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On the theory of electron transfer reactions at semiconductor Õliquid
interfaces. II. A free electron model
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Electron transfer reactions at semiconductor/liquid interfaces are studied using the Fermi Golden
rule and a free electron model for the semiconductor and the redox molecule. Bardeen’s method is
adapted to calculate the coupling matrix element between the molecular and semiconductor
electronic states where the effective electron mass in the semiconductor need not equal the actual
electron mass. The calculated maximum electron transfer rate constants are compared with the
experimental results as well as with the theoretical results obtained in Part I using tight-binding
calculations. The results, which are analytic for ans-electron in the redox agent and reduced to a
quadrature forpz- and dz2-electrons, add to the insight of the earlier calculations. ©2000
American Institute of Physics.@S0021-9606~00!70739-2#
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I. INTRODUCTION

The electron transfer reactions at the Si/viologen21/1 and
InP/Me2Fc1/0 interfaces were studied recently by Lewis a
co-workers.1–3 The experiments yielded a maximum electr
transfer rate constant in the range of 10217– 10216cm4 s21.
To compare with the experimental results, the maximum r
of interfacial electron transfer reactions between a re
agent in solution and InP and Si semiconductors was ca
lated in Part I, the InP surface, as is believed, being ter
nated with O’s and the Si surface with H’s.4 A tight-binding
model was used for the semiconductor and extended Hu¨ckel
calculations were performed for the molecule and for
electronic coupling, in conjunction withz-transform5 and
slab methods.6 Since a free electron model for the proble
provides a simple description which can add to the phys
insight, the present treatment was undertaken, by adap
Bardeen’s method to this study. It is known that with
effective mass the free electron model describes many p
erties of bulk semiconductors7–12 and that the free electro
model with the actual electron mass describes various p
erties associated with the LCAO molecular wave functio
of aromatics and polyenes, such as electron densities
bond orders13 ~and so even the coefficients!.

The paper is organized as follows: The theoretical mo
is given in Sec. II. The expression for the electron trans
rate constant and its application is given in Sec. III, and
results are compared with those in Part I and are discusse
Sec. IV.

II. THEORY

A. Preliminary remarks

The electrons in the semiconductor are treated here
free electrons in a semi-infinite potential well with a consta
potential inside the well and a known effective mass. T
potential well has a surface normal to thez direction and is
infinite in extent in thex and y directions. The electronic
6350021-9606/2000/113(15)/6351/10/$17.00
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wave function of the molecule is obtained by solving
Schrödinger equation whose potential is constant inside
spherical potential well and is zero outside. Analogous m
els for molecules were applied in earlier studies of the o
entation effect on the electron transfer reactions by Sid
et al.14,15

The wave functions for the semiconductor electrode a
the molecule obtained using the free electron model are t
used to calculate the electronic coupling matrix element,
from it the maximum electron transfer rate constant. T
electron transfer between a semiconductor electronic s
and the molecular state is treated as nonadiabatic and F
Golden Rule is applied, and the electronic coupling mat
element is calculated by adapting the method introduced
Bardeen.16 The application of Bardeen’s method, with a
adaptation to the present case where the effective elec
mass in a semiconductor differs from the actual elect
mass, provides an analytical or quadrature expression for
coupling matrix element between the semiconductor and
molecular state.

The total electron transfer current between the semic
ductor and the molecule is obtained as the sum of the
rents between each semiconductor electronic state and
molecular state. This procedure was discussed and app
earlier in Part I to the study of electron transfer reactions
semiconductor/liquid interfaces using a tight-binding mode4

It has also been used by various groups in the study of e
tron transfer reactions at metal17–20 and semiconductor
surfaces.18,21

The formula for the maximum rate constant is then a
plied to two semiconductor/liquid interfaces~Si/viologen21/1

and InP/Me2Fc1/0!. These two interfaces were studied e
perimentally by Lewis and co-workers,1–3 and conditions
were obtained for the former and partly for the latter whi
satisfied ideal current vs applied potential behavior. In th
studies, the current densityJf due to electron transfer from
the semiconductor to the molecule is proportional to both
1 © 2000 American Institute of Physics
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concentration@A# of the molecules in the liquid and the de
sity of electronsns at the semiconductor surface,2

Jf5eketns@A#, ~1!

wheree is the elementary charge andket is the electron trans
fer rate constant. These studies also provided experime
values for the maximum rate constant, which were arou
10216cm4 s21, for the electron transfer reaction at the tw
interfaces. The free electron model used in the present s
provides rate constants for the two systems in reason
agreement with the results of tight-binding calculations a
with the experimental maximum rate constants.

B. Kinetics at semiconductor Õliquid interfaces

The net current densityJ due to the electron transfe
reaction at a semiconductor (S)/ liquid interface,

A1e~S!
A21S, ~2!

can be written as

J5Jf2Jr , ~3!

whereJf is the current density due to the electron trans
from the semiconductor to the molecule andJr is the current
density corresponding to the reverse process.Jf and Jr de-
pend on the concentration ofA andA2, respectively, at the
interface,

Jf5ekf@A#, ~4!

Jr5ekr@A2#, ~5!

where kf and kr are pseudo-first-order rate constants, a
from Eq. ~1!,

kf5nsket. ~6!

In the following, we obtain an expression forkf using a
standard result22 on electron transfer reactions: Under t
weak coupling assumption, the rate constantkf

s for the elec-
tron transfer from a single electronic state of the semic
ductor described by a superscripts, which includes both the
effect of electron tunneling or hole and ‘‘nuclear reorganiz
tion,’’ can be expressed using the Fermi Golden Rule,22 for
an electronic state to electronic state transition,

kf
s5

2p

\
uVu2FC, ~7!

where FC is the Franck–Condon factor,V is the electronic
coupling matrix element, and\ is Planck’s constant. A com
mon classical expression for the Franck–Condon factor22

FC5
1

A4plkBT
expS 2~l1DG!2

4lkBT D , ~8!

where l is the reorganization energy, andDG is the free
energy change of the reaction under the prevailing conditi
of temperature, electrode-solution potential difference a
environment.

Electron transfer at the semiconductor/liquid interfa
involves a continuum of electronic states in the semicond
tor, whose solution, strictly speaking, requires solving
many-electronic state problem. A quantum mechanical st
Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to A
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of the many-state crossing problem shows that when
splitting of the states caused by crossing is small
Landau–Zener formula is applicable to a large variety
such problems.23

The major charge carriers in these semiconductors h
very low concentration and can be treated individually
interfacial reactions.24 As in the tight-binding calculations4

for the semiconductor/liquid interfacial electron transfer ra
constant, it is assumed in the present study that only tra
tions between each pair of semiconductor/molecule states
important, and we restrict ourselves to this two-level a
proximation. Under this approximation the electron trans
current between the electrode and an acceptor state is
sum of the current from each electronic state of the semic
ductor electrode to the molecular state, and a total rate c
stant ~total denoted by t! kf

t (r ) can be written askf
t (r )

5(kkf
s(k,r ). Here, k denotes a semiconductor electron

state whose wave vector isk. The kf
t (r ) varies with the po-

sition r of the acceptor molecule relative to the electrod
and can be further written as18

kf
t ~r !5

2p

\ (
k

FC~ek! f ~ek!uVk~r !u2, ~9!

whereek is the energy of the statek, f (ek) is the probability
that the statek is occupied andVk(r ) is the coupling matrix
element between the electronic statek of the semiconductor
and the molecule. The FC anduVk(r )u2 have units of
energy21 and energy2, andkf

t (r ) has units of s21. Whenek
denotes the energy of statek relative to the edge of the
conduction band, theDG in Eq. ~8! is related toek by

DG5DG02ek , ~10!

where DG0 is defined as the standard free energy of
reaction when the donor state in the semiconductor electr
is at the conduction band edge at the interface (ek50). DG0

can be obtained from electrochemical measurements.
An expression for the current density is given next in t

terms ofkf
t (r ). The forward current density through the ele

trode is obtained by first summing over currents from t
electrode to all the acceptors in the solution and then div
ing the sum by the area of the electrode surfaces,

Jf5
e

s E
r
@A~r !#kf

t ~r !d3r . ~11!

When the reaction is not diffusion-controlled, and when t
change of electrical potential inside the liquid can be n
glected, as apparently it is under the condition in Lew
experiments,1–3 @A(r )# can be taken as constant. The ele
tron transfer rate constant in Eq.~4!, which is independent of
the concentration of acceptors in the solution but is implici
dependent on the concentration of electrons in the semic
ductor is then

kf5
1

s E
r
kf

t ~r !d3r . ~12!

It has units of cm s21.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In particular, whenkf(r ) is only a function ofR, the
distance between the redox species and the electrode su
Eq. ~12! becomes

kf5E
R0

`

kf
t ~R!dR. ~13!

This equation, together with Eq.~9!, will be used later in
deriving an expression for the maximum electron trans
rate constant at a semiconductor/liquid interface.

C. Electronic coupling matrix element

In this section, the electronic coupling matrix element
obtained using the semiconductor and molecular electro
wave functions given in Appendices A and B as the zero
order orbitals for the interacting system.

For an electron donor (D) and acceptor (A) system, if
treated as a two-state problem, the coupling matrix elem
can be obtained by solving a secular equation det(H2ES)
50, whereH andS are the Hamiltonian and overlap matr
ces for the two-level system. When the two zeroth-or
states have the same energy, or in the context of Eq.~14!
below, ^DuHuD&5^AuHuA&, the matrix elementTDA is then
half of the value of the difference between the two eigenv
ues of the above secular problem, and can be expre
as25,26

TDA5
^DuHuA&2^DuHuD&^DuA&

12u^DuA&u2
, ~14!

where^DuA& is the electronic overlap integral of the don
and the acceptor state. The electron transfer between
semiconductor state and the molecular state will be treate
a two-state problem with the coupling matrix element o
tained using Eq.~14!. For a free electron model the Hami
tonian of such an interacting system isH52\2/2m¹21V,
where V5V1 within the semiconductor,V5V2 within the
molecule, andV50 everywhere else. In this case, the co
pling matrix element denoted byVk between the semicon
ductor state with wave vectork and the molecule, can b
written as14,15,27,28

Vk5
V1^cuCk&12V1^cuc&1^cuCk&

12u^cuCk&u2

>V1^cuCk&12V1^cuc&1^cuCk&, ~15!

where^ ¯ &1 means the integration over the space occup
by the semiconductor. The termu^cuCk&u2 in the denomina-
tor of the first equality can be neglected relative to unity
the volume of the semiconductor region becomes large.

To apply Bardeen’s method to calculateVk , it is neces-
sary to extend it to the present system where the elec
massm2 in the molecule differs from the effective massm of
the electron in the semiconductor. Further, the effective m
for an electron of the semiconductor has been defined o
for the bulk properties, and yet an electron mass in the w
function just outside the semiconductor is needed also. W
these observations in mind, we introduce the following p
cedure.
Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to A
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A typical fall-off factor of an electron transfer couplin
matrix element with distance is exp(2bR/2), whereR is
distance from the relevant edge of one reactant to the
evant edge of the second reactant andb>1 Å-1.22 We can
achieve this distance dependence in the free electron m
as follows: we writeR5R11R2 , whereR1 is the distance
from a field point alongR to the edge of one reactant andR2

is the distance from that point to the edge of the other re
tant. In a free electron description each wave function th
decreases as exp(2bRi/2), i 51,2. For the semiconductor
denoting b by b1 , we have b1/25A22m(Ec1ek)/\,
whereEc is the conduction band edge relative to the ene
in the solvent, taken as zero.@The Ek given later in Eq.~16!
is this Ec1ek .# SinceEc is about 1–2 eV andek is about
kBT, we haveek!uEcu and sob1/2>A22mEc/\. For any
choice form, e.g., choosing it to equal to the effective ma
in the bulk semiconductor, we can chooseEc to yield the
chosenb1(;1 Å-1).

For the molecule the wave function and energy of t
electron depends on the relevant molecular radiusb, on the
electron massm2 , and on the position of the molecular en
ergy level E2 relative to the solvent, again taken as ze
Inasmuch as the relevantb, written as b2 , equals
2A22m2E2/\, and we wish to haveb2>b15b. In the
interests of simplicity, we can choose the pair (m2 ,E2) so as
to produce the desiredb2 . If we take, for example,m2

5m, the effective mass in the bulk semiconductor, we c
adjust E2 to achieve thisb2 . The adjustedE2 equalsEc

1ek ~and hence>Ec!. Indeed, for electron transfer we hav
Ec1ek5E2 in the transition state and so this selection ofm
for the electron mass outside the molecule is consistent w
this energy requirement~see Fig. 1!.

It remains to consider the behavior of the molecu
wave function inside the molecule. We have already fix
the energyE2 , a massm, and a radiusb. To achieve thisE2

for the givenb and m we merely choose the appropria
depth of the potential energy wellV2 . Accordingly, we now
have a system which has the same electron massm through-

FIG. 1. Profile of potential wells of the semiconductor and of the spher
molecule. There is an electron tunneling through the intervening env
ment.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



wi

-
r
c
k
c

al
t

n
e-
g

’s
ou

s
n

p-

e
tor

d a
r to
pler

tial
ter

f
uc-
ow
tics.

sfer

rm

m-

hat

in

e

ge
le.

-

6354 J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Y. Q. Gao and R. A. Marcus
out and yields the desired decrease of the wave function
distance.

The method due to Bardeen,16 used here for the evalua
tion of the value ofVk , is only applicable when the dono
and acceptor states have the same energy, which is the
for the electron transfer reaction obeying the Franc
Condon principle and considered in this study. Sin
^cuc&1^cuCk& is typically small as compared tôcuCk&1 ,29

theVk in Eq. ~15! can be approximated byV1^cuCk&1 . Fol-
lowing Bardeen,16 this quantity can be written as an integr
over the space occupied by one of the reactants, here
semiconductorS, we note that

^cuT1V1uCk&15Ek^cuCk&1 , ~16!

where Ek is the eigenvalue corresponding touCk& and T
denotes the kinetic energy operator,2(\2/2m)¹2, in coor-
dinate space. But we also haveTuc&5E2uc& in the region
outside the molecule, whereE2 is the eigenvalue for the
molecule. Thereby,

^Ck* uTuc* &15E2^Ck* uc* &15E2^cuCk&1 . ~17!

We have from Eqs.~16! and ~17!,

2
\2

2m E
1
~c* ¹2Ck2Ck¹

2c* !d3r5~Ek2E22V1!

3^cuCk&1 . ~18!

When ^DuHuD& and ^AuHuA& are set equal in the transitio
state,Ek and E2 are not quite equal, but the difference b
tween them30 is neglected.27,28We thus obtain, on neglectin
the terms mentioned earlier,

Vk52
\2

2m E n•~c* ¹Ck2Ck¹c* !ds, ~19!

wheren is a unit vector normal to the surface of wellS and
pointing outward fromS, i.e., in the direction of negativez,
andds is the area element of the surface of wellS. Setting
z50 at the semiconductor surface, Eq.~19! then becomes,

Vk52
\2

2m E
z50

$c~]Ck* /]z!2Ck* ~]c/]z!%ds. ~20!

In the following the implementation of Bardeen
method is illustrated by an evaluation of the electronic c
pling matrix element between a semiconductor state and
s-type state of the molecular acceptor. The expressions u
for pz-like anddz2-like molecular wave functions are give
in Appendix B. The integrand in Eq.~20! is evaluated at the
semiconductor surface. We have

Ck~x,y,z50!5a1ei (kxx1kyy), ~21!

]Ck /]z~x,y,z50!5b1a1ei (kxx1kyy), ~22!

and when ans-type orbital is used for the molecular acce
tor, we have

c~x,y,z50!5
2A0

A4p

e2b2(Ar21R22b)/2

b2Ar21R2
, ~23!
Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to A
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52
2A0R

A4p

11~b2/2!Ar21R2

b2~r21R2!3/2 e2b2(Ar21R22b)/2. ~24!

The normalization ofCk will be made with respect to a larg
volume v, most of which encompasses the semiconduc
surface. Thea1 in Eqs.~21! and~22! has units of 1/Av, and
is given by Eq.~27! below, and theA0 in Eqs.~23! and~24!
has units of cm21/2. A normalization to a delta function
could have been introduced instead if we had introduce
z-dependent electric field inside the semiconductor simila
the actual field. However, the present procedure is sim
and should suffice for our purpose.

Equations~23! and~24! are obtained using Eq.~B7! and
setting the coordinate of the center of the spherical poten
well as ~0, 0, 2R!, R being the distance between the cen
of the molecule and the semiconductor surface,r being
Ax21y2, andds being 2prdr.

Equations~21!–~24! are next used for the evaluation o
the coupling matrix element. For a semiconductor cond
tion band, the occupation of the electronic states is l
enough to be considered as obeying Boltzmann statis
Thus, only states within an energy range ofkBT above the
conduction band edge are important in the electron tran
reaction. Sincek5uku is only about 0.1 Å21 at room tem-
perature, it is a good approximation to replace the te
ei (kxx1kyy) by unity in Eqs.~21! and~22!. A final expression
for the coupling matrix element is then obtained by perfor
ing the integral in Eq.~20!, yielding

Vk~R!52A0

2Ap\2

b2m
a1S 11

1

b2RDe2b2(R2b)/2. ~25!

In obtaining the above expression, the approximation t
*u0

` (e2u/u2)du'e2u0/u0
2, and *u0

` (e2u/u)du'e2u0/u0 ,

when u0@1, are used. Here,u5(b2/2)Ar21R2, and u0

5b2R/2, the value ofu at r50. Because ofa1 , Vk(R) is
seen to be proportional to 1/Av.

The term 1/b2R is small compared to the other term
the parenthesis in Eq.~25! whenR is large. In the problems
treated in this paper,R is always greater than 4 Å, and th
term 1/b2R can then be neglected. In this case, Eq.~25!
becomes,

Vk~R!52ApA0a1

2\2

b2m
e2(b2/2)(R2b), ~c5s!, ~26!

and soVk(R) depends exponentially on the edge to ed
distanceR2b between the semiconductor and the molecu
A0 is given by Eq.~B8! or approximately by Eq.~B11!.

The quantitya1 in Eq. ~26! is estimated as in Appendix
A to be

a15A2

v
kz

Akz
21~b1/2!2

'A2

v
2kz

b1
, ~27!

the second equality arising becausekz!b1 .
Using the relation thatb15b2 , and the above expres

sion for a1 , the expression forVk(R) then becomes
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



la

h
/

te

at
a
ro
th

pe
lo

s

to

h

q.

n

-

and
for

tant

to
m-

us-

at
.

p-
re

ctor
ro-

t of
bout

i-

d
the

ng

re-

is
s
nce
e is
of

6355J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Electron transfer at semiconductor/liquid interfaces
Vk~R!52A2p

v
A0

4kz\
2

b2
2m

e2b2(R2b)/2, ~c5s!. ~28!

The procedure discussed above for thes-type orbital can
also be applied to a system with other types of molecu
orbitals. In the present study, when apz-like or dz2-like or-
bital is used for the molecular orbital, as it should be for t
molecules considered here, the approximation that 1b2

51/b1'1 Å is also used. The wave functionc is given by
Eqs. ~B1! and ~B2!, with l 51, m50 for a pz-like orbital,
andl 52, m50 for adz2-like orbital, and their normalization
constants are given by Eqs.~B3!–~B5!. The electronic cou-
pling matrix elements for these orbitals are then calcula
using Eq.~20!.

III. ESTIMATE OF THE MAXIMUM ELECTRON
TRANSFER RATE CONSTANT

We next obtain the expression for the maximum r
constant ket

max of the electron transfer reaction at
semiconductor/liquid interface, based on the free elect
model given in the preceding section. We first discuss
f (ek) term in Eq.~9! and then derive an expression forkf

t

using Eqs.~9! and ~28!.
For a low-doped semiconductor of the zincblende ty

the occupation of its conduction band at the surface is
enough that the occupancy probability,f (ek), of the statek,
the kinetic energy of which is\2k2/2m,11 can be treated a
obeying Boltzmann statistics. The sum(k ¯ f (ek) in Eq.
~9! can be written as an integral overk-states, when properly
normalized. The number of electrons in the semiconduc
conduction band in the volumev is nsv, and the probability
of finding one of these electrons indkxdkydkz is
the Boltzmann factor exp(2ek /kBT)dkxdkydkz /
*2`

` *2`
` *2`

` exp(2ek /kBT)dkxdkydkz . When multiplied by
nsv it becomes the probability that a state is occupied. T
sum in Eq.~9! thus becomes

(
k

FC~ek!uVk~r !u2f ~ek!

5
nsv***FC~ek!uVk~r !u2e2ek /kBTdkxdkydkz

***e2ek /kBTdkxdkydkz
. ~29!

Since uVku2 is inversely proportional tov, the v cancels.
Equation~9! yields

kf
t ~r !5nsv

2p

\

***FC~ek!uVk~r !u2e2ek /kBTdkxdkydkz

~2pmkBT!3/2/\3 ,

~30!

whereVk for ans-like electron is given by Eq.~28!, and for
pz-like anddz2-like electrons in the molecule is given by E
~B12! in Appendix B.

Integration overkx , ky , and kz is intermediately per-
formed, and one obtains

kf
t ~R!5ns

2p\

m~b2/2!4 A0
2S 2l

l2DG0D 5/2ApkBT

l

3e2 @(l1DG0)2/4lkBT#e2b2(R2b), l2DG0@0,

~31!
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whereDG0 is the same as defined earlier andb1'b2 has
been used. Equation~31! was obtained under the conditio
that l2DG0@0.

Thekf
t given by Eq.~31! is then introduced into Eq.~13!

to yield an expression forkf . The maximum electron trans
fer rate constantkf

max is obtained by settingl1DG050 in
Eq. ~31! to obtain

kf
max5ns

p\

m~b2/2!5 A0
2ApkBT

l
e2b2(R02b), ~s electron!.

~32!

It is seen to be linearly dependent onns , the electron density
near the surface of the semiconductor electrons. Here,R0 is
the smallest distance between the center of the molecule
the semiconductor surface. We then have an expression
the maximum second-order electron transfer rate cons
written as

ket
max5

32p\

mb2
5 A0

2ApkBT

l
e2b2(R02b), ~s electron!,

~33!

whereA0 is given by Eqs.~B8! and ~B9!.
The above equation is then applied in the following

the two systems studied by Lewis and co-workers for a co
parison with the experimental results. Following the disc
sion in the earlier section,b2 is taken as 1 Å-1.

The rate constant of the electron transfer reaction
the silicon/viologen21/1 interface is estimated using Eq
~33! for a ~hypothetical! s-like electron. At the Si/
N,N8-dimethyl-4,48-bipyridylium21 interface, one of the Si/
viologen systems studied by Fajardo and Lewis,1,3 the radius
of the spherical potentialb is estimated as 3 Å,31 which gives
approximately the size of the LUMO of the molecular acce
tor. Them was obtained from self-consistent band structu
calculations to be 0.191me ,32 whereme is the mass of a
free electron. Since the surface of the silicon semicondu
in the experiments is terminated by a single layer of hyd
gen atoms to remove the dangling Si bonds, the value ofR0

is chosen as the value corresponding to the direct contac
the adsorbed hydrogen atoms and the acceptors and is a
5 Å.33 The value ofl obtained from a fit in Ref. 12 to the
experimental data,1 is about 0.7 eV and the calculated max
mum rate constant is relatively insensitive tol. When the
maximum rate constant for thiss-electron model is calcu-
lated using Eq.~33!, the result in Table I is obtained, an
compared there with the experimental results as well as
theoretical results obtained in Part I by the tight-bindi
method.

We turn next to the estimate of the electron transfer
action rate constant at the InP/Me2Fc1/0 interface. For this
system,b is taken as 0.6 Å,34 the radius of a Fe21, because
of the localization of the LUMO at Fe atom.35 The ~100!
surface InP semiconductor used in the experiments
believed36 to be terminated by a layer of oxygen atom
which saturate the dangling P bonds. The smallest dista
R0 between the center of the acceptor and the electrod
chosen to be 5 Å which corresponds to the direct contact
the molecular acceptor~the whole ferrocene molecule! and
the oxygen atom.33 The experimental effective massm of an
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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electron in the InP conduction band is 0.077me .11,37 The
reorganization energyl of the system is about 0.8 eV,2 but
ket

max is again relatively insensitive tol. The estimated rate
constant for thes-electron model is then given in Table I.

However, to compare with the real systems studied
Lewis and co-workers,1,2 a pz-like orbital should be used fo
the viologen to be more consistent with the symmetry of
LUMO of the viologen ions. For the InP/Me2Fc1/0 system,
since the LUMO of Me2Fc1 has primarilydz2 character,35

the dz2-like orbital is used for the acceptor state of Me2Fc1.
When apz- or dz2-like orbital is used, we average the ra
constant38 over the orientation of the orbital respect to t
semiconductor surface, yielding the results in Table I.

For comparison, the maximum electron transfer rate c
stant at the Si/Me2Fc1/0 interface is also calculated, althoug
the data on the maximum rate constant for this system
absent. The effective electron mass for the Si conduc
band is again taken as 0.191me , the reorganization energ
is 0.8 eV, the radius of Me2Fc1/0 LUMO is 0.6 Å, andR0 is
taken as 4 Å. The results obtained using ans-type orbital and
a dz2-like orbital are both given in Table I.

IV. DISCUSSION AND CONCLUSION

A. Discussion

In the present paper, the free electron model is applie
the study of electron transfer reactions at semicondu
electrode/liquid interfaces. The electronic wave functions
the semiconductor are obtained in terms of plane waves
semi-infinite potential well and the wave function of the a
ceptor is approximated to be apz-like or dz2-like orbital and
for comparison results for ans-like orbital are also given, al
for a spherical potential well. An analytic formula for th
coupling matrix element is obtained for ans-like orbital us-
ing Bardeen’s method, and then an expression for the e
tron transfer rate constant is obtained using this formula
the coupling matrix element.

The maximum electron transfer rate constants
Si/viologen21/1 and InP/Me2Fc1/0, the two systems studie
experimentally by Lewiset al., are then estimated using E
~33!. The maximum rate constants of both systems are c
pared with the experimental result, which is of order
10217 to 10216cm24 s21. The agreement is reasonable, co
sidering the approximations involved, and the result is a

TABLE I. Experimental and calculated maximum electron transfer r
constant.a

System
ket

max

~expt.!
ket

max

~z-trans.!d
ket

max

~slab!d
ket

max

~free e!e
ket

max

~free e!

Si/viologen21/1 0.6b 1.3 1.6 1.2(pz) 1.9(‘ ‘ s’ ’)
Si/Me2Fc1/0

¯ ¯ 0.17 0.024(dz2) 1.2(‘ ‘ s’ ’)
InP/Me2Fc1/0 1–2c 0.084 0.086 0.017(dz2) 1.1(‘ ‘ s’ ’)

aUnits are 10216 cm4 s21.
bFrom Ref. 12.
cFrom Ref. 10.
dFrom Ref. 4.
eThe result for viologen21/1 was obtained using apz-like orbital and the
result for Me2Fc1/0 was obtained using adz2-like orbital. The results in the
last column were obtained using a hypotheticals-like orbital and Eq.~33!.
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in reasonable agreement with the theoretical results obta
in Part I using tight-binding calculations. As mentioned e
lier, to mimic the experiments and the tight-binding calcu
tions, apz-like orbital and adz2-like orbital were used for the
viologen21/1 and Me2Fc1/0 ions, respectively, in the calcula
tions of the coupling matrix elements for these two system
The error is greater for Me2Fc1/0 ions, where the LUMO is
assumed to be localized on the Fe atom. For comparison
s-like orbital was also used for the calculation of the ma
mum rate constant. However, thiss-like orbital is hypotheti-
cal, since the LUMO of these systems is not ans-orbital.

The difference between the theoretical maximum r
constants at Si/viologen21/1 and InP/Me2Fc1/0 interfaces in
these calculations is partly due to the different size of
molecular orbitals. The LUMO, the electron acceptor sta
of a viologen molecule is more delocalized than that of
Me2Fc molecule, which is essentially localized on the
atom.35 Although the centers of the two spherical potent
wells representing the two molecules are at approxima
the same distance from the semiconductor surface, the ca
lated electron transfer rate constant for the Si/viologen21/1

interface is larger than that for the InP/Me2Fc1/0. The cou-
pling matrix element as a function of the size of the accep
orbital is shown in Fig. 2. The distance between the cente
the spherical orbital and the semiconductor surface is k
constant in obtaining this figure. Another factor responsi
for the larger calculated maximum rate constant at
Si/viologen21/1 interface is the character of the acceptor o
bital. The use of apz-like orbital yields more efficient cou-
pling between the semiconductor and the acceptor for
Si/viologen21/1 interface than does thedz2-like orbital that
used for the InP/Me2Fc1/0 interface, both for the tight-
binding and for the free electron calculations. The relat
inefficiency ofd-electron in electron transfer was describ
in an earlier paper.40

It is interesting that a model as simple as the free el
tron model yields a result for the electron transfer mat
element in reasonable agreement with the tight-binding
culation and with experiments. In these applications,
wave functions of the semiconductor or a reactant are nee
outside the molecular potential well and on the surface of
semiconductor. For both wave functions boundary conditio
are imposed~continuity of the respective wave function an
of their derivatives at the relevant boundary!. For the region
outside the semiconductor and outside the molecule we
troduce a distance dependence of the wave function wh
yielded the expected distance dependence of the electr
matrix element. Since the expected distance dependen
also reproduced quite well by extended-Hu¨ckel
calculations,39 with no adjustable parameters, perhaps
agreement of the matrix element calculated using the
electron model with the obtained tight-binding/extende
Hückel calculations or from experiments is also consist
with this earlier work. The analytical expression Eq.~28!
serves to bring out some of the sources of error: when
molecule and the semiconductor are more or less in edge
edge contact, as in the methyl viologen case, the expone
factor in Eq. ~28! is of the order of unity, and so is not
major source of error. However, when the orbital in the m

e
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FIG. 2. The coupling matrix element between the sem
conductor statek5(0, 0, 0.02) and ans-like molecular
orbital as a function of the size of the acceptor sta
The distance between the center of the molecule and
semiconductor surface is kept as a constant 5 Å.
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ecule is localized, as in the ferrocene and so is buried,
orbital distanceR–b, is large. Because of the exponentia
the corresponding free electron model matrix element is s
ject to a substantially large error, as seen in Table I, us
orbitals of the appropriate symmetry. Errors in the oth
quantities, e.g., forA0 in Eq. ~B11!, appear to be more mi
nor.

We explore further in the next section the relation b
tween the free electron and the tight-binding models.

B. Relation of free electron and tight-binding models

We make this comparison initially for a one-dimension
chain of lengthl . For this chain the free electron value ofa1

is still given by Eq.~27!, but with Av replaced byAl . The
tight-binding coefficientsCM

K for a chain ofN atoms can be
written as41

CM
K 5A2/~N11! sinpMK/~N11!, ~34!

whereM is a lattice atom index (M51,...,n), K is an elec-
tronic state index (K51,...,N), andM51 is a surface atom
Since the wave numberkz52p/l>pK/(N11)a, wherea
is the lattice distance parameter, we can write

CM
K 5A2a/ l sinMkza. ~35!

Inasmuch as theCM
K ’s are normalized to unity ((MuCM

K u2

51) and the individual atomic wave functions are norm
ized over a lengtha, theCM

K /Aa for M51 is the quantity to
compare with the one-dimensional analog ofa1 in Eq. ~27!,
A2/l2kz /b1 . Since kz is small, Eq. ~35! yields C1

K/Aa
>A2/lkza. When the tight-binding model is extended to t
x andy directions, infinite in both directions, normalized
periodic boundary conditions~areal 2! using complex expo-
nential wave functions, which are the discrete analogs of
expikxx1ikyy in Eq. ~A2!, Eq. ~35! again applies but with
A2a/ l replaced byA2a3/v,

CM
K 5A2a3/v sinMkza. ~36!
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Omitted for brevity in the right-hand side of Eq.~36! are the
discrete analogs of expikxx1ikyy. For M51 and with kza
being small, we can write

a1>2C1
K/b1aAa3, ~37!

whereC1
K is the same for each surface atom~for small kxx

andkyy!. Thereby, 2/b1aAa3 can be regarded as the fact
in a1 contributing to the atom/atom exchange integral b
tween the semiconductor and the adjacent solvent.

The contributionC2 to * ucu24pr 2dr outside r 5b is,
from Eq.~B7!, 4A0

2/b2
3. Taking the coefficientC of the mol-

ecule as unity, we can now rewriteVk in Eq. ~25! as

Vk>2Ap
4A0\2

mb2a5/2CC1
K , ~38!

whereC>1. Now the lowest energy of an electron in a cub
box of edge lengtha is e53\2/8a2m. In terms ofe, Eq.~38!
becomes

Vk52A p

ba

4

3p2 eCC1
K . ~39!

For a value ofb51 Å-1, m50.1 me , and the lattice con-
stanta53 Å, the factor multiplyingCC1

K is about 2.5 eV.
Not all of C can contribute toVk , but more than one semi
conductor atom, and itsC1

K , can contribute. To some exten
these neglected aspects approximately cancel. The co
cient of CC1

K is seen to have~approximately! the value ex-
pected for an atom/atom exchange integral.

C. Conclusion

Although the free electron model is highly approxima
it does provide a reasonable description for the semicond
tor electronic structure at the conduction band edge.11,32,42,43

The present model also incorporates the actual molecula
bital size and symmetry and the experimental coupling de
length, and perhaps for these reasons gives a reason
zeroth-order approximation for treating the electron trans
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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at semiconductor/liquid interfaces. Although one cannot g
eralize from only two cases, we suspect on comparing
tight-binding and free electron results in Table I that the f
electron model is better for a delocalized orbital like that
viologen than for a highly localized one like that of fe
rocene. In this paper, for simplicity, the molecular orbi
was first taken as ans-like orbital with a certain size, leading
to an analytic result. However, the symmetry of the mole
lar orbital was taken into account instead by choosing or
als with appropriate quantum numbersl andm in Eqs.~B6!
and ~B7!.

In summary, it appears that the free electron model p
vides a reasonable and simple though crude descriptio
the electron transfer reaction at semiconductor/liquid in
faces. Since this method uses Bardeen’s method of esti
ing the coupling matrix element, it is not applicable to tw
overlapping potential wells16 and thus it is only applicable to
relatively weak couplings. Also it is only applicable to th
electron transfer reaction near the semiconductor conduc
valence band edge, because of the use of the free ele
model. This method of estimating the electron transfer r
constant can be readily applied to other semiconductor/liq
interfaces.
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APPENDIX A: FREE-ELECTRON MODEL FOR THE
SEMICONDUCTOR ELECTRODE

We treat the semiconductor electrode first and then
molecular electron acceptor in the solution using the pot
tial wells. The electrons in the semiconductor are treated
free electrons in a potential well in the three-dimensio
space, with a constant potentialV1 inside the well (V1

,0). The potential well is infinite in thex andy directions
and has a surface atz50, and the potential is taken as ze
outside the potential well. The wave functions are then
tained using the one-electron Schro¨dinger equation,

2
\2

2m
¹21V~r !uCk&5EkuCk&, ~A1!

whereV(r )5V1 whenz>0 andV(r )50 whenz,0. Thek
again denotes the wave vector of the electronic stateCk and
m is the effective mass of the electron.

The relevant solution of Eq.~A1! is

Ck~r !5ei (kxx1kyy)~a2eikzz1a3e2 ikzz!, ~ inside well!,

~A2!

for z>0, and

Ck~r !5a1ei (kxx1kyy)eb1z/2, ~outside well!, ~A3!
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whereb1 is a positive number, forz<0. Here,kx , ky , and
kz(b) are the components of the wave vectork in x, y, and
z directions, respectively, with

\2

2m
~kx

21ky
21kz

2!5E2V1 ,
\2

2m
~kx

21ky
22b1

2/4!5E,

~A4!

whereE is the energy of the electron.
In Eqs. ~A2! and ~A3!, a2 , a3 , and a1 are constants

which can be obtained by satisfying the boundary condit
at the surface of the semiconductor and by the normaliza
of the wave function. The boundary condition atz→` re-
quires thatb1.0. The amplitude ofCk* (r ) outside the po-
tential well is considerably smaller than inside, a normaliz
tion of the wave function,̂ CkuCk&51, yields ua2u21ua3u2

51/v to a good approximation, wherev is the volume of the
semiconductor as discussed in the text.

As usual, the relations betweena2 anda3 , and between
a2 and a1 are obtained using the continuity of the wav
function and its first derivative with respect toz at z50, and
can be written as

a35
kz2 ib1/2

kz1 ib1/2
a2 , a15

2kz

kz1 ib1/2
a2 . ~A5!

These two equalities combined with the normalization eq
tion, ua2u21ua3u251/v, determine the three constantsa2 ,
a3 , anda1 up to an arbitrary phase factor. These quantit
will be used later in calculate the coupling matrix eleme
between theCk and the wave function of the molecule. Fro
Eq. ~A5! one can verify thatua3u25ua2u2, and if, without
loss of equality we choosea1 to be real, thena2* 5a3 and Eq.
~27! is obtained.

APPENDIX B: THE ELECTRONIC WAVE FUNCTION
OF THE ACCEPTOR MOLECULE

For simplicity, we treat the electronic wave function
the molecule in liquid as an electron moving in a fini
spherical potential well with a radiusb. The potentialV2(r )
within the potential well is a constantV2 and is zero outside
The problem is well known44 and the results will be used a
follows.

The solution of the Schro¨dinger equation in the spherica
polar coordinate (r ,u,f) gives the normalized wave func
tions which are continuous atr 5b,14

cml~r ,u,f;E!5AlNmlFm~f!Pl
m~cosu! j l~ar !kl~b2b/2!/

j l~ab!eb2b/2 ~ inside well!, ~B1!

when r<b, and

cml~r ,u,f;E!5AlNmlFm~f!Pl
m~cosu!kl~b2r /2!eb2b/2,

~outside well!, ~B2!

when r>b. For use in Eqs.~B1! and ~B2! we have defined
the Al ’s In Eqs.~B3! and~B5! below by introducing there a
factor e2b2b/2, so as to make theAl ’s less sensitive tob2 .
Here, m and l are the usual quantum numbers,a
5A2m(E2V2)/\, b2/25A22mE/\, Fm(f) is
eimf/A2p, Pl

m is an associated Legendre polynomial, andj l
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. The comparison forA0
2 being calculated using

Eq. ~B8! ~exact! and using Eq.~B11! ~approximate!.
o

l
-

the

I

nt
valu-
and kl are spherical Bessel and Hankel functions. The n
malization constantsAl andNml are given by

Al5H kl
2~b2b/2!

j l
2~ab!

E
0

b

j l
2~ar !r 2dr

1E
b

`

kl
2~b2r /2!r 2drJ 21/2

e2b2b/2, ~B3!

and

Nml5H 2p

2l 11

~ l 1m!!

~ l 2m!!
nJ 21/2

. ~B4!

Al can be further evaluated to be

Al5~2/b3!1/2H kl 21~b2b/2!kl 11~b2b/2!

2
kl

2~b2b/2!

j l
2~ab!

j l 21~ab! j l 11~ab!J 21/2

e2b2b/2. ~B5!

Then in Eq. ~B4! is 2 for m50, and 1 formÞ0. In particu-
lar, m5 l 50 corresponds to ans state with a wave function
denoted byc,

c5
2A0

A4p

sin~ar !

b2r sin~ab!
, r<b ~B6!

and

c5
2A0

A4p

e2b2(r 2b)/2

b2r
, r>b. ~B7!

The constantA0 obtained by settingl 50 in Eq.~B3! is given
by
Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to A
r-
A05

b2

2 H 2ab2sin~2ab!

4a sin2~ab!
1

1

b2
J 21/2

. ~B8!

ClearlyA0 varies with the radiusb of the spherical potentia
well. The relation betweena andb2 in the last three equa
tions, obtained by making]c/]r continuous atr 5b, gives

tan~ab!522a/b2 . ~B9!

For a givenb2 andb, the eigenvalue of the energyE of the
systems are then determined by the above equation and
relation betweenb2 andE.

Using Eq.~B9!, Eq. ~B8! can be expressed as

A05
b2

2 H a21~b2/2!2

a2

2ab2sin~2ab!

4a
1

1

b2
J 21/2

.

~B10!

One notes from Eq.~B9! that tan(ab),0, thus 2ab.p
.sin(2ab). When a2 is sufficiently large, Eq.~B8! can be
approximated by

A05
~b2!3/2

2
@1/~11bb2/2!#1/2. ~B11!

The a decreases monotonically whenb increases and is
0.73 Å21 whenb53 Å. The A0

2 calculated using Eqs.~B8!
and~B11! are compared in Fig. 3. In the text and in Table
only Eq. ~B8! is used. We note that* ucu24pr 2dr outside of
the well of radiusb equals 4A0

2/b2
3, and we wish 4A0

2/b2
3 to

be small. The value from Eq.~B11! is @2/(21bb2)#1/2.
As discussed in the text, the coupling matrix eleme

between a molecular and a semiconductor state can be e
ated using

Vk52
\2a1

2m E
r50

`

ei (kxx1kyy)~b1cml2]cml /]z!2prdr,

~B12!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



a

at

e

, H
s:

s

n

l-

ents,
dis-
r in
radii

,

nd

ys-

icon-
mi-

-

d
nted

ve
n
II C.

g.

s

6360 J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Y. Q. Gao and R. A. Marcus
where the wave functioncml given by Eq.~B2! is a pz-like
orbital when l 51, m50 and is adz2-like orbital when l
52, m50, and where we have written the area element
rdrdf and integrated thef from 0 to 2p, noting that the
integrand is independent off.
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