those 
found in the two-mode approximation, IT/2T. Perhaps the most 
important implication of this conclusion is that one should proba­
bly be wary of a two-mode approximation for transverse modes: 
modal truncation may bring about serious errors not yet under­
stood. 

VII. Nonlinear Instability, Triggering, and Third­
Order Acoustics 

There are chiefly two classes of nonlinear problems dominating 
both practical and theoretical work on combustion instabilities: the 
conditions for existence and stability of limit cycles and the condi­
tions under which a linear system may be unstable to a sufficiently 
large disturbance. We have examined the first class in the preced­
ing two sections and we turn now to the second, which includes the 
phenomenon called triggering. By triggering we shall mean that a 
linearly stable system may be caused to execute stable limit cycles. 
It is quite possible also that large disturbances may produce unsta­
ble motions that grow without limit according to the analysis. Such 
a result would suggest that the physical model used as the basis for 
the calculations may be deficient. For example, higher order non­
linearities might cause the limit cycle to be stable. In any case, as a 
convenience here, we use the term triggering in the restricted sense 
of pulsing to stable limit cycles, where in most of the literature the 
term refers to pulsing a linearly stable system to stable or unstable 
limit cycles. 

For applications, it is most important to be able to understand 
and predict the amplitudes of motions in a limit cycle; in practice 
one would generally like to have zero amplitudes always, or at 
least know how to achieve that condition. The results obtained so 
far for both cases of longitudinal and transverse modes showed 
that, for second-order gasdynamical nonlinearities, the limit cycles 
of a linearly unstable system are unique. That is, except for possi­
ble ambiguities of phase, the motions in the limit cycle are inde­
pendent of the initial conditions. No exceptions have been found in 
all of the numerical results carried out to date. 

However, there is much data showing that many laboratory 
devices and full-scale systems that are linearly stable can be driven 
into unstable motions and limit cycles if a sufficiently large distur­
bance is introduced. This phenomenon is the basis for assessing 
the stability of propulsion systems, particularly liquid rockets! and 
more recently solid rockets.4 Moreover, it is possible that large 
unwanted disturbances can be generated during operations if 
pieces of solid material pass through the exhaust nozzle, or if there 
are regions of rapid burning (such as accumulation of liquid reac­
tants on walls, or burning in cracks in a solid propellant). 
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Fig. 6 Amplitudes in a limit cycle: first and second tangential modes, 
time·averaged equations. 

Thus the predictions of the approximate analysis discussed so 
far are not consistent with observations of triggering and more 
recently solid rockets,4 although there is reason to believe that sat­
isfactory results can be obtained for the nonlinear behavior of lin­
early unstable systems over broad ranges of conditions. One 
immediate way of resolving the differences is to incorporate a non­
linear representation for the combustion processes. For example, 
setting a threshold of amplitude, below which all an are negative 
and above which one or more are positive, introduces the opportu­
nity for triggering. This possibility arises in particular from "veloc­
ity coupling" when the interaction between combustion processes 
depends on the magnitude of the velocity parallel to a burning 
solid surface. Numerical analysis (e.g., Baum et al.2.4) has con­
firmed these expectations. 

Here we shall confine our attention to the possible consequences 
of gasdynamic nonlinearities and coupling between unsteady 
motions and the mean velocity field. There is considerable previ­
ous work on this aspect of the subject, largely based on numerical 
solutions to the partial differential equations of conservation. It is 
difficult to perceive systematic trends in the results, and few gen­
eral conclusions can be drawn. See Yang et a1.35 for a brief review 
of earlier work and for a more thorough treatment of the results 
discussed here. 

Initially, the work described here was motivated by the idea that 
whereas second-order acoustics would seem not to contain trigger­
ing, there is reason to anticipate that third-order acoustics would. 
The basis for that notion is the well-known behavior of simple 
one-dimensional systems described by the equation 

Figure 4 shows that for a negative (the system is linearly stable) 
the possibility exists for triggering to a stable limit cycle, ampli­
tude r 2' if the initial disturbance has amplitude greater than r I' The 
second-order form of Eq. (82) does not contain triggering to a sta­
ble limit cycle; an initial disturbance larger than r 1 (if the factor 
r2 - r is dropped) will produce an unstable motion. 

Following earlier work by Awad,36 Yang et al.35 have discussed 
several model problems of this sort to try to clarify, or at least to 
suggest, the prospects for defining general conditions for trigger­
ing. They examined one- and two-dimensional models. Their con­
clusions are only modestly helpful for understanding the acoustics 
problem because it appears that the nonlinear behavior is sensitive 
both to the number of degrees of freedom and to the structure 
of the nonlinear coupling between the degrees of freedom, Le., 
between the model oscillators. 

In particular, the distinction between "self-coupling" and 
"cross-coupling" is especially significant. Self-coupling refers to 
terms in the equation for rn' say, which are nonlinear in rn only 
(r;, r;, ... ,); thus Eq. (82) contains only self-coupling. Cross­
coupling refers to nonlinear coupling between modes. The model 
problems suggest that triggering is greatly encouraged by self-cou­
pling as, for example, Fig. 7 based on Eq. (82) suggests_ This con­
clusion evidently remains true for cases of several degrees of free­
dom, which is interesting because the second-order acoustics 
equations containing gasdynamic nonlinearities only do not have 
self-coupling terms, although they almost do: equations for An may 
contain terms in and vice versa. The point is that the general 
structure of Eqs. (35a) and (35b) with Fn given by Eq. (37) evi­
dently do not contain triggering, at least for most values of the lin­
ear parameters. 

The importance of self-coupling is suggested by the following 
model problem for two amplitudes: 

(83) 

The conditions for the existence and stability of limit cycles are 
quite easy to derive, using the methods outlined earlier.35 For c! 
= 0 triggering to a stable limit cycle does not exist (although large 
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Fig. 7 Phase plane for a second-order model system having self-cou­
pling. 

disturbances can destabilize a linearly stable system, the motions 
grow without limit). However, for Cl "* 0, it is possible to trigger 
stable limit cycles, an example of which is shown in Fig. 8. 

To represent triggering to stable limit cycles within the frame­
work of the approximate analysis discussed here, it appears that 
there are three possible extensions of the formulation contain­
ing only second-order gasdynamical nonlinearities: 1) incorporate 
qualitatively different nonlinear processes, nonlinear combustion 
being the most attractive; 2) account for higher order gasdynamic 
nonlinearities; and 3) include nonlinear interactions between the 
mean flowfield and the unsteady motions. Modal truncation seems 
not to be an influence on triggering, but the possible effects of time 
averaging remain unclear. 

We shall have relatively little to say about nonlinear combus­
tion in this paper, although numerical analyses2.4.32.37 have shown 
that nonlinear transient burning and velocity coupling are crucial 
to explaining nonlinear behavior observed in laboratory tests of 
solid propellant rocket motors. Figure 9, taken from the careful 
summary of the subject by Baum et al.,4 shows a good comparison 
of measured and computed results. 

Much less has been done with nonlinear combustion modeling 
in the approximate analysis. Awad36 and Yang et al.38 have exam­
ined some model examples, providing a useful beginning, but 
much remains to be done; work on this subject is in progress. 
Although it is relatively easy to account for nonlinear combustion 
processes, it is difficult to confrrmthata particular model is realis­
tic. Part of the reason for this difficulty is that fairly realistic results 
can be obtained with different models. It is not easy to establish 
uniqueness. 

Thus it has seemed more important at this stage to investigate 
the consequences of nonlinear processes whose structure is much 
better known: items 2 and 3 of the possible extensions cited earlier. 
In fact, only a small part of the possible classes of problems has 
been examined. The richness of possibilities is due to the fact that 
we are dealing with a physical situatio~characterized by two small 
parameters: reference Mach numbers M 0 and M~ of the mean and 
unsteady flows. Lowest order problems are r~dily formulated: 
linear stability, the limit of vanishingly small Mo, and MQ., with 
M~« Mo; and nonlinear second-orderi!,coustics, for which Mo and 
M~ are of the same order in the limit M 0, M~ -7 O. When one pro­
ceeds to higher order, there is no rule for setting rigorously the 
orders of terms to be retained. Thus arbitrary choices must be 
made. Investigations to date have involved either acoustics nonlin-

earities of third order with no dependence on the mean flow (item 
2) or contributions of second order in the acoustic fluctuations and 
first order in the mean flow (item 3). We shall briefly summarize 
some of the results in Secs. VILA and VII.B. 

A. Third-Order Acoustics 
Kim39 and Yang et al.38.40 have treated third-order acoustics as a 

direct extension of the second-order acoustics discussed already. 
We have already noted that, based on the behavior of the one­
dimensional model described by Eq. (82) and Fig. 4, one might 
expect that third-order acoustics would contain triggering to stable 
limit cycles. That turns out not to be true, a conclusion apparently 
consistent with the results of numerical analyses. The chief reason 
seems to be that the nonlinear coupling causes energy transfer 
between modes such that the energy of an initial pulse is either 
ultimately dissipated (so the motion dies out) or the transfer into 
one or more modes is so concentrated that an unstable motion is 
produced. Without the presence of self-coupling, there is evidently 
no process to balance the transfer of energy so as to cause a steady 
limit cycle. The physical interpretation is not thoroughly under­
stood. However, the essential reasons must be related to the special 
structure of the gasdynamic nonlinearities. 

The problem of determining the conditions under which trigger­
ing to stable limit cycles exists remains unsolved. Conclusions 
reached with the approximate analysis described here do not seem 
to be entirely consistent with those reported in earlier works cited 
in Sec. III. Because the methods used are quite different, and 
because the n-'t combustion model has not been thoroughly studied 
in the present work, it is not possible to identify the precise reasons 
for the differences in the results. It is a fundamental matter that 
must eventually be solved. 

Before summarizing the evidence supporting those conclusions, 
we should cite an interesting computation of nonlinear behavior, 
by Flandro,41 to try to explain limit cycles and triggering for longi­
tudinal waves. The work was motivated by extensive observations 
made during an experimental program carried out over several 
years.42 By considering only the energy expressed to third order in 
the pressure and velocity fluctuations, Flandro derived an equation 
for the rate of change of E, which he calls the "composite ampli­
tude," 

dE 2 3 
-- = Ae+Be + Ce 
dt 

This equation has the same form as Eq. (82) and, therefore, if the 
coefficients have values in appropriate ranges, it can be used to 
predict triggering to stable limit cycles. 

Flandro demonstrated good qualitative agreement between solu­
tions to the preceding equation and measurements of the decay of 
large amplitude pulses. Moreover, he was able to find fairly good 
approximations to the amplitudes in limit cycles and levels of dis-
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Fig. 8 Example of triggering to a stable limit cycle for a system of two 
modes containing self-coupling. 
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turbances required to produce triggering in small solid propellant 
rockets. The dependence of the coefficients A, B, and C on param­
eters characterizing the motors suggests possible trends useful in 
design and correlating data. 

That analysis, and the nature of the results, are appealing and 
evidently possess some measure of reality. One must conclude 
that, contrary to the conclusion reached in numerical analysis and 
in other approximate analyses cited here and discussed subse­
quently, third-order acoustics does indeed contain an explanation 
for triggering to stable limit cycles, and under quite broad practical 
conditions. How are these two contradictory conclusions to be rec­
onciled? The answer seems to lie in Flandro's definition and treat­
ment of the composite amplitude e. Initially, 10 is introduced as a 
small parameter measuring the pressure amplitude p =p + lOp'. All 
other flow variables are assumed to be measureable by 10 as well 
and are expanded in power series as P = P + ePI + e2P2 + ... +, U 

= U + eU I + e2U2 + ... +, etc. Hence, the acoustic energy itself 
turns out to be expressible as & = 102&1 +103&2 + ... +. 

Then Flandro makes the basic and crucial assumption that all of 
the time dependence of the fluctuating quantities is contained in 
the single quantity e. This implies, for example, that if the pressure 
fluctuation lOp' is analyzed as a Fourier decomposition, all modes 
must exhibit exactly the same time dependence. Both theory and 
experiment show that this is incorrect. The consequences of the 
assumption are considerable: if the transient motions of the system 
are incorrectly modeled, then because nonlinear behavior is com­
monly dependent on its history in many respects, one is then on 
weak ground using a single quantity 10 and its time evolution as the 
basis for explaining the behavior of systems having many degrees 
of freedom. 

On the other hand, Flandro's approach should not be dismissed 
out of hand. The ideas he has treated are an important part of the 
picture, and some of his predictions are persuasively realistic. It is 
possible that his model of the behavior, or a modified form of it, 
could be given a more rigorous foundation, thereby providing a 
more satisfactory reconciliation of his analysis with other works. 

When the expansion is carried out to third order and coupling 
between the mean flow and nonlinear acoustical motions is 
ignored, the force Fn defined by Eq. (31) has the form 

i 
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Fig. 9 Comparison of computed and measured behavior subsequent 
to an initial pulse. 

This result is, of course, still valid for any geometry, i.e., any 
modal system, as long as the modes or basis functions 'Vn are 
orthogonal. 

1. Longitudinal Modes 
For purely longitudinal modes, the double and triple sums 

become single and double sums, respectively. Exact results for 
third-order acoustics have been obtained only for two modes, for 
which the equations are 

(8Sa) 

(8Sb) 

(8Sc) 

(8Sd) 

where the two new constants associated with the third-order acous­
tic coupling are 

13 1 (86) 

Written in terms of amplitudes and phases, Eqs. (8Sa-8Sd) are 

(87a) 

(87b) 

(87c) 

with 

(88) 

Note that the third-order coupling does not appear in the equations 
for the amplitude, a curious result reflecting the special, and in a 
certain sense limited, character of the gasdynamical coupling. The 
energy transfer between modes does affect the phase difference. 

As in the case of second-order acoustics, the nice practical 
advantage of considering only two modes is that literal conditions 
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for existence and stability can be established. The conditions for 
existence are 

where 

The amplitudes and phase in the limit cycle are 

a) 
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Fig. 10 Regions for stable limit cycles: two longitudinal modes with 
third-order acoustics, time-averaged equations. 
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Fig. 11 Example showing destabilizing effects of third-order acous­
tics: two longitudinal modes, time-averaged equations. 

Necessary and sufficient conditions for stability of the limits are 
given in Refs. 38-40. Figure 10 gives one illustration of the depen­
dence of stable limit cycles on the linear parameters (an,Sn)' 

These results should be compared with Fig. 3 for second-order 
acoustics. Evidently the third-order nonlinearities significantly 
affect the influences of the linear parameters on stability; Figs. 11 
and 12 illustrate two instances: in the first (Fig. 11) the third-order 
terms are destabilizing, and in the second (Fig. 12) they are stabi­
lizing. However, we must also note that, as often occurs, the 
amplitudes predicted lie outside the range for which the analysis is 
physically valid. Such results must be regarded only as suggestions 
of possible behavior. Clearly the theory is deficient, as one must 
expect in view of its approximate nature. Based on experience with 
a limited number of examples, it seems that the amplitudes are 
usually reduced if more modes are accounted for, although there 
seems to be an optimum number of modes beyond which the 
amplitudes are little affected. 

In the context of these calculations, triggering to a stable limit 
cycle means that the trivial stable limit cycle '10 = '20 = 0 must be 
unstable if the initial disturbance is large enough, and the subse­
quent motion must evolve to a stable nontrivial limit cycle ('10' '20 
*" 0). Already we see that this sequence of events is excluded, 
because the condition a[ <Xz < 0 for existence of limit cycles forbids 
the existence of a limit cycle (stable or unstable) for a linearly sta­
ble system. Hence accounting for third-order acoustic nonlineari­
ties is not sufficient for the existence of triggering in the sense 
defined here. We have discussed previously the fact that triggering 
can be obtained by including nonlinear combustion processes, and 
so the third-order contn.butions are certainly not necessary. Thus 
we conclude that third-order acoustic nonlinearities are neither 
necessary nor sufficient for the existence of triggering to stable 
limit cycles. 

The conclusion is perhaps most clearly shown by the balance of 
energy. Following the definitions and procedures introduced in 
Sec. V.A we find the equations for the rates of change of time­
averaged energies in the lowest two modes: 

(92a) 

(92b) 

Hence again the total coupling terms do not affect the total 
energy (0[) + (°2 ) in the system. Upon substitution of Eqs. (9Ia) 
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Fig. 12 Example showing stabilizing effects of third-order acoustics: 
two longitudinal modes, time-averaged equations. 

and (91b) in Eqs. (92a) and (92b) we find that the total energy is 
constant in stable limit cycles. 

2. Transverse Modes 
Similar results are found for transverse modes.39,4o As for longi­

tudinal modes, third-order acoustic coupling affects the ranges of 
linear parameters for which stable limit cycles exist but do not pro­
vide the opportunity for triggering to stable limit cycles. The 
details of the analysis become complicated, and there is nothing to 
be gained with their inclusion here. Figure 13 shows the influence 
of the third-order terms on a stable limit cycle of the 1 T/lR system 
(cf. Fig. 6) and Fig. 14 shows the result for a limit cycle involving 
the 1 T/2T pair. 

These cases represent much of the behavior for stable limit 
cycles, but they should not be taken as general in any sense. A sig­
nificant flaw is that the amplitudes found with the two-mode 
approximation are often unacceptably large, the actual values 
depending, of course, on the values of the linear parameters (an, 
en). It appears that the large amplitudes are a consequence of trun­
cating the modal expansion, as suggested by the example consid­
ered in Sec. VI.A.3 for the IT/IR/2T system, but this conjecture 
has not been confirmed. 

B. Higher Order Mean Flow/Acoustics Interactions 
Kim39 has shown that if terms linear in the mean flow speed and 

second order in fluctuations are retained, then the force Fn , Eq. 
(84), contains the additional double series, 

F = n 
(93) 

; = I j= I 

where 

G .. = _1_ J'l'V' (II . V''l') . V''l' dV (94) 
nlJ 2 2 I J n 

yE;Ej 

Interactions between the unsteady and steady flows are often fun­
damentally important in acoustics; sirens and musical wind instru­
ments are familiar examples. That is true as well in combustion 
instabilities and for the same reason, namely, that the steady flow­
field is a source of energy. It is true that this source is considerably 
less strong than combustion processes, but the efficiency of cou­
pling may under some circumstances compensate the difference. 

So far as the present subject is concerned, we are concerned 
with the relative importance of third-order acoustical contributions 
and the mean flow/acoustics interactions. In the case of triggering 

to stable limit cycles, one might expect the latter to win, apparently 
because they represent a genuine source of energy, whereas the 
third-order acoustics, as we have seen, act primarily to transfer 
energy among the possible modes of oscillation. 

If we ignore the terms of third-order acoustics, the equations for 
two modes are35 

(95) 

(96) 

(97) 

(98) 

where 

(99) 

This value of ~m is calculated for a flow velocity in the axial direc­
tion, increasing linearly from zero to ut at the exit, length L from 
the origin. 
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Fig. 13 Example showing some effects of third-order acoustics on a 
stable limit cycle for the first tangential and first radial modes, time­
averaged equations. 
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Fig. 14 Example showing some effects of third·order acoustics on a 
stable limit cycle for the first and second tangential modes, time·aver­
aged equations. 

Now the equations for the amplitudes and combined phase 
angles are 

(100) 

(101) 

dd~ = 2el+e2+~[2r2-~}in'¥+~m[-14r2+~)cos'¥ 
(102) 

Once again these equations can be solved to give rIO, r20, and 'I' 
in limit cycles 

(103b) 

'1'0 = (103c) 

where now 

(104a) 

(104b) 

(104c) 

The requirements that rIO and '1'0 be real provide necessary and 
sufficient conditions for the existence of limit cycles: the ar­
guments of the square roots must be positive. When <II' ~ < 0, 
one mode is stable and the other is unstable, we have a situation 
like those treated earlier, growth of small disturbances into stable 
or unstable limit cycles. The details are unimportant here (see 
Yang et al. 35 and Kim39). As before, we find conditions under 
which the limit cycles are stable, illustrated in Fig. 15, to be com­
pared with Fig. 3 for second-order acoustics and Fig. 10 for third­
order acoustics. The three cases do not differ in truly significant 
respects. 

Moreover, it is still not possible to find triggering to a stable 
limit cycle. The limit cycles are still unique, with the difference 
that there are now limits such that if the initial disturbance has 
amplitude below those limits the limit cycle is unstable. More pre­
cisely, for given values of the linear parameters, when one mode is 
stable and the other unstable, a unique limit cycle exists, character­
ized by the two amplitudes rto and r~o. If the initial disturbance is 
such that both amplitudes rl, r2 are below the smaller of r:o and 
rio, then the final motion is a stable limit cycle. But if both initial 
amplitudes are greater than the larger of r:o and rio, then the final 
motion is unstable. Intermediate cases may be stable or unstable, 
depending on the values of the amplitudes and the relative phases. 
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Fig. 15 Regions for stable limit cycles: two longitudinal modes with 
mean flow/acoustics interactions, time-averaged equations. 
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This is an interesting result consistent with some of the numerical 
results reported by Levine and Baum,37 showing dependence of 
nonlinear behavior on the harmonic context of the initial distur­
bance. It is not possible at this time either to make a firm corre­
spondence between the two sets of results or to offer any generali­
zations. 

Perhaps the most important conclusion of these calculations is 
that the mean flow/acoustics interactions, to the order considered 
here, apparently do not contain triggering to stable limit cycles. As 
for the result with third-order acoustics, we have found ranges of 
the linear parameters for which a linearly stable system can be 
pulsed to unstable limit cycles. Following a somewhat different 
approach, Paparizos and Culick43 have independently reached the 
same conclusion. 

VIII. Two-Mode Approximation 
The approximate analysis is intended to serve two main pur­

poses: to provide an efficient means of performing routine calcula­
tions for analysis and design and to furnish a theoretical frame­
work within which observed behavior of combustion instabilities 
may be understood. Even with the formal representation reduced 
to a set of coupled first-order equations, it is difficult to extract the 
sort of qualitative information necessary to satisfactory under­
standing. Accordingly, much effort has been expended in the past 
few years on the simplest possible case, the approximate model in 
which only two modes are accounted for. Most of the discussion in 
the preceding sections of this paper has been based on that model, 
treated essentially with the method first executed by Awad.36 It is 
remarkable, a consequence of the special form of the gasdynamical 
nonlinearities, that simple explicit results can be obtained for a 
useful variety of special problems. 

A. Dynamical Systems Theory and Two-Mode Approximation 
In this section we discuss briefly important results obtained re­

cently by Paparizos and Culick.43•44 The conclusions are identical 
or consistent with those cited earlier for the same problems, but the 
context of the analysis is different, lying wholly within the con­
temporary geometrical theory of nonlinear dynamical systems. 
This provides a different view of the nonlinear acoustics and sug­
gests convenient ways for determining the influences of, say, 
higher order acoustics and mean flow/acoustics interactions. 
Moreover, the formulation lends itself in a natural way to applica­
tion of numerical methods for analyzing systems having many 
degrees of freedom.45 

The case of two modes is especially notable because the system 
is described by four first-order equations which, owing to an arbi­
trary phase, can be reduced to three. In general, for N modes, the 
2N equations can be reduced to 2N - 1, but when there are only 
three equations, the solutions can be represented completely in 
three-dimensional diagrams. Graphical presentation of results 
becomes troublesome for three or more degrees of freedom, but a 
deeper concern is that fundamental differences arise in the theory 
(not discussed here) and, therefore, presumably in the physical 
behavior. How significant those complications may be for acousti­
cal systems is a matter of current study. However, one must be 
aware that results obtained for two degrees of freedom (two 
modes) may not accurately represent the behavior for actual sys­
tems having many degrees of freedom. 

Paparizos and Culick43 have shown that the four equations for 
the two-mode approximation and second-order acoustics can be 
written as the reduced set of three equations 

(105a) 

(105b) 

(105c) 

with the transformation of variables from amplitudes and phases to 
(Y1' Y2, Y3) 

In these variables, the amplitudes in the limit cycles are 

YIO J-a
1
a

2 
1 + 2 1 

[ (
9 - 29 )2J 1/2 
a 2 + 2a1 

a l (92 - 29 1) 

a 2 + 2a l 

(106a) 

(106b) 

(106c) 

(107a) 

(107b) 

(l07c) 

The conditions for existence and stability can be established for all 
values of the linear parameters, providing the basis for the regions 
of stable limit cycles shown in Fig. 16. 

These results are of course identical with those discussed in Sec. 
V, although the representation is different. In particular, stable 
limit cycles are unique; their global dynamic character is conve­
niently displayed in the (YI' Y2, Y3) space, Fig. 17, or drawn for the 
case when the first mode is unstable and the second is stable. A 
curve representing a trajectory-i.e., the time evolution of the sys­
tem subsequent to a chosen initial condition--converges to a state 
representing a limit cycle lying in the line, or one-dimensional 
manifold, OP. In the context of the modern theory of dynamical 
systems, OP is a center manifold. A point on the center manifold is 
uniquely specified by the values of the linear parameters, corre­
sponding to the uniqueness of limit cycles. The origin is a Hopf 
bifurcation. If both a l and ~ are negative, the "limit cycle" is the 
quiescent state, Yi = O. But if a l > 0 or ~ > 0 and the values of all 
of the parameters satisfy the stability condition, then YI' Y2, Y3 "* 0 
and the system executes a limit cycle. 

Paparizos and Culick have shown that the center manifold can 
be closely approximated by interpreting the activity in the limit 
cycle as the second mode being driven by the first mode. That is a 
reinterpretation of the characteristic described earlier that these 
systems are strongly influenced by the tendency for energy to flow 
from low to high frequencies. Formally the equation for the center 
manifold-the locus of points representing limit cycles-is 
obtained by fixing Y1' and solving Eqs. (105b) and (l05c) for Y2 
and Y3 when Y2 = Y3 = O. The two equations can be combined to 

~ STABILITY REGIONS 

Q1 < 0 Q2 > 0 

-2 -v3+ 1 0 

Fig. 16 Regions for stable limit cycles: two longitudinal modes, time­
averaged equations. 
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give a third-order polynomial in Y2' Figure 18 shows the result pro­
jected into the YrY3 plane. 

Most of the results reported by Paparizos and Culick43 are 
directed to assessing the limits of the two-mode approximation. It 
provides good results for the amplitudes in limit cycles if the first 
mode is unstable (hence the second must be stable) and if the com­
bination of linear parameters does not lie too close to the stability 
boundary in Fig. 16. Difficulties arise when the second mode is 
unstable (so the first mode is stable) because the absence of higher 
modes blocks the natural tendency for upward flow of energy. 
Thus, although the amplitudes in the limit cycle may not be badly 
approximated (although it appears that usually their values will be 
quite inaccurate), the transient development of the motion may be 
wholly unrealistic. Fig. 19 shows an example. 

The consequences of truncation are illustrated explicitly with 
Figs. 20 and 21 for the two cases (0.1 > 0, nz < 0) and (0.1 < 0, nz 
> 0). Obviously the two-mode approximation is good in the first 
instance and simply does not work for this example of an unstable 
second mode. In the second case, the limit cycle is, of course, pre­
dicted to be unstable by the conditions derived earlier, but the 
point is that including higher modes leads to a stable limit cycle. 
That is, as one must anticipate, the conditions for existence and 
stability of limit cycles depends on the number of modes 
accounted for. 

B. Application of Bifurcation Theory and Continuation Method 
Practically all problems arising with application of the approxi­

mate analysis involve determining the behavior of unsteady 
motions in a combustor as the values of parameters are changed. 
The simplest example is linear stability: the system becomes lin­
early unstable if one or more decay constants become positive. 
Much of the preceding discussion thus dealt with aspects of non­
linear behavior as various parameters were varied. 

It is an immense task to discover all possible sorts of behavior 
due to the large number of parameters: for a given geometry, there 
are two for each mode considered plus whatever quantities are 

Ys 

YI 

'rJI == rl COS(Wlt - ¢d 

'rJ2 == r2 COS{W2t - ¢2) 

Y2 

Y?, == T2COS{¢2 - 2¢d 

Yl == Tzsin(¢2 - 211) 

Fig. 17 Trajectories for the development of a stable limit cycle on the 
center manifold. 

o 

-(0, - 20,)/2 

Fig. 18 Picture of the center manifold approximation. 

introduced by nonlinear processes. (Note that nonlinear gas dy­
namics alone does not bring any new parameters, in addition to 
those set by the geometry, if the mean flow is not accounted for.) 
That is why exact solutions, such as those for the two-mode 
approximation, are so important. However, only a few exact solu­
tions have been found, and only for problems restricted in three 
important aspects: the only nonlinear process is gasdynamics; the 
modal expansion is truncated to a small number of modes; and the 
time-averaged equations have been used. For both theoretical pur­
poses and for practical applications, it is essential to avoid these 
restrictions. 

In the absence of analytical solutions, it is necessary to resort to 
numerical methods. Numerical simulations for the system (30) of 
coupled oscillators can be carried out without serious difficulties, 
but that is an expensive procedure. It is more efficient and produc­
tive of useful information to apply a continuation method for com­
puting stationary states (e.g., limit cycles) of the dynamical system 
as one or more parameters are changed. Well known in other 
fields, the approach has been adapted by Jahnke and Culick45 to 
investigate nonlinear combustion instabilities. The procedure is 
given broadly in the following, for the case of longitudinal modes 
and only nonlinear second-order acoustics. 

First the system (30) is put in the form 

.x :: f[x, 11(£)] (108) 

where x is a vector of dependent variables (the state vector); 11 
represents the parameters (an, en); and £ is a small parameter, here 
of the order of the average Mach numbers. After rescaling time, t 
~ (Olt and defining the variable on = iJ n' the Eqs. (30) with Fn 
written for longitudinal modes, can be put in the form (108), with x 
:: (1]n' on) 

1]. = 0 
n n 

(109) 

i= 1 

~ 

=_2~(C(2)00 +D(2)1l.11 .] ..L.. nr I n-l nt ,"n+1 
i = 1 

To obtain numerical results, the modal expansion must be trun­
cated at some number of modes n = N. Following the method out­
lined in Sec. n.B, or similar procedures, the system (109) can also 
be time averaged. By carrying out calculations for both Eqs. (109) 
and the time-averaged system, and for increasing N ~ 2, it is then 
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Fig. 19 Example of evolution to a limit cycle: unstable second mode. 

possible to detennine the consequences of modal truncation and 
time averaging. 

The next step is to detennine the stationary states defined by x 
= 0, the solution to 

f(x, Jl) = 0 (110) 

or the corresponding time-averaged equation. This is of course 
exactly what was done in Secs. V-VII to detennine the existence 
of limit cycles. In general, solving Eq. (110), which is a set of N 
coupled nonlinear equations, becomes difficult. A continuation 
method (we have used that worked out by Doedeland Kernevez46) 

is a recipe for finding the values of the dependent variables Xo 

defining the stationary states as the parameters Jl are varied ("con­
tinued") from some initial values. At each stage, after the values of 
Jl have been changed, the stability of the new stationary state is 
detennined by computing the eigenvalues of the Jacobian matrix 
arising in the linearized problem. That process also identifies 
bifurcations. 

Use of a continuation method does not resolve the difficulty 
of detennining the behavior over broad ranges of many para­
meters. However, the procedure does impose a certain systematic 
approach and yields much more infonnation than one obtains from 
numerical simulations alone. One example makes the point. 

The two-mode approximation with time averaging produces the 
result summarized in Fig. 16: stable limit cycles exist only if the 
values of the parameters an' 8n (n = 1, 2) lie in certain ranges 
defined by a stability boundary. It is not possible within that 
restricted analysis to state whether the presence of the stability 
boundary is intrinsic to the physical mode, or is due to the approx­
imations of modal truncation andlor time averaging. With the con­
tinuation method we have partly resolved the question. For a par­
ticular set of fixed parameters (8 1, ~, 82) and a l varied, the 
stability region for the original equations without time averaging is 
reduced and, in fact, a turning point bifurcation appears as a l is 
increased from zero. 

More interestingly and significant is the result, again for fixed 
values of the other parameters, that the stability boundary appar­
ently does not exist if enough modes are accounted for. Figures 20 
and 21 already suggest the anticipated importance of truncation. 
With the continuation method, the effect of truncation can be 
found in a straightforward fashion. The values of all of the param­
eters except a l are fixed (an < 0 for n ~ 2) and a l is varied from 
zero so that the first mode is linearly unstable. Figs. 22 and 23 
show the amplitudes for the cases of two modes and four modes. 
With the averaged equations and the two-mode approximation, the 
amplitudes become infinite when a l = 131 (i.e., on the stability 

boundary). However, the second-order equations have a turning­
point bifurcation at a l = 131, Fig. 22. 

In contrast, when four modes are accounted for, as shown in 
Fig. 23, there is neither a stability boundary nor a bifurcation for 
a l less than 300. No results have been computed in this case for 
the time-averaged equations although other examples suggest that 
the region of stability is at least expanded when more modes are 
included. 

Further details and examples are given by Jahnke and Culick.45 

It seems at this time that the application of a continuation method 
offers the best means of understanding the global behavior of 
the dynamical system (30) representing combustion instabilities. 
Work is in progress to include other nonlinear processes and to 
obtain results for modes other than purely longitudinal. 

C. Influences of Third-Order Acoustics, Mean Pressure Shifts, and 
Mean Flow/Acoustic Interactions in the Two-Mode Approximation 

The viewpoint developed by Paparizos and discussed at length 
by Paparizos and Culick43,44 provides a convenient means of inves­
tigating nonlinear perturbations beginning with the basic problem 
of second-order acoustics. A particular advantage is the geometri­
cal interpretation and, for the two-mode approximation, the oppor­
tunity to display trajectories in the three-dimensional (YI' Y2' Y3) 
space. The ability to view the global dynamics, as in the analysis 
of Jahnke and Culick, brings with it much increased understanding 
of the behavior of these systems. 

In addition to the center manifold shown in Fig. 18, there is a 
second attractive manifold. The two manifolds are detennined by 
considering the case of an unstable fundamental mode and stable 
second mode. Then, as noted earlier, the equation for the ampli­
tude of the second mode can be interpreted as that for a damped 
oscillator driven by the nonlinear transfer of energy from the fun­
damental mode. The equations for the attractive manifolds are then 
given approximately by considering YI parameter and setting Y2 = 
Y3 = 0 in Eqs. (82b) and (82c); then h(YI) and Y3(YI) are the solu­
tions to the algebraic equations: 

Figure 23 shows a typical result for the two manifolds, drawn in 
the (YI' h, Y3) space and projected in the h-Y3 plane. 

The existence of the second attractive manifold is a new result, 
crucial to understanding the global nonlinear behavior of this sys­
tem. Within this framework, three important influences have been 
investigated: third-order acoustics, shifts of the mean pressure, and 
nonlinear mean flow/acoustics interactions. The results generally 
agree with those discussed earlier for third-order acoustics and 
mean flow/acoustics interactions, but the geometrical representa­
tion offers much ad<li~i<>I1~ in.~!.ght._T11.e (I\lestion of possible con-
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Fig. 20 Example showing small effects of truncation. 
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sequences of accommodating shifts of the mean pressure has 
barely been touched upon. It is a highly important matter for solid 
propellant rockets, since dc shifts are often observed, they are pos­
sibly (if not likely) to be indicative of some sort of effect due to 
velocity coupling and often seem to be connected with triggering 
to stable limit cycles. This is a problem that has considerable prac­
tical implications and may as well raise interesting theoretical 
questions. 

IX. Rayleigh's Criterion 
In 1878 Lord Rayleigh47 formulated his famous criterion to 

explain several examples of acoustic waves excited and main­
tained by heat addition: 

If heat be communicated to, and abstracted from, a mass of 
air vibrating (for example) in a cylinder bounded by a piston, 
the effect produced will depend upon the phase of the vibration 
at which the transfer of heat takes place. If heat be given to the 
air at the moment of greatest condensation, or be taken from it 
at the moment of greatest rarefaction, the vibration is encour­
aged. On the other hand, if heat be given at the moment of 
greatest rarefaction, or abstracted at the moment of greatest 
condensation, the vibration is discouraged. 

Probably no principle in the subject of thermally excited acoustic 
waves has been more frequently called upon than this concise 
statement. The physical basis of the principle, and hence its inter­
pretation, is the following. 

Consider a small volume element within a gas sustaining 
unsteady motions. An amount of heat added to the volume causes 
the temperature to rise and the density to fall, i.e., the volume ele­
ment expands. If at the same time the surrounding atmosphere is 
expanding (i.e., the pressure and density are falling), then the 
material that has gained the heat will do work on the surrounding 
medium as it expands. Thus some portion of the energy associated 
with the heat addition is converted to mechanical energy of motion 
in the medium. In this way, heat addition can drive and sustain 
acoustic waves. A steady source of heat will not generate acoustic 
waves: in the wave equation (21), the term on.!he_right-hand side 
representing the effect of heat addition is - (RfC)i2) (aQ' fat) 
where Q' is the fluctuation of heat added per unit volume and 
time. 

Most of the applications of Rayleigh's criterion have been based 
on linear behavior (see Putnam48

,49 for the most extensive discus­
sions), and usually the results have been obtained in a somewhat 
heuristic fashion. The only careful derivations in the context of sta­
bility theory seem to be those due to ChulS and Zinn50 who pro­
vided a linear version of the derivation later worked out by 
Culick51 for nonlinear behavior. 
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Fig. 21 Example showing drastic effects of truncation. 
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Fig. 22 Comparison of results from the time-averaged equations and 
from the continuation method. 

Before examining the matter for nonlinear motions, we note a 
basic connection between Rayleigh's criterion and the growth con­
stant. 6,52 The criterion phrased in terms of heat addition is really 
only a special case; because Rayleigh was specifically concerned 
with the action of heat addition, he paid no attention to other possi­
ble gains and losses of energy. Historical emphasis on Rayleigh's 
statement-perhaps partly because it was Rayleigh who wrote the 
words-has obscured the fact that the criterion in the form given 
earlier is exactly equivalent to the contribution of heat addition to 
the growth constant computed in stability theory, expressed here as 
Eq. (41b). It follows that the criterion can be expressed in a form 
accommodating all processes affecting stability. To see this, we 
begin with Eq. (30) for the time-dependent amplitude of the nth 
mode, lin + (0; = Fn. According to the reasoning in Sec. V.A, we 
take G,n = (iJ~ + (0;11;)12 to be the energy of the oscillator associ­
ated with the nth mode; within a constant multiplier, G,n is the 
acoustic energy for the nth unperturbed mode. As a result of the 
"force" Fn, energy flows into the nth mode at the rate Fn TJn; thus, 
at time t, the change in energy in one period 'tn = 2rc/(On of the 
oscillation is 

(111) 
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Fig. 23 Example showing the effects of including larger numbers of 
modes. 

Substitution of 11n = llne
iilkt and Fn = Fneilikt for linear behavior 

reduces Eq. ~30) to the formula for the complex wave number, k2 

= oo~ - F,.IZi . The real and imaginary parts are 

00
2 002 _ j;'(r) 

n n (112a) 

1 • (i) 
(112b) a -F n 

200n n 

where we have used the fact, as in Sec. IV, that ani 00« 1, and we 
write here an as the value of a for the nth mode. 

Integration of the right-hand side of Eq. (111) by parts and sub­
stitution of Eq. (l12b) leads eventually to the fonnula 

(113) 

Thus if we take 11{j, n to be the measure of energy change implied 
in Rayleigh's criterion, this equation establishes the equivalence 
between that principle and the general result of linear stability: if 
an> 0, then l1{j,n > ° and the mode is unstable. The result applies 
to any small disturbance synthesized from its modal components. 

To extract the special case for heat addition, the original form of 
Rayleigh's criterion, we need only select that part of Fn arising 
from heat addition. From the definitions (31), (22), (12), and (11), 
we find the term in question to be 

Rlc"saQ' . F = -~ __ '11 '" dV 
n -E2 at 'In'!'n 

p n 

(114) 

Substitute this term only in Eqs. (Ill) and integrate by parts in 
time to give 

The product Q'Tin has (approximately) period 1:n and so the first 
tenn vanishes; in the second, we set ii '" -00211 ,true to the same 
approximation, and n n n 

2 t+ tn 

Mn = 0-1) _OOnzS dV S Q' (t') 'l'n dt' (115) 
pEn t 

This is the explicit expression of Rayleigh's criterion. 
In fact, the formula (115) is not restricted to linear behavior. 

Although the motions are required to be "small" in the sense 
implied by the approximations used in formulating the approxi­
mate analysis, nothing in the derivation, from the definition (Ill) 
to the result (115) prevents consideration of nonlinear behavior. 
For nonlinear problems, Q' (t) cannot usually be expressed as a 
linear superposition of contributions associated with each of the 
normal modes. Explicit results can be obtained only by solving the 
nonlinear problem according to the procedures discussed in the 
earlier parts of this paper; l1&n will then depend, generally, on the 
amplitude of the nth mode. 

In the past several years, the formula (115) has been success­
fully used in interpreting experimental results. Generally, it is 
assumed that Q' is proportional to measurements of the radiation 
field associated with the combustion processes. It is then possible 
to confirm that the acoustic oscillations are in fact being driven by 
the energy addition (see Sterling53 and Sterling and Zukoski54 for 
examples of the procedure). 

X. Nonlinear Acoustics, Chaos, and Noise 
Developments in the theory of nonlinear dynamical systems 

during the past two decades have encouraged new interpretations 
of experimental results as well as different methods of analysis. 
Measured time histories of the pressure in a combustion chamber 
will always show aspects of randomness as well as contributions 
from well-defined oscillations. If combustion instabilities are 
present, the power spectrum will show peaks rising from a broad­
band background. 

The traditional explanation of power spectra of this sort has 
been based on the assumption that the two important contributions 
are noise and acoustic oscillations, perturbed by the various proc­
esses we have discussed or alluded to in the preceding sections. 
"Noise" is presumably associated with flow separation, turbu­
lence, random fluctuations of combustion processes, and so forth. 
However, dynamical systems theory suggests that deterministic 
chaos may be a third contributor: a deterministic nonlinear system 
may execute aperiodic apparently random motions in the absence 
of stochastic sources. This possibility poses interesting theoretical 
questions, and in addition forces the issue of processing experi­
mental data to discover more precisely what activities are in fact 
significant when combustion instabilities are found. 

At least three questions must be answered: 1) Do pressure 
records show the presence of low-dimensional attractors associ­
ated with nonlinear dynamics capable of producing broadband 
spectra? 2) What influences do stochastic sources (noise) have on 
nonlinear combustion instabilities? 3) Will the formulation of non­
linear acoustics discussed here predict chaotic behavior? The first 
item is concerned solely with processing experimental data. Kan­
tor55 first proposed that cycle-to-cycle variations in an internal 
combustion engine may betray the actions of nonlinear dynamics 
associated with chemical kinetics. His idea was developed further 
by Daily56 who constructed a more realistic, yet still simple, model 
of the internal flow and combustion processes. Daily concluded 
that apparently random variations could indeed be caused by non­
linear dynamics. Whether the behavior he computed is truly "cha­
otic" in the narrow technical sense remains an open question, but 
the important point has been made that causes other than random 
noise due to turbulence may contribute significantly to observed 
power spectra. 

More recently, Keanini et a1.57 have analyzed pressure records 
taken for a laboratory dump (rapid expansion) combustor to search 
for possible influences of deterministic nonlinear processes. Tech­
nically what they sought was the existence of a "low-dimensional 
attractor" which if it is "strange," or has a "fractional dimension" 
suggests the presence of chaos. They conclude that "Preliminary 
evidence indicates that a low dimensional strange attractor exists 
under certain conditions during unstable combustion in a labora­
tory ramjet." 

Sterling58•59 is currently studying data taken in a laboratory com­
bustor at California Institue of Technology, with the same inten­
tions. It is a delicate process, apparently quite likely to produce 
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misleading conclusions. So far, low-dimensional attractors having 
integer dimensions have been found, but there is no evidence of 
strange attractors. For a short summary of the results, see also 
Culick et al. 60 

Little has been done theoretically with the nonlinear systems 
described in this paper to seek possible chaotic behavior and no 
evidence has appeared in numerical calculations. Some calcula­
tions have been carried out to'investigate the effects of stochastic 
sources in the two-mode approximation.61 .62 Only incomplete 
exploratory results have been obtained.60 

The preceding three questions listed merit serious attention. 
Present understanding of the processes in a combustion chamber is 
insufficient to allow complete and unambiguous interpretation of 
pressure records. Establishing an accurate assessment of the rela­
tive contributions of random sources, deterministic chaos (if it 
exists in these systems), combustion instabilities, and other possi­
ble processes to unsteady motions is a necessary prerequisite to the 
design of effective active control systems. 

XI. Concluding Remarks 
The theory of linear combustion instabilities is well-understood 

and procedures for computing the stability characteristics of prac­
tical systems have been shown by experience to be effective. 
Accurate results can be obtained for the growth or decay of small 
disturbances if the processes contributing to the energy gains and 
losses can be faithfully modeled. In most applications, the most 
difficult problems arise in determining the dominant source of 
energy gain, i.e., the mechanisms for the instabilities. Usually 
those processes are directly associated with the energy release 
accompanying combustion, but various interactions between the 
unsteady motions and the average flowfield may be significant. 
Extended discussions of mechanisms may be found in recent 
reviews.6-8 

Linear theory provides results only for the initial growth or 
decay of small disturbances. An unstable motion in a real system 
will grow until limited by nonlinear processes. Hence, to learn 
how to prevent unacceptably large amplitudes or to make effective 
changes in an existing system, it is essential to understand nonlin­
ear behavior. In this paper we have discussed briefly the most 
important issues arising with nonlinear acoustics in combustion 
chambers. Results obtained so far have provided partial under­
standing of the fundamental phenomena and have aided consid­
erably the interpretation of behavior observed in practical sys­
tems. However, the greatest potental benefits lie in development 
of active control systems, a subject just now in its early stage; suc­
cess will require continued progress in the theory of nonlinear 
acoustics. 
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