








infinite array of injectors in the crossflow plane. with an 
open flow boundary on the top of the domain. 

A turbulence model was not applied. The decision to limit 
the scope of the computations to a laminar mixing model 
was based on the inability of current turbulence models to 
accurately reproduce complex mixing phenomena without 
significant 'tuning'. Application of an inappropriate 
turbulence model can influence the global solution in a 
manner which is difficult to resolve. Thus, the code was 
used only to capture large-scale kinematical processes. Fine
scale mixing was not simulated. 

Results 

The Baseline Configuration 
As a starting point against which other conditions can be 
compared, the results for the baseline configuration will be 
summarized. A more detailed presentation of these results 
may be found in references 21 and 22. The baseline test 

was by a wide array spacing 
(trough WIdth = 3 ramp matched pressure ratio (p 
= 1.0), a thin boundary layer (8 = 0.2), and v = 1.33 (for 
the experimental cases) or v = 1.0 (for the computational 
cases). 

Results from a numerical simulation of the baseline case are 
shown in Figure 2. The plot contains contours of constant 
helium mass fraction at various planes downstream of the 
injection The helium lifted completely from the 
surface by x"" 1. Downstream, helium mass fraction 
signatures are characteristic of interaction with a counter
rotating vortex pair. Axial vorticity from several sources 
coalesced to form this counter-rotating vortex pair. 

the sense of the pair was such that it produced 
mIgratIOn away from the wall, enhancing jet penetration. 
The cross-stream convection associated with the vorticity, 
enhanced mixing in the large scales. Preliminary work has 
shown that the dominant axial vorticity sources include: 1) 
baroclinic torque associated with shock-impingement, 2) 
local variation in cross-stream shear between the injectant 
and the airflow in the exit plane associated with the 
secondary flow due to the ramps. 3) turning of the vortex 
lines associated with the incoming wall boundary layer. and 
4) further diffusive flux of vorticity associated with wall 
effects in the ramp region. Of these sources shock

shear were particularly 
m1X1ng the as assured seeding of axial 

vortICIty dIrectly on the helium/atr density interface. These 
sources of axial vorticity will be characterized in greater 
detail in a subsequent publication. 28 

Experimentally obtained mass fraction and pitot pressure 
surveys are shown in Figures 3 and 4. These data were 
obtained from measurements of one symmetry plane on the 
full-scale model and have been mirrored about the plane y 
= 0 for of presentation. The side walls of the ramp 
correspond to y = ± 0.25. Care must be taken in interpreting 
these other plots shown so that credence is not given to 
sub-gnd scale features. The experimental sampling grid has 
been overlaid on one of the plots of Figure 3. 

An important aspect of the boundary flow is shown in the 
pitot plots of .Figure 4. The pressure gradients 
assocIated WIth expanSIOn and compression of the ramp 

drove the majority of the incoming boundary layer 
flow mto the troughs between the ramps. Of note is that a 
tongue of high momentum fluid was maintained in the 
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corner of the ramps. This allowed strong shock formation 
adjacent to the nozzle exit where it was required for 

Impmgement upon the fuel/air density gradients. It will be 
seen that this counter-intuitive result (initial expectations 
were for the comer region to contain the lowest momentum 

was not realized for all spacings and boundary layer 
heIghts. 

One conclusion of the previous work was that the numerical 
simulations captured the essential large-scale kinematics 
displayed in the experiments. (Recall that no attempt was 
made to accurately model mixing in the fine-scales.) The 
above observation is valid only to the extent to which these 
scales were resolved. In particular, estimates of convective 
and diffusive transport showed that the detailed form of the 

helium .signatures is likely to be misrepresented 
(m both the expenments and the computations), with the 

for tightly-rolled spiral species gradients 
wIthm the helIum core. The extent to which these scales 
may have been dominated by turbulent processes was only 

Temporally-resolved planar 
RayleIgh scattenng data suggested that production of 
molecularly-mixed fluid would be dominated by the 

cascade process in the far field (x > 10). The 
mfluence that the large-scale vortical flow had on this 
process was not established. 

Bases for Comparison 
Various measures of performance are discussed below. 
They the following. mixing, loss 
generatIOn, lI1Jectant penetratIon, and surface heating 
considerations. 

Decay of Maximum Helium Concentration 
One marker for time-mean mixing performance is the decay 
of maximum helium mass fraction downstream of the 
injectors, 

CHe-max VS. X 

This measure was tabulated from the composition probe 
measurements at each surveyed plane and is plotted in 
Figure 5 for the baseline case. It represents a bulk measure 
of the extent to which the injectant has mixed with the 
freestream. It is often heavily relied upon in grading injector 
performance due to the relative ease in obtaining the 
measure. It must be remembered that the measure is 
cloude.d by of and spatial 
averagmg and IS of lImIted use m proJectlI1g combustion 
effectiveness. 

Mixedness Measure 
The numerical data allow more detailed analyses of mixing, 
but are still subject to the hindrances discussed above. 
Further, due to the limited scope of the computations with 
respect to fine-scale mixing, only qualitative comparisons 
were all.owed with the experimental data. Direct quantitative 

were made between the simulations. Analysis 
of mIxmg was performed through determination of the 
fraction of total helium mass flux present in various 
concentrations at each axial station, 

mHe 

mHe.total 
VS. CHe VS. X 

This. measure is displayed on both surface and contour plots 
m FIgure 6 for the baseline case. Downstream from the 
injection plane, progressively larger percentages of the 
injected mass flux appear in the lower mass fractions. Three 



characteristics of this progression were used as a basis for 
comparison with data from other numerical cases. The first 
of these is how rapidly the point was reached where there 
was no longer any pure helium in the flow field. This 
occurred at approximately x = 15 for the baseline case. The 
second, the extent to which the bulk mixing process 
continued to occur, is represented by the zero contour in the 
line plot. The line corresponds with the decay of maximum 
helium concentration plotted for the experimental results in 
Figure 5. Qualitatively, the behaviors of the two lines are 
similar. The third aspect of this mixedness data that was 
used for comparison with other numerical tests is the percent 
of helium mass flux present at the lower mass fractions 
where the mixture ratio would promote most active burning 
in a hydrogen/air reaction system. The level of mass flux 
occurring at CHe $; 0.05 was used as a measure of this. This 
level is indicated by the height of the lower edge of the carpet 
plot. By x = 30, approximately 17% of the injected mass 
flux was below 5% mass fraction for the baseline 
computational case. 

Interface Length 
A second measure of mixing performance based on the 
numerical simulations is the variation in length of contours 
of constant mass fraction, with distance downstream of the 
injection plane, 

_La--,o-(X)~ VS. CHe VS. X 
La~=O) 

Where La corresponds to the length of a contour of helium 
mass fraction CHe = a. This information relates the growth 
in time-mean interfacial surface area resulting from the 
cross-stream transport due to the axial vorticity. Growth of 
surface area is a necessary kinematical precursor to strong 
molecular-scale diffusive mixing. This measure suffers 
strongly from lack of spatial resolution and must be 
considered as a means for only rough quantitative 
comparisons between numerical data sets. For the baseline 
case the contour of CHe = 0.05 grew to twice its initial length 
by x = 10. This length was then maintained through 
counterbalancing of diffusion/resolution and convection. 

Jet Penetration 
The above measures are strongly limited by spatial and 
temporal averaging and are thus very weak measures of 
molecular mixing. Both the experiments and numerical 
simulations however, were very adept at predicting large
scale kinematical processes. This is evidenced by the 
comparison of helium jet lift-off height for the experiments 
and computations shown in Figure 7. This was calculated 
from the numerical data as the height of the helium mass 
flux center and approximated using the experimental data by 
calculating the height of the mass fraction center. (The 
approximation is valid due to generally concentric 
stratification of helium mass fraction about the mass flux 
center. 21) The lift-off height is a measure of the bulk 
behavior of the helium after injection and was used as the 
primary measure of jet penetration. For x > 20, a constant 
jet trajectory slope of 0.025 is displayed. 

Fully-mixed Length 
The ability to accurately measure/simulate large-scale 
injectant dynamics led to the development of a mixing 
measure which is less dependent on detailed mixing-rate 
data than the measures presented above. The measure 
involves considering the area into which the injectant must 
spread in order for the bulk mixture fraction to reach a 
desire..d equivalence ratio. The injectant to free stream area 
ratio, A, for a given equivalence ratio, <1>, may be expressed 
as a function of injectant to freestream temperature, pressure, 
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velocity, molecular weight. and stoichiometric mass flux 
ratios (T. 15, Y, M. and nist respectively). 

A = <I> rilstT 
pMV' 

Eor representative scram,itl operating conditions (<I> = 1..0, 
T= 1/6, P = 1.0, V' = 1.0, M = 2/29, and nist = 0.03) then A = 
0.07 and the injectant must expand into an area 
approximately fifteen times the exit area. As the area will be 
limited laterally by the symmetry planes of the injector array, 
the vertical extent of the area would correspond to z = 4.0 
for the baseline geometry. For the freestream velocities of 
these tests (3000 ftls), peak penetration of that order would 
be expec~d by x '" 60. For the conditions of this study with 
<I> = lJ), T= 2,5, 15 = 1.0, V' = l.33,M = 4/29, and fist = 0.03, 
then A = 0041, Less air would be required to be entrained by 
the helium jet. Use of this information as a measure of 
mixing requires the assumption that diffusive and turbulent 
processes will produce a 'homogeneous' mixture by the 
time the jet has penetrated into the specified area. 
Consideration of time-resolved Rayleigh data give support to 
this assumption for distances of 50 to 60 injector heights 
because of the dominance of turbulent mixing after x = 10. 

Losses 
The above measures of injector performance focus on 
mixing effectiveness and jet behavior. It is important as well 
to grade various injectors and test conditions on a loss basis. 
The losses were evaluated by considering the entropy rise in 
the fluid as it passed through the computational domain. 
The entropy rise can be associated with two categories of 
losses: total pressure losses and mixing losses. The latter 
result from a change in partial pressure of two species as 
they are mixed. Consider two distinct gases in a box 
separated by a membrane. The entropy rise which results 
from removal of the membrane is 

~S = R{nlln/_VI final) + n~lnl V2fmal)l u, V I initial .ou, V 2 initial J 

where Ru is the universal gas constant, ni are the number of 
moles of each species, and V is the volume. In applying an 
entropy measure of propulsive losses it is important to 
separate from the total entropy rise, that part associated 
solely with mixing of the two species. The latter is only a 
loss in the thermodynamic sense not the propulsive one. 
(Consider red gas and blue gas with otherwise identical 
characteristics. Upon mixing in a duct, there is no change in 
propulsive potential, yet an entropy rise is realized.) Since 
the mass fraction at each point in the computational domain 
was known, the entropy rise due to mixing was calculated 
for each computational cell and removed from the total 
entropy rise to form a measure of propulsive losses. 

The above bases for comparison along with close analysis of 
the flow field surveys and computational data sets were 
applied to each of the test configurations. For a presentation 
of each of these measures for each of the test configurations 
the reader is referred to reference 2l. Presently only a 
skeleton of support will be given for the various 
conclusions. 

Boundary Layeriinjector Spacing Effects 
Early flow visualization results showed that injector 
performance was strongly dependent on the scale of the 
boundary layer entering the ramp region, and that this 



dependence was influenced to a large extent by the spacing 
between the injector ramps. It was. in fact. this knowledge 
which led to a viscous numerical modelling of the flow field. 
rather than an Euler simulation. Four aspects of the 
boundary layer affect injector performance (in varying 
degrees): modification of effective wall geometry through 
displacement, the addition of shear to the mixing region, 
influence on axial vorticity production through turning of 
mean vorticity in boundary layer, and addition of 
unsteadiness to the mixing region. These effects were 
treated largely as they were manifested in the time-mean 
flow field, though some time-resolved, planar imaging data 
was collected. 

Two boundary layer conditions were investigated 
experimentally: natural and tripped. (For both cases the 
boundary layer was turbulent prior to entrance into the ramp 
region.) For the tripped case, 80 psi total pressure air was 
injected from a boundary layer trip plale on the front of th~ 
model. The two conditions resulted in 8 = 0.2 and 0.35 ( 8 
is the height of the boundary layer normalized by the height 
of th~injection plane) for the full-scale models (hi = 1.0 in.) 
and 8 = 0.4 and 0.70 for the half-scale models (hi = 0.5 
in.). The nature and the scale of the boundary layer were 
determined from consideration of time-resolved 
shadowgraph images and time-mean flow surveys. No 
measurements were made to determine the magnitude of the 
fluctuations within the boundary layer. To support the 
above work, numerical sirn.ulations were c.Qnducted for free
slip boundary conditions (8 = 0). and for 8 = 0.2, and 1.0. 

Peak helium mass fractions for the natural boundary layer 
case were marginally higher than those obtained for the 
tripped cases. A plot of the decay of the maximum helium 
concentration in x for both the full and half-scale models for 
the various boundary layer conditions is shown in Figure 8. 
The trend for more rapid decay of the time-mean values with 
increasing boundary layer height is displayed. This result is 
closely tied to the interaction of the unsteady structure within 
the boundary layer with the time-fluctuating component of 
the mixing field. Determination of the extent to which this 
represented increased mixing on the molecular scale was 
aided ?rt consideration of the planar Rayleigh imaging 
results. Typically, the jet appeared to have been subject to 
more large-scale, global deformation. This deformation was 
linked to the long wavelength oscillations present in the 
boundary layer. Locally, however, the scale and nature of 
the unsteady field on the boundary of the helium jet was 
similar to that for the natural boundary layer case. The 
implication is that the unsteady structure of the boundary 
layer did not act strongly to enhance mixing on the 
molecular scale. The small increase in time-mean mixing 
for the tripped boundary layer, displayed by the peak helium 
mass fraction decay (Figure 8), probably resulted from 
greater spatial averaging due to the global motion of the jet. 

The displacement effects of the boundary layer were 
resolved with greater confidence sin~e they involved 
predominantly the mean flow. For the 8 = 0.7 case, flow 
surveys showed that the boundary layer filled the channels 
between the injector ramps to a much greater extent than 
seen for the thin boundary layer. Importantly though, a 
tongue of high momentum fluid was still maintained in the 
corner of the ramps, with the lowest momentum fluid 
collecting in the center of the troughs. The interaction was 
positive in that it allowed shock formation in the region 
adjacent to the injectant/freestream density gradients 
allowing baroclinic vorticity production. The presence of 
high momentum in the comers of the ramps was further 
evidenced by surface oil flow visualization. The oil tended 
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to collect in the center of the channels with the high 
momentum fluid scrubbing the oil from the surface in the 
comers of the ramps. 

A similar positive interaction between the boundary layer 
and the ramp geometry did not occur for the narrow spacing 
injector arrays. Schlieren photographs showed no strong 
oblique shock appearing from the compressi,m of the trough 
flow between the injection planes. This forecasted a decline 
in baroclinic vorticity production associated with the shock
impingement on density gradients. The cause for the 
absence of the shock was apparent in the time-mean flow 
field surveys,-This data is shown in Figures 9 and 10 (half
scale model, 8 = 0.7). The pitot pressure survey (Figure 10) 
shows the extent to which the troughs between the ramps 
were filled with the low momentum boundary layer fluid. 
The geometry was effectively modified due to the strong 
displacement effect of the hypersonic boundary layer. The 
helium mass fraction contours (Figure 9) show weaker 
vortical development and poorer jet lift-off than realized for 
the wider spacing. The effects on lift-off due to spacing are 
shown in Figure 11 for the various boundary layer 
conditions. The slope of the injectant trajectory for the 
narrow spacing is one-half that for the wide-spacing. For 
the narrow spacing Zj = 0.8 at x = 26. while"Zj = 1.1 at x = 
26 for the wide spacing. The close proximity of the jets 
produced strong interaction between them. By x = 13 the 
jets fully merged, forming a thick layer of helium/air 
mixture along the surface of the wall. Considering the jets 
as simple counter-rotating vortices, it is clear as well that 
closer proximity will reduce migration rate away from the 
wall. 

As with the wide spacing, imposition of the tripped 
boundary layer produced a slight increase in the bulk mixing 
efficiency as evidenced by the decay of maximum helium 
concentration plotted in Figure 12. Again, the extent to 
which this trend is representative of molecular-scale mixing 
is difficult to detennine from the tests conducted. However, 
it is clear that on a macroscopic scale the change was minor. 

Based on the weaker lift-off and vortical roll-up of the jet for 
the narrow spacing, a decline in bulk mixing effectiveness 
was expected. This was not the case, as shown in Figure 13. 
The decay of maximum helium mass fraction is plotted for 
both the narrow and wide spacing for the various boundary 
layer conditions. The wide spacing cases are represented 
with solid lines. Broken lines are used for the narrow 
spacing cases. While initially the levels for the narrow cases 
were higher than those for the corresponding boundary layer 
conditions for the wide spacing. the trend was reversed after 
x = 10. Thus, globally, the time-mean mixing for the 
narrow geometry was better in the farfield. The 
manifestation of better mixing in the mean for the narrow 
spacing was probably due to the close interaction of the jets 
with the boundary layer. This interaction is evident in the x 
= 8 contour plot of pitot pressure in Figure 10 where the 
interaction of the neighboring counter-rotating vortex pairs 
produced a high pressure center between the jets. While the 
vorticity field was weaker, the close proximity of the jets to 
the boundary layer resulted in the boundary layer being 
interred into the vortex pair. The unsteadiness in the core of 
the jets which would result puts in question the accuracy of 
the time-mean maximum concentration data in representing 
the time-resolved flow for the narrow spacing. Due to time 
constraints. no time-resolved planar imaging was conducted 
for the narrow geometry. For the wide spacing case, the 
bulk of the low momentum boundary layer fluid existed 
between the helium jets, and the jets rose above the 
boundary layer before strong interaction occurred. Even 



though farfield time-mean mixing was marginally better for 
the narrow geometry, considerations of jet penetration 
(presented below) suggest that the wide spacing is more 
effective in terms of overall injector performance as a result 
of the stronger and more complete lift-off displayed. 

Numerical simulations were conducted primarily to elucidate 
the detrimental effects of the boundary layer displacement 
with respect to the baroclinic generation of vorticity. 
Simulations_were computed for both the wide and narrow 
spacings at 8 = 0, 0.2 and 1.0. Two effects were noted in 
comparing the results of these simulations. The first of 
these was the increase in mean shear at the interface 
provided by increasing boundary layer scale. This increased 
the size of the jet cross-sections through a broadening of the 
species gradient at the jet/freestream interface. The second 
effect was the progressively slower convective development 
of the jet with increasing boundary layer scale. Similar 
effects occurred for the narrow spacing geometry. Most 
notable in this portion of the study was the strong vortical 
development for the case of inviscid boundary conditions for 
the narrow spacing (Figure 14). That this development was 
not apparent for the case of the 8 = 0.2 boundary layer 
(shown in Figure 15), shows the sensitivity of the narrow 
geometry to even thin boundary layers. For the narrow 
geometry, effectively more low momentum fluid per cross 
stream area occurred in the troughs. This preponderance of 
low momentum fluid did not allow shock formation for 
impingement upon density gradients in the mixing region, 
and reduced secondary flow associated with the ramps. both 
strong axial vorticity sources. The effect was minimized for 
the wide spacing because of positive interaction of the 
boundary layer flow with ramp-generated pressure 
gradients. • 

Analysis of the mixing performance for the various spacings 
in response to the different boundary layer thicknesses was 
provided by mixedness measure plots similar to Figure 6. 
Three aspects of these plots were recognized as indicators of 
effectiveness: the distance required for disappearance of 
pure helium in the flow field, the rate and extent of the decay 
of maximum helium concentration, and the percent of total 
helium mass flux occurring at CHe < 0.05. On all three 
bases, and for all boundary layer cases, the performance of 
the wide spacing was superior to that of the narrow spacing. 
Typically, the of amount helium appearing at CHe < 0.05 for 
the wide cases was twice that for the narrow cases by x = 30. 
Performance degnlded similarly with increasing boundary 
layer height The ~ = 1.0 tests produced half as much c He < 
0.05 fluid as the 8 = 0.2 tests for both geometries. The 
analysis of contour lengths for the various cases also 
showed better performance for the widely-spaced injector 
array with contour lengths at cHe = 0.05 typically at 1.5 to 
2.0 times the initial length while similar interface lengths for 
the narrow spacing occurred at 1.0 to 1.5 times the same 
initial contour length. 

A final consideration with respect to the spacing between the 
injectors is the free stream area required for the injectant to 
mix into, to provide a desired equivalence ratio. It was 
shown that for a representative scramjetJ)perating condition 
an injectant to free stream area ratio of A = 0.07 would be 
required for mixing to the stoichiometric hydrogen mass 
fraction. For the wide spacing, this area would extend to z = 
4.0. Due to the lateral confinement of the jets in the narrow 
spacing array, similar performance would require extension 
of the vertical scale of the area to z = 8.0. Penetration of this 
order is not expected for the narrow spacing (within 
domains of interest for scramjet applications). It should not 
be concluded however. that in general the narrow spacing is 
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an ineffective configuration. Certainly. for other conditions 
which require larger area ratios. the narrow geometry may 
be more effectual. 

The Influence of InjectantiFreestream Pressure Ratio 
In considering injector performance a determination must 
be made of the most efficient pressure at which to deliver a 
given mass flux of injectant into the mixing region. In 
general the gas may be injected through small. high pressure 
jets or larger, low momentum jets. In this closely-coupled 
system. varying pressure ratio greatly affected the dynamics 
of the flow field. Pressure ratios greater than one caused 
rapid expansion of the helium injectant due to the steep 
Mach angles in the M = 1.7 jet. These jet dynamics 
produced secondary effects on the scale of the shear layer 
(e.g. an increase in velocity ratio as the fluid in an 
underexpanded jet was accelerated). In general, focus was 
directed towards pressure ratios greater than or equal to one. 
Low pressure ratios (p < 1.0) were not investigated 
experimentally due to difficulties with unstart of the M = 1.7 
nozzles. The experiments and computations were conducted 
entirely on the wide spacing injector geometry. Static 
pressure ratios of 1.0 and 4.0 were investigated 
experimentally. Numerically, cases were run for pressure 
ratios of 0.4, 1.0, 2.0 and 4.0. 

Flow field survey data for p = 4.0 are presented in Figure 
16. The peak helium mass fraction values in each plane are 
listed above the plots. Two strong differences between the p 
= 4.0 and p = 1.0 cases are displayed in the data. The first 
is the strong expansion undergone by the high pressure jet. 
This acted to produce higher local pressures in the air 
between the jets. Second. the vortical development of the 
high pressure jet was delayed by roughly a factor of two in 
distance from the injection plane. [The unique helium 
signature at x = 0 for the full-scale model was the result of 
location of grid points directly behind the wall of the injector. 
The x = 0 survey was actually conducted 0.04 inches 
downstream of the injection plane. The strong expansion of 
the high pressure jet allowed occasional measurement of 
helium directly behind the injector wall. The serpentine 
signature probably resulted from slight misalignment of the 
probe depending on the direction of the probe traverse, with 
one direction placing the probe just inside the helium/air 
interface.] 

Planar Rayleigh data showed the spatial scale of the 
unsteadiness at the jet freestream interface to be comparable 
to that for the matched pressure case. Thus the influence of 
increased velocity ratio due to expansion of the jet appears 
minimal. 

A comparison of the experimentally obtained maximum 
helium concentrations for the p = 1.0 and p = 4.0 cases is 
shown in Figure 17. As with the development of the jet, 
bulk mixing was delayed by a factor of two for the high 
pressure ratio case. The jet lift-off height comparison is 
made in Figure 18. It must be remembered that this data 
marks the height of the center of helium mass fraction and is 
a bulk measure of the jet trajectory. While the high pressure 
cases appear more attractive, consideration of the helium 
mass fraction contour plots shows that considerably more 
helium was in contact with the wall for a longer distance 
downstream and that separation between the bottom of the 
helium jet and the wall was considerably less than that 
obtained for the matched pressure case. Thus. the adverse 
heat transfer associated with the high pressure jet would be 
more severe in a combusting flow field. Further, the slope 
of the trajectory for the high pressure ratio case decayed in x 



while a constant slope of 0.025 is expected for the matched 
pressure case after x: = 20. 

A perspective plot of computational helium mass fraction 
contours for the p = 4.0 case is shown in Figure 19. TIe 
numerical modelling provided the opportunity to consider a 
low pressure ratio case as well (p = 0.4). This data is 
shown in Figure 20. These figures may be compared with 
the baseline case shown in Figure 2. The higher the 
momentum of the injectant, the less the vorticity generated 
by the contoured wall geometry affected the jet. This 
resulted in poor lift-off of the base of the jet from the 
surface. This is a direct result of the primary manner by 
which axial vorticity was generated in the flow. The 
vorticity was generated by fluid interaction with fixed wall 
geometry, and thus, to first order was fixed. Action of the 
vorticity upon a lower momentum jet was more effective. 
This behavior would not be expected for normal or angled 
injection from a wall where a significant portion of the 
energy available for mixing is derived from the dynamics of 
the jet itself and its interaction with the freestream. For 
circular sonic nozzles angled at 15 and 30 degrees to the 
wall, injecting helium into a Mach 3 airflow, Mays, Thomas 
and Schetz8 showed an increase in the rate of mixing with 
increasing pressure ratio. 

Analysis of the mixedness measure for the numerical data 
showed that the low pressure jet mixed to a greater extent in 
a more rapid manner. By x = 30, 45% of the initial helium 
mass flux introduced into the flow field existed at mass 
fractions less than CRe = 0.05 for p = 0.4. At the same 
point, only 5% of the initial mass flux was mixed to a 
similar level for the high pressure case. However, 
normalizing by the total injectant mass flux for each case (a 
factor of 10), the physical mass in the system mixed to the 
same level was the same for the two cases. Therefore, the 
entrainment of air for the two cases was comparable. 
Consideration of the length of the cRe = 0.05 contour level 
for each of the cases showed that the projected flame sheet 
length was similar as well. 

The injectant to freestream area ratio, A, required for 
complete mixing of the injectant with the freestream to a 
desired mixture fraction is inversely proportional to pressure 
ratio. It was shown that for a representative ~ramjet 
operating condition with p = l.0, an area ratio of A = 0.07 
was required. For the wide spacing case, the area would 
extend roughly to z = 2.0, 4.0, and 16.0 for pressure ratios 
of p = 0.4, 1.0, and 4.0 respectively. Because of the shallow 
far-field trajectory of the high pressure ratio case, it is 
expected that complete mixing of the fuel would not occur 
for this case until outside the domain of interest. For 
conditions other than that presented, the p = 4.0 case may be 
more effective. 

Consideration of the losses for the high and low pressure 
ratio cases showed less entropy rise beyond that directly 
attributable to mixing for p = 0.4. The strong expansion of 
the high pressure jet created non-isentropic compression of 
the air between the jets beyond that present for the low 
pressure case. 

Based on the above results it was concluded that injectant 
static pressures at or below the average local static pressure 
in the freestream around the injection plane would be most 
conducive to both loss-effective mixing and strong lift-off 
of the jet in scramjet applications. 

- 8-

Injectant to Freestream Velocity Ratio Effects 
Varying the velocity ratio acts to change the magnitude of 
the mean shear induced between the injectant and the 
freestream. As these effects were predominantly manifested 
in the time-fluctuating component of the flow, only 
experimental results are presented. Changing the velocity 
ratio in the numerical simulations produced only a slight 
broadening or narrowing of the species gradients in the 
mixing region. Interest in the effects of velocity ratio 
variations was focused on questions of performance when 
the velocity ratio is nominally equal to one. This case is 
critical because in the absence of strong shear instabilities, 
mixing will be primarily dependent upon the various mixing 
augmentation techniques applied to the flow field. 
Unfortunately, facility limitations did not allow delivery of 
helium at low enough temperatures to produce v = 1.0. A 
minimum velocity ratio of v = 1.12 was obtained. The 
baseline cases were conducted at v == 1.3. Tests were not 
conducted to investigate compressibility effects. In all cases 
the convective Mach number did not exceed 0.4. 

Comparison of the survey results with those for the baseline 
conditions showed that very little change resulted in the flow 
field. Slightly higher peak helium mass fractions were 
obtained for the lower velocity ratio case. These are plotted 
and compared against the baseline case in Figure 21. The 
extent to which these results portray less molecular-scale 
mixing was not determined with confidence. Consideration 
of the temporally-resolved Rayleigh scattering results 
showed no perceptible change in the nature or scale of the 
unsteadiness in the flow field. 

The decline in performance' for the lower velocity ratio case 
may be related only in part to the weaker shear at the mixing 
interface. For v = 1.12, the injectant to freestream sJ.atic 
temperature ratio was 1.8. For the baseline conditions T = 
2.5. The lower velocity ratio was associated with an increase 
in the density of the injectant which reduced the magnitude 
of the baroclinic torque. Further, the vorticity generated was 
required to convect a jet of higher momentum flux. The 
poorer mixing displayed may be due to these factors as well 
as a decrease in shear-induced mixing. 

Certainly, the decrease in bulk mixing efficiency was minor 
when considered on the scale of the global dynamics within 
the flow field. It may be concluded then, that for the limited 
range of velocity ratios tested, the magnitude of the mean 
shear established between the injectant and the freestream at 
the exit plane did not strongly influence the performance of 
the injectors. Mixing in the far-field was dominated by 
turbulent processes, but these processes were not driven by 
the average velocity ratio at the plane of injection. It is 
expected that the instabilities which led to the large time
fluctuating component of the flow were generated in part by 
localized shear associated with the dynamics of the helium 
jet and its interaction with the non-uniform external flow. 
Also, oscillatory shock interaction with a mixing interface 
has been shown to amplify turbulence.29 The exit plane 
shock would be expected to display oscillations as a result of 
propagation through flow regions dominated by the 
turbulent wall boundary layer. The experimental techniques 
applied did not allow estimation of the relative importance of 
the above phenomena in generating the unsteady flow. 

Summary of Mixing Performance for 
Contoured Wall Injectors with Shock-Enhanced Mixing 
The difficulties in making direct comparisons of mixing 
performance with other injection schemes presented in the 
literature were addressed in detail in the review by Thomas, 
Schetz, and Billig. 30 Most notably, comparison is limited 



by the wide ranging accuracy of the diagnostics in the 
various studies. Typically, because of the difficulty in 
making temporally and spatially resolved mixing 
measurements in high speed flows, comparisons are made 
on the basis of the time-mean decay of the maximum 
injectant concentration. It is unclear that this is an 
appropriate basis for comparison. The percent of fluid 
mixed to a given level of interest may not correlate in the 
near region with the rate of decay of the maximum injectant 
concentration. Further, temporally re~olved images 
presented by Waitz, Marble, and Zukoski 2- show that the 
unsteady component of the flow plays a dominant role in 
many regions of the mixing field. The ability of the time
mean data to represent the physical phenomena must be 
questioned. Lack of sufficient spatial resolution further 
impedes the clarity of such comparisons. It is with these 
caveats that the results of this study should be judged against 
those of others in terms of mixing performance. 

The time-mean decay of maximum helium concentration for 
all of the configurations tested experimentally are plotted in 
log-log form in Figure 22. The straight line pqrtion of the 
data is fit with a power law proportional to x -1.34 for the 
matched pressure cases. A power of n=-1.22 was obtained 
when all of the experimental data were considered. In their 
review, Thomas, Schetz and Billig 30 considered a broad 
range of free jets, transverse jets, wall slot jets, and hybrid 
jets in a variety of conditions. Considered as a whole, the 
data they presented was grouped around a decay exponent of 
n=-0.8. The favorable comparison of the decay exponents 
obtained in this study.with the gross correlation presented by 
Thomas, Schetz, and Billig should be judged in light of the 
limitations discussed above, and thus given limited weight. 

Conclusions 

The effects of several salient parameters on contoured wall 
fuel injector performance were presented. The following 
conclusions are supported by both experimental and 
computational results. 

First-order effects were noted due to the strong displacement 
effect of the hypersonic boundary layer which acted to 
modify the effective wall geometry. FQI narrowly-spaced 
injector arrays, boundary layers of scale S = 0.2 weakened 
secondary flow due to the ramps and hindered shock 
formation in the exit plane resulting in poor time-mean 
convective mixing and poor jet lift-off. Zero slope jet 
trajectories were noted in the far field. The poor lift-off as 
well as close proximity of the jets to each other caused the 
boundary layer to be entrained into the helium injectant. 
This enhanced time-mean mixing to the level realized for the 
widely-spaced geometry. However, for scramjet 
applications, the higher fuel density per cross-stream 
distance provided by the narrow spacing, combined with 
weaker entrainment and poor jet penetration, would not 
allow complete mixing of the injectant to desired mass 
fraction levels. 

The widely-spaced geometry was insensitive to boundaI):. 
layer displacement effects for boundary layers as large as S 
= 0.7. This was due to positive interaction of the boundary 
flow with the ramp geometry which allowed strong 
secondary flow and produced regions of high momentum 
fluid in the corners of the troughs allowing strong baroclinic 
vorticity generation. Collection of the boundary layer fluid 
in the center of the troughs and the strong lift-off provided 
by the baroclinic torque isolated the jet from direct 
interaction with the boundary layer. It is expected that for 
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boundary layers greater than the vertical scale of the 
injectors. performance for the widely-spaced geometry will 
be detrimentally affected in a manner similar to the narrow 
geometry. 

Injector performance was strongly affected by the injectant 
to freestream pressure ratio. This resulted from close
coupling between jet dynamics and the external flow field. 
For conditions representative of scramjet combustor 
applications, complete mixing of the fuel for the p = 4.0 
case would not be expected within typical domains of 
interest. The axial vorticity generated by the contoured wall 
injectors was more effective in convecting a lower 
momentum injectant. Thus, pressure ratios at or below 
unity were judged most conducive to loss-effective mixing 
and strong jet penetration. 

Reducing the velocity ratio between the injectant and the 
freestream from v =1.33 to v =1.12 produced only a weak 
decline in mixing performance. The extent to which this 
decline was associated with a decrease in molecular-scale 
mixing was not determined. In terms of the global mixing 
phenomena displayed in the flow field. shear-induced 
mixing associated with non-unity velocity ratios in the exit 
plane played a minor role (for the limited range of velocity 
ratios tested). The turbulent fluctuations which dominated 
the mixing in the far-field. were produced by local shear 
associated with the dynamics of the jet/freestream 
interaction, and possibly unsteady shock interaction with the 
mixing interface. These phenomena were not driven by 
small changes in injectant to freestream velocity ratio. 
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Figure 1. Diagram of contoured wall fuel injectors and deflnition of axes. 
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Figure 2. Contours ot constant helium mass fraction. 
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- 11 -



x=o max = 1.0 x= max = 1.0 x=4 max = 0.96 
-I !2' '.125 -'.ll' ,.,.,., 

'" -"12' 

- Z ~oo ,.- , • :.SOO 2.~," " 2.~OQ , 
f L , r , 

'QQO t '.000 %.000 ~ ~ 2.000 2.000 r .. 2.000 

t 
~ 

t j 
z ,,~ ~ 

1.'00 Z 1.500 r J 1.~OO Z 1..$00 r 11.'00 
1 

~ 
i 

j j 
1.000 

'000 t II 1'-
r 

t: 1.000 

=1 O~ ! L . , 
L ' 1-

0 .... 
0 .... ~ C-. ", ~ 
0.000 r 0" 0 ,):1 000 O·~I.I15 ,.,:1.000 1.1~looo 0.000 ' -I.11S ,ooa -I.I~ 0.000 

V V V 
x=8 max = 0.49 x = 13 max = 0.27 

-1.t15 0._ 1.11' -1.12' '.000 1.12.5 

, .... uoo uoa ~ 1.>00 

··········1 ,-- , 
.. "-,,irIogqnd [ 

2.000 f·· .... · .. 2._ I ,.-2.000 r 

t········· 
- ~ ......... , .... z, .... , .... 
Z''- f ... ~ . . . . . . . . . 

!·····~~fI ~ . . . . . . 
'.000 ,.- 11.000 

1.000 ~ •• , , 1 t··· 
~ .. 

0.- ,.- 1°'-0.500 ~ ••• " ..... ... 
J:1'-

... . . . . . . . . 
0.000 1.11~OOO 0.000 ' 

0.000 .-1.12' 0,000 -1.115 

V V 
Figure 3. Helium mass fraction. 

Full-scale model, wide spacing, natural boundary layer, 8 = 0.2, P = 1.0, v = 1.33 (experimental). 
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with boundary layers of various heights (experimental). 
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Figure 12. Decay of maximum helium mass fraction for the narrowly-spaced injector array 
with boundary layers of various heights (experimental)_ 
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Figure 14. Contours of constant helium mass fraction. 
Narrow spacing, 8 = 0 (in viscid b.c.). P = 1.0. v = 1.0 (computational). 
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Figure 19. Contours of constant helium mass fraction. 
Wide spacing, 8 = 0.2. P = 4.0, v = 1.0 (computational). 
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Figure 20. Contours of constant helium mass fraction. 
Wide spacing, 8 = 0.2, P = 0.4. v = 1.0 (computational). 
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Figure 21. Decay of maximum helium mass fraction: velocity ratio effects (~xperimental), 
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Figure 22. Decay of maximum helium concentration for expelimcntnl data. 
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