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The low-Reynolds-number motion of a single spherical particle between parallel walls is determined
from the exact reflection of the velocity field generated by multipoles of the force density on the
particle’s surface. A grand mobility tensor is constructed and couples these force multipoles to
moments of the velocity field in the fluid surrounding the particle. Every element of the grand
mobility tensor is a finite, ordered sum of inverse powers of the distance between the walls. These
new expressions are used in a set of Stokesian dynamics simulations to calculate the translational
and rotational velocities of a particle settling between parallel walls and the Brownian drift force on
a particle diffusing between the walls. The Einstein correction to the Newtonian viscosity of a dilute
suspension that accounts for the change in stress distribution due to the presence of the channel
walls is determined. It is proposed how the method and results can be extended to computations
involving many particles and periodic simulations of suspensions in confined geometries. © 2010
American Institute of Physics. �doi:10.1063/1.3487748�

I. INTRODUCTION

The no-slip condition on surfaces constraining a fluid
dramatically affects the dynamics of embedded particles, es-
pecially at low Reynolds number. Even in the simplest ge-
ometries, it is quite difficult to calculate the influence of the
boundaries on particle motion. These calculations are impor-
tant, however, to the understanding of the rheology of micro-
structured fluids,1 the development of microfluidic devices,2

and the design and implementation of micro- and nanoscale
experiments3 among other applications. Study of the com-
plex hydrodynamics resulting from satisfying boundary con-
ditions on both a particle and the boundary surfaces is nearly
a century old, but the efficient calculation of these remains a
challenge. Building on techniques we developed recently to
study the motion of many particles near a single plane wall
boundary,4 we proceed to calculate the grand mobility tensor
associated with a single particle between a set of parallel
walls. While other researchers have calculated similar quan-
tities, the results presented here are packaged in a particu-
larly transparent form that identifies the distance between the
walls as the key length scale in the problem. We are able to
write the contributions to the grand mobility tensor as a finite
and ordered sum over inverse powers of the channel width.
These expressions are especially useful in computation be-
cause they are easily tabulated.

The convergence of colloid science and microfluidics
makes the motivation for these calculations apparent. Recent
research has been concerned with particle motion in narrow
channels via pressure driven flow, electrophoresis, electro-
osmotic flow, and Brownian motion. The additional resis-
tance generated by channel walls plays a role in regulating
the kinetics of colloidal scale-assembly processes5 and also
affects the dynamics and efficacy of electrophoretic
separations.6 Additionally, various biological assays work
precisely because of the shape of the microfluidic devices in

which they are conducted.7 Be it Brownian motors,8 the de-
terministic transport of colloids through a varying potential
landscape9 or the sorting of biological macromolecules in
optical lattices,10 the fluctuations on which these processes
rely are firmly tied to the geometric constraints of the micro-
channel in which they take place. Invariably in these studies,
a statistical description of a microfluidic process that de-
pends on the intimate hydrodynamic details of the particle
motion is generated. The present results make the hydrody-
namics governing particle motion in a channel easily acces-
sible and may allow researchers to predict readily the out-
come of a lab-on-a-chip experiment.

Some time ago, Faxén11 approached the problem of par-
ticle motion between parallel walls by noting the similarities
between Laplace’s equation and the Stokes equations for
fluid flow at low Reynolds number, which for a fluid of vis-
cosity � with velocity field v and pressure p are

�2v =
1

�
� p ,

�1�
� · v = 0.

Expressing the fundamental solution to Laplace’s equation in
three dimensions �1 /r� as an integral, he wrote down the
general solution to the Stokes equations between a set of
parallel walls in integral form. Here, we produce an equiva-
lent result using the direct process of transforming the Stokes
equations from real space to Fourier space; after all, Faxén’s
procedure yields a general solution to the Stokes equations in
Fourier space. Inverting this solution is rather difficult for all
but a few specific geometric configurations that Faxén, to his
credit, was able to interrogate. The details of this calculation
are available in the text by Happel and Brenner.12 Before
solving the parallel wall problem, Faxén computed the resis-
tance to the motion of a spherical particle in the half-space
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above a single plane wall. In order to forego the difficulties
associated with satisfying the boundary conditions on the
two walls lining a channel, Oseen13 suggested that a linear
superposition of the resistance due to each plane wall sepa-
rately would make for a suitable estimate. This approach has
seen some empirical success, but the approximation made
can be quite substantial. It poses a severe computational
challenge as it fails to yield a positive-definite grand mobility
tensor—something that is essential to the physics of Stokes
flow and critical for the computation of hydrodynamic inter-
actions among many particles.

Blake14 brought an electrostatic perspective and solved
the problem of a point force in the half-space above a single
plane wall in Stokes flow. He introduced the notion of an
image flow below the plane wall that satisfies the Stokes
equations and cancels the flow due to the point force exactly
where the plane wall bounds the half-space. The proper ma-
nipulation of this expression has proven quite useful recently
in the simulation of many particles near a plane wall
boundary.4 Following on Blake’s approach, Liron and
Mochon15 found that an infinite but convergent series of hy-
drodynamic images was necessary to satisfy the boundary
conditions on two plane walls with a point force between
them. Summation of this series is possible but ineffective for
rapid simulation of particle dynamics. However, this result
helps us understand why inversion of Faxén’s Fourier space
results into an analytical, real space result like Blake’s
proves so difficult: since the Stokes equations are unique, the
result must be the same as Liron and Mochon’s infinite sums,
which themselves are quite complicated.

There have been a number of attempts to simulate sus-
pensions of spherical particles between parallel walls. Dur-
lofsky and Brady16 discretized the force density on the walls
and used this to calculate the effects of the walls on a finite
set of particles embedded in the fluid. One approach used
spherical particles fixed in space as a model of channel walls
in plane Couette flow.17,18 Both of these methods model the
channel walls as plane surfaces which are, for lack of better
terms, “leaky” and “slippery.” There has been much
success19–21 using Fourier transform techniques in addition
to an eigenfunction expansion of the solution to Stokes flow
in the parallel wall geometry to calculate the image flows
due to two walls. While this result must be the same as Liron
and Mochon’s, it satisfies the boundary conditions on the
walls at each level of the eigenfunction expansion, which is a
clear advantage. Their expansion, however, does not make a
direct physical connection to the moments of the force den-
sity on the particle’s surface, and also has an implicit depen-
dence of the solution on the channel width. Other approaches
to the computation of the channel mobility have similar fea-
tures �boundary collocation method,22 boundary integral
method23�. Our approach utilizes a physical connection to the
force moments of a particle between parallel walls, which
may afford novel, more intuitive, and applicable results.

A number of researchers have made experimental mea-
surements of the in-plane diffusivity of a particle between
parallel walls. Dufresne et al.24 did a thorough job of com-
paring many of the analytical approaches to the diffusivity of
a single particle in a channel measured via optical tweezer

microscopy. They find that all of the approaches, while giv-
ing different results, fall equally near the experimental data
and well within the margins of error. Unfortunately like pre-
vious studies, these disappoint when it comes to decoupling
the three separate length scales in the problem: the charac-
teristic size of the particle, a; the separation between the
channel walls, H; and the height of the particle above one of
the channel walls, h. Distinguishing clearly among these is
essential to understanding how many particles behave in a
bounded geometry. As Stokes flows tend to decay slowly, the
effects of interactions with the walls are often just as impor-
tant as those between particles themselves. We attempt to
remedy this shortcoming here.

The paper is organized as follows. In Sec. II we detail
the development of the grand mobility tensor from Faxén
formulas and multipole expansions and briefly discuss the
relevant velocity fields for flow between parallel walls. We
introduce the Fourier transform solution to the Stokes equa-
tions between parallel walls and demonstrate that this can be
used to develop an integral expression for components of the
grand mobility tensor for a single particle in a channel. In
particular, we show that each element of the grand mobility
tensor can be written in terms of inverse powers of the chan-
nel width. In Sec. III we plot the elements of the grand mo-
bility tensor for coupling between translation, rotation, and
rate of strain with force, torque, and stresslet. We also show
how these collapse down to the single wall results in the
limit that the channel is infinitely wide. We use a Stokesian
dynamics simulation to calculate the fall speed and rate of
rotation of a particle as it sediments down a channel. We use
this same simulation to calculate the Brownian drift of a
particle between parallel walls. Finally, we calculate an ex-
tension of the Einstein correction for the shear viscosity of a
dilute colloidal suspension which accounts for the effects of
the channel walls on the distribution of stresses in the chan-
nel. In Sec. IV, we discuss the extension of these results to
the study of many particles between parallel walls. In par-
ticular, we discuss how a similar approach may be fruitful in
constructing Stokesian dynamics and accelerated Stokesian
dynamics simulations of infinite suspensions bound between
parallel walls.

II. THEORY AND METHODS

A. The grand mobility tensor

For Stokes flow surrounding rigid particles and con-
tained by rigid boundaries, the governing equations and
boundary conditions are linear in the velocity field and
boundary data. Taking a higher level perspective on the prob-
lem than the detailed knowledge of the velocity field, we
recognize that the translational velocities of the particles be-
tween the walls must be coupled linearly to forces on the
particles. If we generalize a bit more, then we can allow that
the translational �U−U�� and rotational ��−��� velocities
of the particles relative to the bulk fluid velocity as well as
the rate of strain of the fluid �E�� at the particles’ center and
higher order moments of the velocity distribution in the fluid
couple linearly to all the moments of force density on the
particles’ surface. These include, but are hardly limited to,
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the hydrodynamic force FH, the hydrodynamic torque LH,
and the hydrodynamic stresslet SH. The latter two represent
the antisymmetric and symmetric parts of the first moment of
the force density. This linearity may be expressed in a very
simple and compact form,

�
U − U�

� − ��

− E�

]

� = −�
MUF MUL MUS ¯

M�F M�L M�S ¯

MEF MEL MES ¯

] ] ] �

� ·�
FH

LH

SH

]

� ,

�2�

where M’s are the mobility tensors. These depend only on
the geometry defined by the positions of all the particles
relative to the boundaries and are independent of the velocity
and force moments. When the mobility tensors are as-
sembled in this way, the construction is termed the grand
mobility tensor and is sometimes given the designation M.
By using the Lorentz reciprocal theorem and dissipation ar-
guments, it is easy to show that, regardless of the boundary
geometries, the grand mobility tensor is symmetric and
positive-definite.25 These properties are fundamental to
Stokes flow and are often quite useful when simulating the
motion of particles at low Reynolds number. We will restrict
the discussion for the remainder of the paper to spherical
particles as these are easiest to deal with mathematically.
Though, similar expressions exist for any particle or bound-
ary geometry.

Faxén formulas are often used to assemble the mobility
tensors. These relate, for instance, the relative velocity of a
spherical particle with center at x0 in an unbounded fluid to
the force on that particle and the effects of a disturbance flow
denoted v��x�, viz.,

U − U� = −
FH

6��a
+ �1 +

a2

6
�x

2	v��x�
x=x0
. �3�

If we knew the exact Green’s function for a particle between
two walls, then we could derive an equivalent Faxén formula
for a particle in a channel. All that would change in the
above formula would be the first term on the right hand side.
As we shall see, however, this is unnecessary since the ve-
locity disturbance caused by a single particle in a channel
can be divided into two pieces: the flow due to the particle as
though in an unbounded fluid, and the correction to that flow,
which cancels on the boundaries and satisfies the relevant
boundary conditions. This second velocity field, termed the
reflection, is nothing more than a disturbance flow which
contributes to v��x�. Equivalent formulas exist that couple
the relative rotation and rate of strain to the torque and
stresslet, respectively, as well as to a disturbance flow, viz.,

� − �� = −
LH

8��a3 +
1

2
�x � v��x�
x=x0

, �4�

− E� = −
SH

20

3
��a3

+
1

2
�1 +

a2

10
�x

2	
���xv��x�+T�xv��x��
x=x0

, �5�

where T�x is the front-gradient-transpose operator that takes
the dyadic gradient and transposes it with the first index of
the operand. Higher order Faxén formulas can be derived
using procedures like those described in the classic texts on
Stokes flow.12,25 The three we have presented here are ad-
equate for illustrating our methods and results.

Since we are seeking to build the mobility tensors for a
particle in a channel, we need to determine the reflected flow
mentioned above. To do this, we first establish the velocity
field generated by a spherical particle in an unbounded flow
with one of the given force multipoles on its surface. This is
most easily done with a multipole expansion. Given the fun-
damental point force solution to Stokes flow in an un-
bounded domain, called the Stokeslet,

J�r� =
1

8��
� I

r
+

rr

r3 	 , �6�

the velocity field surrounding a rigid, no-slip particle is writ-
ten as

v�x� = �
S

J�x − y� · f�y�dSy , �7�

where S designates the surface of the particle and f�y� is the
force density on the particle’s surface. If we perform a Taylor
expansion of the Stokeslet about the particle’s center, we can
write the velocity field generated by the particle as

v�x� = �1 +
a2

6
�y

2	J�x − y�
y=x0
· F +

1

2
�y

� J�x − y�
y=x0
· L +

1

2
�1 +

a2

10
�y

2	
���y + �y

T�J�x − y�
y=x0
:S + ¯ , �8�

where �x
T is the back-gradient transpose operator which takes

the dyadic gradient and transposes it with the last index of
the operand. Here, we have switched from referring to the
force, torque, and stresslet on the fluid to the force moments
on the particle which may be represented as F=−FH,
L=−LH, and S=−SH. This series continues with terms that
are represented as higher order derivatives of the Stokeslet
and higher order force moments. These higher order terms all
decay faster than the ones retained since the Stokeslet itself
decays as 1 /r. This means that for relatively large separa-
tions, only a few force multipoles are necessary to accurately
represent the flow. We are free to specify any force density
on the particle’s surface, and therefore the velocity field gen-
erated by a spherical particle with a constant force density on
its surface in an unbounded fluid is simply
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v�x� = �1 +
a2

6
�y

2	J�x − y�
y=x0
· F . �9�

Knowing this is crucial to deriving the reflection of the un-
bounded flow off all channel walls and subsequently apply-
ing the appropriate Faxén formula.

It will prove convenient to define the flow due just to a
Stokeslet of magnitude F originating at a point y in an oth-
erwise unbounded fluid as

vS�x;y� = J�x − y� · F . �10�

The reflection of this Stokeslet off the channel walls must
satisfy the Stokes equations between the walls as well as
cancel the Stokeslet flow on the channel walls themselves.
We denote the reflection flow as vS��x ;y� and write the
boundary condition on the channel walls in the most primi-
tive form,

vS��x;y� + vS�x;y� = 0, for x � walls. �11�

We will establish a defined geometry in Sec. II C; however,
here we aim to layout the construction of the mobility tensor
using reflected flows. Referring back to the flow generated
by a particle with a constant force density on its surface �Eq.
�9��, we see that the reflected flow, designated v��x�, must
satisfy the boundary conditions,

v��x� + �1 +
a2

6
�y

2	J�x − y�
y=x0
· F = 0, �12�

where x is a point on the walls. We use Eq. �11� and the
Laplacian with respect to y of that same equation to argue
that the constant-force-particle reflection flow can be written
in terms of the Stokeslet reflection flow,

v��x� = �1 +
a2

6
�y

2	vS��x;y�
y=x0
. �13�

This satisfies the wall boundary condition in Eq. �12� exactly.
Similar expressions hold for other multipole generated veloc-
ity fields, and we find fortuitously that we only need to work
out the reflection of the Stokeslet off the channel walls to
determine all the other flows that the particle might generate.
Additionally, we recognize from the boundary condition that
the flow vS��x ;y� must be linear in the forcing F. Treating
v��x� as a disturbance velocity and referring back to the
Faxén formulas, the relative translational velocity of a par-
ticle in a channel can be written as

U − U� =
F

6��a
+ �1 +

a2

6
�x

2	�1 +
a2

6
�y

2	vS��x;y�
x=x0

y=x0.

�14�

This is the mobility tensor MUF for a particle in a channel,
and similar expressions can be developed for the other pieces
of the grand mobility tensor.4 In Sec. II C, we complete the
development of these tensors by determining a general equa-
tion for the Stokes flow in a channel with arbitrary boundary
conditions on the walls.

B. General solution to the Stokes equations
between parallel walls

Given the Stokes equations �Eq. �1�� and a pair of
boundary conditions on the lower and upper walls of the
channel represented as

v�x� = vL�x�, for x � lower wall, �15�

v�x� = vU�x�, for x � upper wall, �16�

we seek a general solution for v�x�. Taking cues from Faxén
and Blake, we first find a solution in Fourier space by trans-
forming the coordinates parallel to the wall; henceforth des-
ignated r1 and r2 with unit vectors �1 and �2. We use the
following Fourier transform and inverse in this process,

�̂ = F��� =� �
−�

�

ei�k1r1+k2r2��dr1dr2, �17�

� = F−1��̂� =
1

�2��2� �
−�

�

e−i�k1r1+k2r2��̂dk1dk2. �18�

This transform leaves unchanged the coordinate perpendicu-
lar to the walls which we designate as r3 with unit vector �3.
Therefore, transforming the Stokes equations and noting that
in Stokes flow the pressure is also harmonic, the governing
equations are reduced to a set of ordinary differential equa-
tions which depend only on the reciprocal coordinates k1 and
k2 and the real space coordinate r3,

− k2p̂ +
�2p̂

�r3
2 = 0, �19�

− k2v̂i +
�2v̂i

�r3
2 =

1

�
�− ik�	i�p̂ +

� p̂

�r3
	i3	 , �20�

− ik�v̂� +
� v̂3

�r3
= 0, �21�

where k2=k1
2+k2

2. Blake14 first derived these expressions in
his study of the Stokeslet above a single wall in an otherwise
unbounded half-space. Here, we use two different summa-
tion notations where Greek indices �e.g., � ,
� can assume
the values �1,2� while Roman indices �e.g., i , j� can assume
the values �1,2,3�. Additionally, repeated indices signal the
usual summation over all attainable index values. The gen-
eral solutions for the pressure and the velocity field can be
written as

p̂ = Ae−r3k + Ber3k, �22�

v̂ = Ae−r3k + Ber3k +
1

4�k2 �Ad�2r3k + 1�e−r3k

+ Bd̄�2r3k − 1�er3k� , �23�
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where di= ik�	i�+k	i3 and d̄i=−ik�	i�+k	i3 are related by
conjugation. The unknown coefficients A, B, A, and B are
related through the equation of continuity �Eq. �21�� by

A = 2�d · A , �24�

B = − 2�d̄ · B . �25�

The remaining vectors A and B are determined directly from
applying the boundary conditions on the lower and upper
walls and depend only on the geometry and the reciprocal
coordinates. This process is complicated mathematically and
involves solving a coupled set of equations for A and B, but
the result is an equation for the Fourier transform of the
Stokes velocity field in a channel given arbitrary boundary
conditions on the walls. We work this out explicitly in the
Appendix for posterity. Of course, what is really needed for
determining the mobility tensors for a spherical particle be-
tween a pair of walls is the real space solution to these equa-
tions. In Sec. II C, we address this issue.

C. Single particle mobility in a channel

Up to this point, we have avoided writing down any
specific geometry associated with the system in order to keep
the analysis as general as possible. From here on, where the
particle is located in the channel as well as the channel width
will need to be specified. This will provide a proper origin to
the coordinates in Sec. II B. Figure 1 details the geometry of
the problem. The spherical particle of radius a lies a distance
�H above the lower wall which itself is a distance H away
from the upper wall. The coordinates �r1 ,r2 ,r3� now have a
natural origin corresponding to the center of the particle.
This means that the lower wall corresponds to r3=−�H and
the upper wall corresponds to r3= �1−��H.

As a first step, the reflection of the Stokeslet field origi-
nating from the center of the particle, vS��r�, is found. In
reciprocal space, the boundary conditions on the Stokeslet
reflection are given by

v̂S��k1,k2,− �H� = − v̂S�k1,k2,− �H� , �26�

v̂S��k1,k2,�1 − ��H� = − v̂S�k1,k2,�1 − ��H� , �27�

where the Fourier transform of the Stokeslet is

v̂S�k1,k2,r3� = −
1

4�k3�I� �2

�r3
2 − k2	 +

1

�2k�2dd

��2k
�

�r3
−

�2

�r3
2 − k2	 +

1

�2k�2 d̄d

��−
�2

�r3
2 + k2	 +

1

�2k�2dd̄�−
�2

�r3
2 + k2	

−
1

�2k�2 d̄d̄�2k
�

�r3
+

�2

�r3
2 + k2	

· F�1 + k
r3
�e−
r3
k. �28�

We write this in a form suitable for our particular method,
but again this result was first realized by Blake14 in his pre-
viously mentioned study. We proceed by applying the bound-
ary conditions and finding the unknown coefficients A and B
associated with the Stokes flow reflection problem. These are
now complicated functions of the reciprocal coordinates
�k1 ,k2�, the separation between the plates �H�, and the frac-
tional distance across the channel ���. They are also linear
functions of the force or Stokeslet magnitude F.

Computing the inverse transform of v̂S� is quite difficult.
However, to compute the mobility of a particle in the chan-
nel, we really only need to find the value of reflected field at
the particle’s center which may be written as

vS��x0;x0� =
1

�2��2� �
−�

�

v̂S��k1,k2,0�dk1dk2. �29�

This integral is orders of magnitude easier to compute than
the full inverse Fourier transform since the integrand de-
pends only on a few parameters �k1, k2, �, H, and F�. In
fact, we also need to know �x

2vS��x ;y�, �y
2vS��x ;y�, and

�x
2�y

2vS��x ;y� with x and y at the center of the particle in
order to apply the Faxén formula and to compute MUF. Other
higher order derivatives are also necessary to compute higher
order mobility tensors. Computing these derivatives is quite
easy, however. First, we write down the gradients with re-
spect to the coordinates x and y in terms of the coordinate
system we have established in the channel �r=x−y�. In this
case, x refers to some point in the fluid while y refers to the
origin of the coordinate system. These gradients can be writ-
ten as

�x = �r, �30�

�y = − �r +
1

H

�

��
�3, �31�

and higher order derivatives can be computed by successive
application of these formulas. The correct transformation of

FIG. 1. �Color online� A single spherical particle of radius a in a channel of
width H. The vector r is centered on the particle which lies a fractional
distance � across the channel.
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the gradients with respect to y is important because these
derivatives reflect the key point: that the force density is
distributed over the particle’s surface rather than originating
at its center. Failing to note this will result in a grand mobil-
ity tensor which is an approximation to the correct result, but
fails to be symmetric and positive-definite. Now, we can
compute, for instance, �x

2vS��x ;y� with x and y pointing at
the particle’s center as

�x
2vS��x;y�
x=x0

y=x0 =
1

�2��2� �
−�

� �− k2 +
�2

�r3
2	v̂S�

��k1,k2,r3�
r3=0dk1dk2, �32�

where we have carefully applied the usual Fourier transform
identities to move the derivatives inside the integral. The
other terms are computed similarly, and although the formu-
las are tedious, they yield similar results. The total inverse
Fourier transform needed to compute MUF is given by

1

�2��2� �
−�

� �1 +
a2

6
�− k2 +

�2

�r3
2	�1 +

a2

6
�− k2 +

�2

�r3
2

−
2

H

�2

�� � r3
+

1

H2

�2

��2	M̂�k1,k2,r3;�,H�
r3=0dk1dk2,

�33�

where

v̂S��k1,k2,r3� = M̂�k1,k2,r3;�,H� · F �34�

takes advantage of the linear dependence of the velocity on
the forcing. As it happens, the reciprocal length scale k and
the channel width H always appear together in the formula

for M̂. By redefining the variables of integration in Eq. �33�
so that �1=k1H, �2=k2H, and �2= �kH�2, we integrate over �1

and �2 in cylindrical polar coordinates; performing the angu-
lar integration analytically and the radial integration numeri-
cally. This is quite simple as the integrand decays exponen-
tially as � gets large. This yields an expression for MUF

which is an ordered sum of inverse powers of the channel
width. The mobility tensor can also be separated into two
pieces reflecting motions parallel and perpendicular to the
walls, viz.,

MUF =
1

6��a
��I − �3�3��1 − f1

�UF����� a

H
	 + f3

�UF����

�� a

H
	3

− f5
�UF����� a

H
	5 + �3�3�1 − g1

�UF����

�� a

H
	 + g3

�UF����� a

H
	3

− g5
�UF����� a

H
	5� , �35�

where I is the idem tensor and f i
�UF���� and gi

�UF���� are
functions of the fractional distance across the channel only.
From a far-field perspective, the channel width can be decou-
pled from the fractional distance across the channel. This
means that the functions f i

�UF���� and gi
�UF���� need only be

computed once for all �� �0,1� and the hydrodynamic in-
teractions between the particle and the wall are determined
completely for all channel widths. This is especially useful in
simulations because these functions can be tabulated and ref-
erenced quickly.

Similar expressions exist for the other mobility tensors.
The Faxén formulas and multipolar flows needed to compute
these terms are given explicitly in the paper by Swan and
Brady.4 We show the result of taking these derivatives and
then integrating the result here. Since the grand mobility
tensor is symmetric, we only provide six of the nine tensors
in Eq. �2�. The other three can be computed directly by ac-
counting for this symmetry. For the translation-torque
and translation-stresslet couplings, we find the following
expressions:

MUL =
1

6��a2�3 · �� f2
�UL����� a

H
	2

+ f4
�UL����� a

H
	4 ,

�36�

MUS =
1

6��a2���I − �3�3��3 + �I − �3�3��3
T��− f2

�US����

�� a

H
	2

+ f4
�US����� a

H
	4

− f6
�US����� a

H
	6

+ ��3�I − �3�3� + 2�3�3�3��g2
�US����� a

H
	2

− g4
�US�

����� a

H
	4

+ g6
�US����� a

H
	6� , �37�

where � is the Levi–Civita tensor. Similarly, for the rotation-
torque and rotation-stresslet couplings, the elements of the
grand mobility tensor are

M�L =
1

6��a3��I − �3�3��3

4
− f3

��L����� a

H
	3

+ �3�3�3

4
− g3

��L����� a

H
	3� , �38�

M�S =
1

6��a3 ��3 · ��3 + �3 · ��3
T�

�� f3
��S�� a

H
	3

+ f5
��S�� a

H
	5 . �39�

Finally, for the coupling between rate of strain and stresslet,
the mobility tensor is
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MES =
1

6��a3��−
9

30
− f3

�ES����� a

H
	3

+ f5
�ES����� a

H
	5

− f7
�ES����� a

H
	7��	ij − 	i3	 j3��	kl − 	k3	l3�

− 2�	ij − 	i3	 j3�	k3	l3 − 2	i3	 j3�	kl − 	k3	l3� + 4	i3	 j3	k3	l3�

+ � 9

20
− g3

�ES����� a

H
	3

+ g5
�ES����� a

H
	5

− g7
�ES����� a

H
	7 � ��	ik − 	i3	k3��	 jl − 	 j3	l3� + �	il − 	i3	l3��	 jk − 	 j3	k3�

− 2�	ij − 	i3	 j3�	k3	l3 − 2	i3	 j3�	kl − 	k3	l3� + 4	i3	 j3	k3	l3� + � 9

20
− h3

�ES����� a

H
	3

+ h5
�ES����� a

H
	5

− h7
�ES����

�� a

H
	7 � ��	ik − 	i3	k3�	 j3	l3 + �	il − 	i3	l3�	 j3	k3 + �	 jk − 	 j3	k3�	i3	l3 + �	 jl − 	 j3	l3�	i3	k3���i� j�k�l. �40�

Other higher order mobility tensors can be calculated in a
similar fashion, but for the purposes of dynamic simulation it
has proven convenient to truncate the force multipoles at the
stresslet level. Therefore, we omit the calculation of any
higher order terms. It is true that just as in calculations in-
volving many particles, when the particle is close to one of
the channel walls, all the force multipoles are important
since this constitutes the lubrication limit. We use the Stoke-
sian dynamics method of constructing the grand mobility
tensor and its inverse, the grand resistance tensor, to resolve
this difficulty.

D. Stokesian dynamics

The Stokesian dynamics method simplifies the calcula-
tion of hydrodynamic interactions among many bodies in
Stokes flow by first computing the correct pair-wise, long-
range behavior of the particles in the form of the grand mo-
bility tensor. This is analogous to what we have done in Secs.
II A–II C. Durlofsky, Brady, and Bossis26 showed that invert-
ing the grand mobility tensor is equivalent to a method of
reflections type procedure that yields the many-body long-
range interactions among the particles. Since the grand mo-
bility tensor must in every practical sense be truncated at
some force multipole level, this invert alone fails to account
for any pair-wise lubrication interactions which may occur
when surfaces are nearly touching. The truncated invert is
typically designated as R� and is a far-field contribution to
the grand resistance tensor which is denoted more generally
as

R =�
RFU RF� RFE . . .

RLU RL� RLE . . .

RSU RS� RSE . . .

] ] ] �

� , �41�

where R’s are the individual resistance tensors. The short-
comings of the far-field resistance tensor are overcome by
writing the grand resistance tensor as

R = R� + R2B − R2B,�, �42�

where R2B is the exact pair-wise lubrication form of the
grand resistance tensor and R2B,� is the two body far-field

form of the grand resistance tensor. In this way, our approxi-
mation for the grand resistance tensor accounts for the cor-
rect many bodied far-field interactions and the correct pair-
wise lubrication interactions. We can include the walls in
these calculations by simply adding in the correct lubrication
interactions of each particle with each wall individually and
subtracting out the far-field interactions with that same wall
as though it were in an otherwise unbounded domain. This is
represented schematically as

R = R� + R2B − R2B,� + RW − RW,�, �43�

where RW and RW,� are the exact lubrication and far-field
resistance tensors for interactions with each wall individu-
ally. Bossis, Meunier, and Sherwood27 tabulated the lubrica-
tion expressions to the stresslet level of truncation, and Swan
and Brady4 computed the far-field, single wall interactions to
that same level.

The dynamics of particles are straightforward to work
out once the grand resistance tensor is known. Newtonian
mechanics state that the particle’s acceleration must balance
with the forces applied to it, viz.,

�

�t
m · U = FH + FP, �44�

where m is the generalized mass tensor for all the particles
and FP is any additional force on the particles. This might
include Brownian forces, gravity, or forces due to an electric
field, among others. For small particles with a density �p�
not too dissimilar from that of the fluid, the acceleration of
the particles is not important. That is, when the Stokes num-
ber, pUa /�, which measures the relative importance of par-
ticle inertia, is small, the left hand side of the particle equa-
tions of motion is made identically equal to zero. In this way,
Eq. �44� becomes

�X

�t
= U� + RFU

−1 · FP, �45�

where X is the position of the particles whose time derivative
is simply U. Integration of this equation is not too compli-
cated but the focus of this article is the calculation of RFU,
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etc. The work by Phung, Brady, and Bossis28 offers a broad
overview of how this may be accomplished. This schematic
makes it possible to compute all of the hydrodynamic and
rheological results presented in Sec. III.

III. RESULTS AND DISCUSSIONS

A. Components of the single particle mobility
in a channel

In this section we plot and discuss the functions of the
fractional channel distance, �, which in essence define the

different elements of the grand mobility tensor. The functions
we plot here are perhaps most useful in a tabulated form for
many values of � distributed within �0,1�—although such
tables are difficult to represent in print. They are, however,
available from the editorial office. To begin, consider the
plots of f1

�UF����, f3
�UF����, and f5

�UF���� shown in Fig. 2.
Faxén computed the force F on a particle translating parallel
to the walls with a velocity U, halfway and a quarter of the
way across a channel. His results were presented as a ratio of
the velocity to the force, viz.,

6��aU

F
= �1 − 0.6526�a

h
	 + 0.1475�a

h
	3

− 0.131�a

h
	4

− 0.0644�a

h
	5

+ ¯ , h =
H

4
,

1 − 1.004�a

h
	 + 0.418�a

h
	3

+ 0.21�a

h
	4

− 0.169�a

h
	5

+ ¯ , h =
H

2
.� �46�

First, notice that his expression is equivalent to the inverse of
the resistance tensor RFU and is closely related to MUF.
Where RFU

−1 is an infinite series in powers of a /h, it is equiva-
lent to leading order to MUF, which can be represented with
a finite number of terms. The additional �a /h�4 term as well
as the rest of the series represented by the ellipses in Faxén’s
expressions is due to higher order force moments. In fact, we
find that the coefficients Faxén computed are identical to our
results when rescaled so that his expressions are written in
terms of inverse powers of H instead of inverse powers of h.
One result Faxén opted not to generate was the mobility for
a particle sedimenting perpendicular to the channel walls.
However, we have computed these mobility terms and find a
behavior similar to the sedimentation parallel to the wall.
Interesting, although perhaps not surprising, is the fact that
sedimentation toward the wall is always slower than sedi-
mentation along the wall. This must be because it is always
harder to squeeze fluid out of a gap than to just push it aside
at low Reynolds number.

It might be disconcerting to see the mobility coefficients
diverge as � approaches zero and unity. However, this be-
havior is correct as it leads to the conclusion that the parallel
wall problem collapses to the single wall problem in the limit
that the channel spacing is infinitely wide. Suppose the par-
ticle is fixed against the wall such that �=a /H. This is the
closest the particle will ever get to wall regardless of the
value of H and therefore, this is the smallest value of �
possible. We take the limit of the mobility tensor as a /H
goes to zero and discover a satisfying, finite result. To sim-
plify things, we examine the limits of each contribution to
the mobility tensor individually,

lim
�→0

f1
�UF����� = 9

16, lim
�→0

g1
�UF����� = 9

8 , �47�

lim
�→0

f3
�UF�����3 = 1

8 , lim
�→0

g3
�UF�����3 = 1

2 , �48�

lim
�→0

f5
�UF�����5 = 1

16, lim
�→0

f5
�UF�����5 = 1

8 . �49�

These results are easily recognized as the coefficients of the
single wall mobility tensor,4 which is sometimes written as

MUF =
1

6��a
��I − �3�3��1 −

9

16
�a

h
	 +

1

8
�a

h
	3

−
1

16
�a

h
	5

+ �3�3�1 −
9

8
�a

h
	 +

1

2
�a

h
	3

−
1

8
�a

h
	5� , �50�

where h is the height of the particle above that single wall. In
the above limit, a /h is clearly unity, and we recognize that,
indeed, the two wall problem collapses into the single wall
problem when the channel width tends to infinity. This also
makes it clear that the asymptotic behavior as �→0 of the
mobility coefficients must be

f i
�UF����, gi

�UF���� �
1

�i , �51�

where i=1,3 ,5 and the coefficient of proportionality is given
by the single wall value. This result is particularly useful in
the computational domain since tabulation cannot be per-
formed for all values of �, and in the quickly varying re-
gions near the walls the asymptotic result can be used as a
substitute for the tabulated one.

For the coupling between translation and torque, we find
a similar set of expressions. These are more challenging to
visualize since they switch sign as the particle moves across
the channel. This is easy to understand by considering the
walls individually. For a particle above a single wall, the
torque also couples to the translation of the particle. Flipping
the coordinate system over so that the wall is now above the
particle while keeping the torque the same results in transla-
tion in the opposite direction; hence the change in sign. The
components of MUL are plotted in Fig. 3. One interesting
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feature of this particular coupling is the O�a /H�2 contribu-
tion. There is no analogous contribution in the single wall
problem. Near the middle of a relatively large channel, this
contribution dominates both the translation-torque and the
rotation-force couplings. Although unexpected, this result is
consistent with the single wall results as f2

�UL���� is nonsin-
gular near the walls and therefore makes no contribution
when only one wall is present. This term represents a lower
order interaction generated by reflecting a rotlet between a
pair of walls. In the single wall case where the domain is
unbounded, there is only one no-slip condition to enforce
and the parts of the disturbance velocity leading to this con-
tribution are identically zero in order for the magnitude of
the reflected velocity to remain finite in the far-field. An
analogous set of plots shown in Fig. 4 has been generated for
the translation-stresslet coupling. The sign of the mobility
coefficients also changes as the particle moves from one wall
to another; therefore, only the domain �� �0,0.5� is de-
picted. This is most easily understood by recognizing that
while U and S are preserved under the coordinate transfor-
mation that swaps the lower and upper walls, the tensor cou-
pling these two is third order and depends on an odd number
of tensor products of the unit vector �3. When the coordinate
system flips, so does the sign of the unit vector and the
coupling functions react accordingly to preserve the sign of
the expression. Because of the symmetry between the walls,
the coupling between translation and stresslet, as well as
translation and torque, must go to zero when the particle is

halfway across the channel. Additionally, the singular limits
of each coefficient approach the corresponding single wall
values.

We plot the coefficients associated with the rotation-
torque coupling in Fig. 5. As with the mobility of a particle
above a single wall, the no-slip condition on the boundaries
retards rotation about the axes parallel to the walls more than
rotation about the axis perpendicular to the walls. These co-
efficients are symmetric across the channel because under the
coordinate inversion which switches the walls, the rotation
and torque, which are handed quantities, both change sign.
Similarly, the coupling between rotation and stresslet is also
symmetric across the channel. These coefficients are plotted
in Fig. 6. These also approach the single wall values in the
limit that � approaches zero and unity.

The coupling between rate of strain and stresslet is key
for computing the shear stress in a force- and torque-free
suspension. For a dilute suspension, the average of this cou-
pling across the channel is precisely the particle contribution
to the shear stress. Each of the coefficients of this coupling is
plotted in Fig. 7.

The single wall results are recovered as the particle ap-
proaches each wall. Interestingly, the magnitude of these co-
efficients is approximately a factor of 10 larger than all the
others presented. Relative to the scale factors �a /H�n, the
coupling between rate of strain and stresslet is quite strong

FIG. 2. The components of the translation-force coupling in the directions
parallel and perpendicular to the walls, respectively.

FIG. 3. The components of the translation-torque coupling. The O�a /H�2

contribution is not singular and therefore makes no contribution to the single
wall problem.
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when compared to the other equivalently scaled coefficients
�i.e., M�L, M�S�. Therefore, the walls should have a signifi-
cant impact on the measurement of the shear viscosity of a
dilute suspension in a channel.

We conclude this section by examining Oseen’s super-
position approximation for the contribution to the mobility
between a pair of walls. For the translation-force coupling
terms f1

�UF���� and g1
�UF����, Oseen’s superposition approxi-

mation would generate the approximate coefficients,

f̄1
�UF���� =

9

16
� 1

�
+

1

1 − �
	 , �52�

ḡ1
�UF���� =

9

8
� 1

�
+

1

1 − �
	 . �53�

We plot these in Fig. 8 along with f1
�UF���� and g1

�UF����.
The curves are qualitatively similar. Of course, since data on
logarithmic axes can often appear quite close, we also com-
pute the relative error between the exact two wall results and
the superposition approximation. Near each of the walls, the
superposition approximation performs quite well with less
than 5% error when the particle is less than 5% of the way
across the channel. However, in the middle of the channel,
the error balloons quickly. In the case of translation perpen-
dicular to the walls, the error is nearly 60% in the middle of
the channel. This is likely because the walls “leak” fluid and
allow for “slip” in the superposition approximation as they
do not satisfy the no-slip condition. That is, the singularity
solution for a single wall satisfies the no-slip condition on
that wall alone while allowing free motion of the fluid ev-
erywhere else in the superior half-space. The fluid continues
to flow freely in this space even when the singularity solu-
tion for the second channel wall is introduced. Therefore, the
condition that the velocity of the fluid is equivalent to the
velocity of the wall at contact can never be satisfied. When
the source of the flow originates near one of the walls, the
resulting flow is relatively weak, however. Consequently, the
error in the superposition approximation is small near the
wall. As little fluid is set into motion in these cases, we can
confidently employ the Stokesian dynamics method of add-
ing in the lubrication forces while subtracting the single wall
forces from the problem in all but the most narrow channels.
Even in narrow channels, the effective superposition of re-
sistance tensors may still be quite good, as inverting the
grand mobility tensor accounts for all the reflections between
the particle and the walls. The biggest contribution to this is
simply the single wall portion when � is near zero or unity,
so removing this portion directly should be quite effective.
Determining the exact error associated with this approxima-
tion is difficult in general, but a similar approximation is
used to add in the pair-wise lubrication interactions among

FIG. 4. The components of the translation-stresslet coupling corresponding
to couples between translation parallel to the walls and the stresslet S33 and
translation perpendicular to the walls and stresslets with components parallel
to the walls as well as translation perpendicular to the wall and the stresslet
S33 via superposition.

FIG. 5. The components of the rotation-torque coupling about the axes
parallel and perpendicular to the walls, respectively.

FIG. 6. The components of the rotation-stresslet coupling which relates
rotation of a particle about the axes parallel to the walls to the stresslet.
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many particles and has proven very effective for determining
accurate and consistent rheological data.28

B. Sedimentation of a particle between parallel walls

We use a Stokesian dynamics simulation to compute the
velocity of a particle falling due to gravity between parallel
walls. In Fig. 9, we plot the parallel fall speed and rotation
rate of a single particle in channels of various widths. In
order to compare the results for different channel widths on
the same basis, we plot them as a function of the height of
the particle above the lower wall in the channel divided by
the channel width �i.e., �−a /H�. Because of the symmetry
of the channel, we only consider particles which sit less than
halfway across the channel. In this way, we capture both the
lubrication and midchannel behavior of the fall speed and the
rotation rate graphically.

Notice that because of the interactions between the
walls, the midchannel velocity is a function of the channel
width. For sufficiently wide channels �H /a�1�, the fall
speed in the middle of the channel approaches unbounded
value �6��aF�� as a /H. This result arises directly from the
expression for MUF constructed in the previous section.
Similarly, for wide channels, the O�a /H�2 contribution to the
rotation-force coupling is explicitly observable. In the near
wall region, the lubrication forces cause the particle to rotate
one direction, like a wheel rolling over the ground. However,
near the middle of the channel, this rotation reverses briefly
because the O�a /H�2 term dominates the interaction. Re-
member, this term only arises because of the presence of
both walls. It has no analog in the single wall problem.
While this reversal may seem anomalous, we can refer back
to Faxén’s result for the force on a particle falling in a chan-
nel to confirm that this contribution makes a substantial con-
tribution to the dynamics of the particle. In Faxén’s solution,
there was an O�a /H�4 contribution to the fall speed of a
particle in a channel. Of course, that problem studied a par-
ticle which did not rotate as it fell, so the proper mobility
must be written as

FIG. 7. The components of the rate of strain-stresslet coupling. Between
two walls, there are only three independent components of the tensor MES

corresponding to the necessary Stokes flow symmetries and the anisotropy
caused by the wall.

FIG. 8. �Color online� The components of the exact translation-force cou-
pling and the translation-force coupling determined using Oseen’s superpo-
sition approximation as well as the relative error between this and the Stoke-
sian dynamics results.
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MUF − MUL · M�L
−1 · M�F. �54�

We have shown that we recover Faxén’s O�a /H�, O�a /H�3,
and O�a /H�5 terms in MUF. Recall now that to leading order,
MUL and M�F scale like O�a /H�2 and M�L is simply O�1�.
From this, it is clear that the additional O�a /H�4 piece of
Faxén’s result is due in part to the two wall reflection of the
rotlet—the remainder is due to the induced stresslet. This
rotational reversal may be difficult to observe experimentally
as it happens only over a narrow band near the center of the
channel where the rotation rate of the particle is already quite
small. However, given the precise control possible with laser
tweezer techniques, it seems likely that this could be mea-
sured in a particle tracking experiment.

One must be careful when making such a comparison,
however, as we have neglected one formality in our analysis.
In addition to the boundary conditions specified at the chan-
nel walls, a condition on the mean flow through or the pres-
sure drop down the channel is necessary. These represent
closed and open channel ends. Implicit in what we have cal-
culated is the restriction that the pressure drop down the
channel is zero. Since the space between the channel walls is
infinite, there are no backflow effects hindering the motion of
the particle. The same may not be true in the finite volume of
an experimental apparatus.

We also plot the fall speed of a particle sedimenting
perpendicular to the channel walls as a function of position
in the channel in Fig. 10. By symmetry, there can be no
rotational coupling in this case. Qualitatively, this figure is
quite similar to that for sedimentation along the channel.
However, one distinct difference is the decay rate of the fall
speed in the near wall regime. Motion toward the wall is
much more resistive in this regime since the lubrication
forces scale like ��−a /H�−1. For motion along the wall, the
lubrication forces are more weakly singular and scale loga-
rithmically. Of particular interest is the fraction of the chan-
nel over which the sedimentation velocity is near the mid-
channel velocity. In other words, we would like to know
which region of the channel is least sensitive to the presence
of the walls. To measure this, we choose an arbitrary thresh-
old of 5% of the midchannel velocity and measure the frac-
tional distance across the channel where a particle first ob-
tains this fall speed. We use this to calculate the fraction of
the channel over which the mean fall speed of the particle is
greater than 95% of the midchannel fall speed. This fraction
is plotted against the channel width in Fig. 11. We expect

FIG. 9. �Color online� The fall speed, U�, and rotation rate, ��, of a particle
sedimenting along a channel. The fall speed and rotation rate are normalized
by the Stokes velocity of the same particle subject to the same force in an
otherwise unbounded fluid �i.e., F� /6��a and F� /6��a2�.

FIG. 10. �Color online� The fall speed, U�, of a particle sedimenting along
a channel normalized by the Stokes velocity of the same particle subject to
the same force in an otherwise unbounded fluid �i.e., F� /6��a�.

FIG. 11. �Color online� The fraction of the channel over which a particle
sediments at 95% of its midchannel fall speed.
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that as the channel becomes wider, the fraction of the chan-
nel where sedimentation is near the midchannel speed will
grow monotonically. There is the possibility that the Stoke-
sian dynamics model of the near wall interactions “over-
counts” the resistivity of each of the walls when the separa-
tion is small, however. While the lubrication interactions
each scale singularly with respect to the gap width between
the particle and the wall and are strictly independent, the
presence of a nearby second wall affects the O�1� contribu-
tion to the resistance. Our approach recovers the dominant
hydrodynamic effect via these singular contributions. For
channels outside the narrow regime �i.e., H /a�20�, we find
that the fraction of the channel where the particle falls faster
than 95% of the midchannel speed scales roughly as the in-
verse square root of the channel width. Qualitatively, the
fast-fall-speed fraction of channel grows in a way which is
independent of the fall direction. While the absolute channel
fraction for perpendicular sedimentation is always less than
parallel sedimentation, the growth rate is comparable. As the
channel gets very large �H /a�1�, the difference between
parallel and perpendicular sedimentation becomes negligible
everywhere but near the walls. We expect that these two
curves coincide in the limit that the gap between the walls is
infinitely wide.

C. Brownian drift of a particle in a channel

The stochastic thermal forces on a particle in a channel
lead to a deterministic contribution to the particle’s velocity
arising from the dependence of the Brownian forces on the
hydrodynamic interactions of the particle with the channel
walls. Given a particle near a wall at a particular instant in
time, thermal forces will drive it either toward or away from
the wall with equal probability. If the particle moves toward
the wall, its mobility decreases and the thermal impulse pro-
pels the particle more slowly. Conversely, if the particle
moves away from the wall, the impulse propels the particle
more quickly. Of course the strength of the thermal forcing
varies with distance from the wall as well since it is propor-
tional to the square root of the hydrodynamic resistance.
Substituting an instantaneously correlated thermal impulse
denoted FB�t� of zero mean and rms strength �2kTRFU�X�t��
into Eq. �45�, integrating over an interval in time ��t� that is
short with respect to the particle diffusion time and taking
care to account for changes in the resistance as the particle
diffuses yields an evolution equation for the position of the
particle,

X�t + �t� = X�t� + RFU
−1 �X�t�� · FB�t���t

+ kT � · RFU
−1 �X�t���t + O��t2� . �55�

The mean effect of the change in the hydrodynamic resis-
tance and in the magnitude of the thermal forcing as a par-
ticle diffuses in space results in a deterministic drift away
from the wall. The drift velocity is given quite simply by
kT� ·RFU

−1 , where kT is the thermal energy.29,30 There is no
drift parallel to the wall because the resistance is independent
of the position along the wall. In Fig. 12 we plot the Brown-
ian drift velocity of a particle sitting above the lower wall for

channels of various widths. As the walls are further sepa-
rated, the particle’s sense of the second wall becomes mini-
mal and the drift velocity decays at the single wall rate as
h−2. However, the drift velocity decays to zero quickly as the
particle approaches the midline of the channel where there is
no variation in mobility. On the other side of the midline, the
drift reverses sign as the particle is impelled away from the
upper wall instead.

To highlight the importance of the Brownian drift, con-
sider a single particle in a channel with hard walls. The equi-
librium distribution for the particle’s position in the channel
is given by the Boltzmann distribution and is therefore uni-
form across the channel. Now, place the particle arbitrarily
close to one of the walls. Because the hydrodynamic resis-
tance is large, the diffusivity of the particle is practically
zero. If we allow the particle to move according to Eq. �55�
but neglect the contribution due to Brownian drift, then par-
ticle hardly moves, and the probability of finding the particle
at this initial location is unity for all time. The equilibrium,
uniform distribution is never recovered, although it must be.
The inclusion of the Brownian drift drives the particle away
from the wall deterministically by exactly the amount re-
quired such that the probability of finding the particle any-
where in the channel at long times is uniform. In fact, that is
the function of the Brownian drift. It is an entropic/thermal/
stochastic mechanism that drives a stationary Markov pro-
cess toward the stationary solution.

D. Einstein viscosity for a dilute suspension
between parallel walls

We begin this calculation with Brenner’s definition of
the viscosity as the coefficient of proportionality relating en-
ergy dissipation in two similarly strained flows, viz.,

E�0�

�
=

E�0� + E�

��
, �56�

where E�0� is the rate of energy dissipation in a particle free
flow, E� is the additional rate of energy dissipation in a par-
ticle laden flow with the same rate of strain and solvent vis-

FIG. 12. �Color online� The drift velocity of a single Brownian particle in
channel of width H /a plotted as a function of height above the lower chan-
nel wall.
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cosity, and �� is the viscosity of that suspension.12 With
some relatively simple manipulation, one can show that

��

�
= 1 − �

�S�:E�

8
3��a3E�:E�

, �57�

where �S� is the average particle stresslet and � is the par-
ticle volume fraction. For a force and torque free suspension,
we conclude that the particle stresslet is simply

S � − MES
−1:E�, �58�

where the approximation is valid when the particles are far
from the walls such that lubrication forces are unimportant.
We will use this approximation throughout the rest of this
section as we are interested in the viscosity of dilute suspen-
sions in channels which are wide. In this case, a small frac-
tion of the particles are found near the walls and therefore,
any lubrication effects make a minimal contribution to the
rate of energy dissipation. With this simplification, our ex-
pression for the viscosity of the suspension becomes

��

�
= 1 + �

E�:�MES
−1�:E�

8
3��a3E�:E�

. �59�

This expression is general, but since we have restricted our-
selves to the study of dilute suspensions ���1�, MES corre-
sponds only to the “self” parts of the grand mobility tensor.
In the limit that the gap between the walls becomes infinite
in extent, the inverse mobility coupling between rate of
strain and stresslet becomes an isotropic tensor proportional
to 20

3 ��a3 and we recover the Einstein viscosity, �� /�=1
+ 5

2�. Thus, we write the viscosity as

��

�
= 1 +

5

2
��1 + Z�H

a
	 , �60�

where

Z�H

a
	 =

E�:�MES
−1�:E�

20
3 ��a3E�:E�

− 1. �61�

Shortly after Einstein made his calculation of the viscosity of
a dilute suspension, Guth and Simha31 attempted to include
the effects of channel walls on the suspension viscosity. In
their approach, the effects of each wall were superimposed á
la Oseen,13 and the resulting particle stresslet was calculated
while assuming the particles were evenly distributed in the
channel. With this approximation, they found that

Z�H

a
	 =

5

16
�H

a
	��H

a
	2

− 1−1

. �62�

Like Guth and Simha, we assume that the dilute suspension
is uniformly distributed between the walls and calculate the
average of MES

−1 as

�MES
−1� =

1

1 − 2�a/H��a/H

1−a/H

MES
−1��;

H

a
	d� . �63�

To a first approximation for widely separated channel walls,
and parallel plate rheometry �i.e., Eij

�=	i1	 j2+	i2	 j1�, the
contribution to the viscosity can be written quite simply, viz.,

Z�H

a
	 =

20

9
� a

H
	3 1

1 − 2�a/H��a/H

1−a/H

g3���d� . �64�

For wide channels �H /a�1�, the dominant contributions to
the above integral are near �=0 and �=1, where g3���
scales like the single wall values, �−3 and �1−��−3, respec-
tively. Therefore, in this regime we predict that Z�H /a�
scales like a /H, which is the same scaling predicted by Guth
and Simha. In Fig. 13 we plot the additional contribution to
the viscosity of a dilute suspension as well as the result due
to Guth and Simha. We find that this additional contribution
is always smaller than that predicted by superposition. Note
that another measure of this same quantity was made re-
cently by Zurita-Gotor et al.32 They compute the viscosity
over a narrower range of channel widths which do not over-
lap with those presented here. Similarly, our analysis is not
applicable to the narrow channels they considered. Compari-
son of the two results is therefore difficult. Our aim in this
section was to compare superposition with the Fourier trans-
form solution in a regime where the particles spend little
time in the lubrication zone near the wall. Our result is quite
different from this other calculation.

IV. EXTENSIONS AND CONCLUSIONS

In this article we computed the exact reflection of vari-
ous multipolar velocity fields off of the parallel walls of a
channel. These were combined with different Faxén formulas
to generate the far-field mobility tensor for a single spherical
particle in a channel. We found that the mobility could be
written in terms of inverse powers of the channel width mul-
tiplied by functions of the fractional distance of the particle
across the channel. These functions matched predictions for
a particle in the middle of the channel and a quarter of the
way across the channel made by Faxén in his dissertation
nearly a century ago.11 The form we have used to represent
these mobility functions is especially useful for computa-
tional studies since the functions of the fractional distance

Z

FIG. 13. The additional contribution to the viscosity of a dilute suspension,
�� /�=1+ 5

2��1+Z�H /a��, is plotted against the separation between the
channel walls. The superposition approximation due to Guth and Simha is
also plotted.
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across the channel can be tabulated and used for channels of
arbitrary width. The tables for the six mobility tensors dis-
cussed within are available from the editorial office. Using
these functions we made additional predictions of the single
particle fall speed both along and perpendicular to the chan-
nel walls. We also calculated the rotation rate of a particle
sedimenting along the channel and found that the direction of
rotation reverses near the midline of sufficiently wide chan-
nels. We calculated the Brownian drift velocity for a single
particle and the correction to the Einstein viscosity for a
dilute suspension in a wide channel.

While the method described deals only with computa-
tions for single particles, the same approach may be ex-
tended to the study of suspensions with interparticle hydro-
dynamic interactions. This could take the form of either a
traditional Stokesian dynamics simulation or an accelerated
Stokesian dynamics simulation. The key point is that the
reciprocal space representation of the hydrodynamic interac-
tions is the most natural way to represent computationally
the far-field many-bodied interactions amidst a suspension.
The inverse transformation may not even be necessary if a
simulation is properly constructed to represent the suspen-
sion in a set of periodic cells. Using the Poisson summation
formula, one can show that adding all the interactions to a
single particle and its periodic images is the same as sum-
ming over the reciprocal space representation of the interac-
tions with a Fourier exponential weighting.33 One important
piece to consider here, however, is that this summation is
slowly converging in general. To make things computation-
ally efficient, the domain of interactions must be split into
two regions: one over which short-range, real space interac-
tions dominate and another over which long-range, recipro-
cal space interactions are most important. This is precisely
the Ewald summation technique that turns one slowly con-
verging summation into two rapidly converging ones. In the
case of the short-range interactions, in all likelihood it will
be sufficient to represent the channel walls as a superposition
of two single walls only, which are already available.4 While
for the long-range interactions, the full reciprocal space two
wall solution will be needed. This approach will avoid the
costly inversion of the solutions to the Stokes flow equations
from the reciprocal space back to the real space while still
accurately reflecting the condition of no-slip on each of the
walls. An approach like this one could overcome some of the
difficulties that make simulations of particles in a channel
challenging.

It is also possible to extend the techniques described
here to the study of other particle and boundary geometries.
In our approach, we only worked out the reflection of the
Stokeslet off two walls explicitly. All the higher order reflec-
tions came from a multipole expansion of the boundary in-
tegral solution to the Stokes equations. A similar expansion
may be performed for particles of any geometry; though, it
will not truncate as succinctly as when the force density is
expanded about a spherical surface. Nevertheless, this result
combined with an appropriate Faxén type formula for
that particular particle geometry will generate the grand mo-
bility tensor. Similarly, if the reflection of the Stokeslet is
found or is known in some other boundary geometry �e.g., a

cylindrical channel34 or a spherical container35�, then calcu-
lation of the grand mobility tensor is as simple as choosing
the proper multipole expansion and applying the Faxén for-
mula. No doubt the results will be similar for particles that
are roughly spherical in shape as Stokes flow is rather insen-
sitive to geometric details. However, for extreme shapes like
slender bodies, this approach offers an interesting possibility
for studying their dynamics under confinement.

In closing, we want to emphasize the simplicity of this
approach for treating the hydrodynamics of a particle in a
confining geometry. The higher level perspective brought by
the grand mobility tensor takes the complicated problem of
determining the resistance of a particle and turns it into a
hierarchical method of reflections type procedure, which has
a direct physical connection to the different force moments
on the particle. In this article, we have computed once and
for all the first nine components of the grand mobility tensor
for a spherical particle in a parallel wall channel. While there
are infinitely many higher order contributions to that tensor,
those first nine have proven quite effective in other situations
for characterizing the dynamics of particles in suspensions.
Similarly, these tensors provide a simple and therefore rather
useful way to estimate the motion of a small particle in a
channel. By tabulating these functions and separating out the
length scale set by the channel width, we have enabled the
rapid computation of single particle and dilute suspension
dynamics in a channel.36

APPENDIX: SOLUTION TO THE STOKES EQUATIONS
FOR ARBITRARY BOUNDARY CONDITIONS
ON THE CHANNEL WALLS

In this appendix we conclude the derivation of the solu-
tion to the Stokes flow equations with arbitrary boundary
conditions on a set of parallel walls. We designate the lower
wall as r3=rl and the upper wall as r3=H+rl and write the
boundary conditions on the flow as

v̂L = Ae−rlk + Berlk +
1

4�k2 �Ad�2rlk + 1�e−rlk

+ Bd̄�2rlk − 1�erlk� , �A1�

v̂U = Ae−�H+rl�k + Be�H+rl�k +
1

4�k2

��Ad�2�H + rl�k + 1�e−�H+rl�k + Bd̄

��2�H + rl�k − 1�e�H+rl�k� . �A2�

The solution to these equations is more conveniently written
in the typical matrix-vector form,
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�A

B
	 =

1

2
�coth�Hk� − 1�eHk � � e�H+rl�k − erlk

− e−�H+rl�k e−rlk
� v̂L −

1

4�k2 �Ad�2rlk + 1�e−rlk + Bd̄�2rlk − 1�erlk�

v̂U −
1

4�k2 �Ad�2�H + rl�k + 1�e−�H+rl�k + Bd̄�2�H + rl�k − 1�e�H+rl�k� � .

�A3�

We still need to determine the coefficients A and B, but since
the velocity field is divergence free, Eq. �25� sets the rela-
tionship between these coefficients and the vectors A and B.
Applying this relationship and solving for the unknown co-
efficients yields the following:

�A

B
	 = � 2�

1 + 2�Hk�2 − cosh�2Hk�	
�� − sinh�Hk� Hkek�H+2rl�

Hke−k�H+2rl� − sinh�Hk�
	

�� d · �v̂Le�H+rl�k − v̂Uerlk�

d̄ · �v̂Le−�H+rl�k − v̂Ue−rlk�
	 . �A4�

This completes the derivation of the solution of the Stokes
equations in the space bounded by parallel walls with arbi-
trary boundary conditions. Of course, this is only the wave
space solution to the problem. The inversion of these results
to find the real space solution will depend on the details of
the vectors v̂L and v̂U. For even simple boundary conditions,
this process can be quite difficult, and it is necessary to com-
bine a clear physical picture of the problem at hand with a
detailed knowledge of integral transform techniques. In the
above article, we illustrate the inversion of the reflection of a
Stokeslet, but only at the place where the reflected flow field
corresponds to the location of the point force. The techniques
employed are useful for calculating hydrodynamic interac-
tions among particles although perhaps less useful for imag-
ing the flow field or making more general calculations.
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