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Abstract 

Unstable motions must be anticipated as a pos­
sible problem in solid-propellant rocket motors; 
the characteristics of an instability depend pri­
marily on the geometry of the motor and composi­
tion of the propellant. It is the purpos e of this 
paper to review mainly the current state of analy­
ses of combustion instability in solid-propellant 
rocket motors, but appropriate measurements and 
observations are cited. The work discussed has 
become increasingly important, both for the inter­
pretation of laboratory data and for predicting the 
transient behavior of disturbances in full-scale 
motors. Two central questions are addressed: 
linear stability and nonlinear behavior. Several 
classes of problems are discussed as special cases 
of a general approach to the analysis of combustion 
instability. Application to motors, and particularly 
the limitations presently understood, are stressed. 

1. Introduction 

Much of Reference I was devoted to a review 
of the various gains and losses of energy which in­
fluence the behavior of small amplitude harmonic 
waves in a solid-propellant rocket motor. With 
earlier reviews, it serves as a general introduc­
tion to the topics discussed in this paper. The em­
phasis here is on analysis, but in the context of 
experimental observations and with a view to ap­
plication to full-scale motors. It seems particu­
larly important at this time to describe what analy­
tical techniques are available and to clarify what 
purpos es they serve. 

Ultimately, the theoretical results should 
provide a means of predicting the stability of 
small disturbances and the limiting amplitude of 
unstable disturbances. It is not yet possible to 
carry out such calculations with complete satisfac­
tion. Short of that goal, however, the framework 
of analysis has, in certain cases, correctly identi­
fied trends of behavior; has aided the interpretation 
and correlation of data; and has been used in plan­
ning experimental work. The problem of combus­
tion instability is sufficiently complicated that ex­
perimental and analytical work must be closely 
coordinated if truly useful results are to be 
achieved. Indeed, it will probably never be pos si­
ble to predict the transient characteristics of a 
motor totally from first principles. Certain cru­
cial pieces of information must be obtained from 
independent experimental work. The most im­
portant -- and most difficult to acquire -- is the 
coupling between combustion and unsteady motions 
of the flow field. 

The general problem of unsteady flow in a 
combustion chamber may be split into two parts: 

the fluid mechanics within the volume of the cham­
ber; and the interactions of the flow and processes 
at the boundary. For most purposes, it is con­
venient to treat the exhaust nozzle or vent as a 
separate problem, which is then incorporated as a 
boundary condition on the flow inside the chamber. 
Hence, the boundary consists of three pieces; in­
ert, essentially rigid surface; burning surface; 
and the exhaust plane. Each of these boundaries 
poses its own pecular problems. Viscous and 
heat transfer processes at inert surfaces can be 
important, both because of their influence on the 
flow field and for structural reasons.. Although 
most motors using solid propellants have relative­
ly little inert surface, at least early in a firing, 
this is often not true of laboratory devices such as 
the T-burner. Discussion of the details of these 
processes is minimal in this work. 

On the other hand, the influences of the burn­
ing surface and the exhaust nozzle are significant 
in all cases. The behavior of a sonic exhaust noz­
zle is treated in Reference 2 and will not be cov­
ered here. In recent years, the problem of the 
transient characteristics of a burning surface has 
received a great deal of attention. Other works 
(References 1,3-8) cover thoroughly both the ana­
lytical and experimental aspects; only a brief dis­
cussion is included here to srunmarize what is 
presently known and to identify current problems. 

Apart from the combustion and flow problems, 
the dynamical behavior of the propellant may, 
under some circumstances, be influential. The 
most iInportant effect is the dissipation of energy, 
but the structure and frequencies of the motions in 
the chamber gases may also be affected. This 
question too is discussed but briefly. 

Thus, the concern here is almost entirely 
with the fluid mechanics of the unsteady flow in the 
chamber. There are two classes of problems to 
be discussed: linear stability of harmonic dis­
turbances; and nonlinear behavior, including the 
growth to liIniting amplitude. These are broken 
down further into several more restricted cases. 
Because much of the discussion is rather formal, 
it may be helpful to describe first the main ap­
proximations used and the framework for the de­
velopments in the rest of the paper. 

In Section II, the formal basis for extracting 
special problems from the general equations of 
motion is given. The subject is essentially con­
cerned with acoustics in a nonuniform average 
flow field with combustion. Hence, it is not sur­
prising that the analytical problems may be clas­
sified according to the sizes of two small parame­
ters characterizing the intensities of the steady 
and unsteady flow fields. The general scheme 
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outlined here produces system.atically several 
classes of problem.s of varying difficulty and appli­
cation. If the param.eter 8 characterizing the un­
steady field is very sm.all, and the param.eter ~ 
characterizing the average field is zero - - so there 
is no am.bient flow -- then classical acoustics is 
recovered. But if both 8 and ~ are sm.all and 
non-zero, and 8/~ -+ 0, one obtains a system. of 
equations widely used to study linear stability. 
Linear acoustics in a strong aver age flow field -­
as in rockets with low port-to-throat ratios - - m.ay 
be studied by retaining term.s present for large ~. 
And finally, if term.s of higher order in 8 are re­
tained in the equations, one m.ay study nonlinear 
acoustics problem.s. These classes of problem.s 
are covered, roughly in order of increasing diffi­
culty, in Sections III - VII. 

Increasing interest in nonlinear aspects of 
com.bustion instability has m.otivated considerable 
coverage of the topic in this paper. The principal 
reason for practical interest is that the presence 
of unstable waves in a m.otor m.ust be expected 
(see Reference 1, for exam.ple). The real problem. 
is often to keep the am.plitude low enough to be 
tolerable. Any question concerned with the am.pli­
tude of m.otions can be answered only by appe aling 
to nonlinear effects. 

Following the general rem.arks of Section II, 
first linear and then nonlinear problem.s will be 
discussed. A few exam.ples of applications are in­
cluded in Section X, and the work closes with a 
brief sum.m.ary of the uncertainties and lim.itations 
of the available analyses. The coverage is neces­
sarily brief and free of m.ost details; som.e of 
those topics which m.ay be less fam.iliar are given 
m.ore space. However, the m.ain purpose is to 
convey the gist of what can be accom.plished at the 
present tim.e, and particularly what the lim.itations 
are. 

It happens that so far as quantitative, a priori 
predictions of unsteady behavior in m.otors is con­
cerned, the situation is not wholly satisfactory; 
but what is req uired to im.prove things is fairly 
clear. The form.al fram.ework provided by both 
the linear and nonlinear analyses is adequate to 
accom.m.odate m.ost problem.s of interest. Diffi­
culties arise because som.e of the contributing 
processes cannot be specified with precision. 
Chief am.ong these is the coupling between unsteady 
m.otions and surface com.bustion, but residual com.­
bustion and the influence of exhaust nozzles or 
vents are also significant. Onlyexperim.ental 
work can provide the neces sary inform.ation. 

II. Foundations for Analyses of Unstead'y 
Motions in Com.bustion Cham.bers 

One m.ust, of course, begin with the general 
conservation equations. In order to account for 
certain im.portant features of the flow in a solid­
propellant rocket m.otor, the equations are written 
for two-phase flow. Other com.bustion cham.bers, 
including liquid rocket m.otors and thrust augmen­
tation cham.bers, can be treated as special cases, 
but they will not be covered in this work. There 
are thr ee signific ant as sum.ptions us ed initially: 

(i) the gases are treated as a single com.po­
nent "average" gas having constant spe­
cific heats and obeying the perfect gas 
law; 
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(ii) viscous forces and heat transfer within 
the gas are ignored; 

(iii) particulate m.atter is treated in an aver-
age way as a fluid. 

The first strictly excludes any detailed treatm.ent 
of hom.ogeneous chem.ical reactions within the gas 
phase, but the gross effect of such reactions is 
represented in the usual way by including a heat 
source term. in the energy equation written for the 
tem.perature. The second assum.ption is quite 
good for alm.ost all problem.s. There are exam.ples 
of weak shock waves excited in m.otors (Reference 
9, for exam.ple); within the present analysis those 
m.ust be handled in an ad hoc m.anner. The ques­
tion will not be considered here, and all results 
are valid only for the sm.ooth waveform.s which are 
m.ost com.m.only observed. The possibility of dis­
torted, and hence steepened, waves, due to the 
sim.ultaneous occurrence of several waves having 
different frequencies, is of course accom.m.odated. 
A thorough discussion of the treatm.ent of two­
phase flows in the fashion im.plied by the third as­
surn.ption m.ay be found in Reference 10. 

With these assum.ptions, the conservation 
equations for three-dim.ensional m.otions are 

cons ervation 
of m.ass (gas) 

conservation of 
m.as s (particles) 

ie. + \/. (p-;;) = w ot p 
(2. 1) 

op 
....:...12.+\/. (p (;')=-w ot p p p 

(2.2) 

conservation of 0 -+ ~ -+-+ -+-+ 

t 
"t (pu+p u )+\/. (pu u+p u u )+\/p = 0 

m.om.en urn. v p p p p P 

conservation 
of energy !t (pe +p e ) + 

v 0 p po 

(2.3) 

\/·(p~e +p \l e J+\7'(pU')=Q (2.4) 
o p P po 

The rate of conversion of solid or liquid to gas is 
wp (m.ass/vol-sec) and Q is the rate of energy re­
lease to hom.ogeneous chem.ical reactions (energy/ 
vol-sec). For later work, it is necessary to re­
write the m.om.entum. equation and to form. an equa­
tion for the pressure. One can eventually write 
thes e in the form.s 

o\l+ ,..,-+,.., Pat pu' vU + vp F - 0 (2.5) 

op -+ -+ 
- +" \7. u+u· \7p ot P 2 

R -+ -+ .~-+-+ u 
- [(u -u). F+u· o+(e -yJw +(0+0 )1 
C

v 
p po p P 

(2.6) 

where F is the force of interaction between the 
two phases, Qp i~ the heat exchanged between the 
two phases, and ("1" represents a m.om.entum. ex­
change between the gas produced at the rate wp 
and the gases already present in the chamber. 

I" 0;'; -+ ~ 1 
F = - ! P ~ + P u . \7u J 

L P vt P P P 

o p 

a ( U' U' )w 
p p 

(2.7) 

(2.8) 

(2.9) 

Note that Op includes both energy released in COITl­

bustion of solid (or liquid) and heat transfer by 



conduction. 

The fundamental equation used in all subse­
quent calculations is the nonlinear wave equation 
for the pressure, formed by combining (2.5) and 
(2. 6): 

R a '1--+ -+ --+-+ 
+ - - (u -u)· F+u· 0 + 

C
v 

at L p 

2 
+(e - u

2 
)w +(Q+Q )] 

po p p 
(2. 10) 

Throughout this paper, 'I stands for the rati01 
c p I Cv for the gas phase only, and a = ('Ipl p)"2 is 
tl'ie speed of sound for the gases only. The influ­
ence of the particulate matter will be computed as 
part of the analysis. Since eq. (2. 10) also depends 
on the velocity field, eq. (2. 5) must be solved si­
multaneously, both subject to suitable boundary 
conditions. Posed in this form, the problem is 
absurdly difficult without introducing further ap­
proximations. To this point, only the as sumptions 
(i) - (iii) listed above have been used. 

The approximations now introduced involve 
expansion of the differential equations and bound­
ary conditions. The idea is that there are tWJl 
small parameters in all problems of interest"'. 
These are the amplitude of the pressure disturb­
ance (or the Mach number of the velocity disturb­
ance) and the Mach number of the steady flow field. 
Let E: be the measure of the amplitude of the un­
steady field, i. e., E: ~ p' Ipo' and let ~ be the 
measure of the average Mach number. The vari­
ous classes of problems treated are defined by 
both the absolute and relative sizes of E: and ~. If 
the equations (2.5) and (2. 10) are solved as they 
stand, the results are valid for any values of € 

and~. The only available results of this general 
sort are numerical and have been obtained only for 
one-dimensional flows (s ee § VI). 

For approximate calculations it is neces s ary 
to restrict both parameters to values less than 
unity. The procedure for obtaining the appropriate 
differential equations for the various problems is 
based on dOJ;lble expansion of the dependent vari­
ables (p, p, u) in powers of E: and ~. These are 
substituted in the differential equations, and one 
then formally examines the limit of small values, 
i. e., E: - 0, ~ -+ o. In doing so, one must also 
specify the behavior of the ratio E:/~. Passage to 
these limits is the formal means of obtaining ap­
proximate differential equations. 

In accord with these remarks, one can begin 
by splitting all variables into the sum of mean and 

~,~ More correctly, additional paraIlleters may be 
introduced, related, for example, to the initial 
speed of injected liquid or to the strength of the 
interaction between the two phases. The two used 
here are the most important ones, h0wever, and 
are COIllIllon to all unsteady problems. More 
elaborate expansion schemes will not be considered 
at this time. 
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fluctuating parts: p = p+p', etc. The average val­
ues of course depend only on the mean flow speed, 
but the disturbances must be regarded as functions 
of both the mean flow speed (e. g. acoustic modes 
are distorted by nonuniform flow fields) and the 
amplitude of the disturbance. One way to proceed 
now is to expand p in a power series in ~, and p' 
in a double power series of both E: and ~; this 
produces sets of linear differential equations, the 
combined solutions to which will provide an ap­
proximation to nonlinear behavior. However, to 
obtain a nonlinear problem directly, p' is expanded 
in series of \-1 only; with the amplitude E: shown 
explicitly, the representations used are: 

p (po +\-12 p2 +· .. )+ E:(p~ +\-1pi+·· . 

u \-1U + 8(U~ +\-1-;;']+ ... ) 

2 
P = (po+\-1 P2+···)+8(p~+~Pl+···) 

(2. 11) 

The linear terms in \-1 are of course missing in the 
mean pressure and density, and the mean velocity 
has only the linear term. 

These expansions are now substituted into the 
differential equations, and terms of like order col­
lected together. The terms in powers of ~ 
greatly complicate the calculations, and by far 
most of the wo rk done has retained only the linear 
corrections. In § V, the linear acoustics problem 
for higher Mach numbers is dis cus sed, but for the 
present only the linear mean flow terms will be 
retained. Hence, one uses 

u (2. 12) 

where, for simplicity, p' is now written for 
p' +~Pl' etc. After these have been used in (2.10), 
oge can eventually write the equation in the form 

U 2 M 2,_ 
-.:-T -a v p -
at 0 

{ -.::.:: - .:: ap' an''::} \-1 'IP 'Y (u'.'Yu+u.'Yu')-u·'Y-a -'1.:....Ii:-'Y·u 
o 0 t at 

J -+ -+ a -> 8-+ 
+E:l'lP 'Y. (u'· 'Yu')_'I-(p''Y· u')--(u'· 'Yp') o at at 

1 f ap' 2 -> - } + -\ -a- - a 'Y. (F'-o') E: l t 0 
(2. 13) 

where P' is the fluctuation of 

R -+ -+ -+ -+ -+ u 2 
P = - [(u -u). F+u· O+(e -2)w +Q+Q )]. 

C
v 

p po p p 
(2.14) 

It is ~portant to emphasize that terms of order 
82 , ~ , E:\-1 and higher have been consistently -+ 
dropped in eq. (2. 13). If the fluctuations P', F', 
and 0' are written out explicitly, they will simply 
add further terms to the brackets multiplied by E: 
and \-1. In § V, terms of order \-12 are retained, 
while the nonlinear terms in E: are dropped, a 



procedure which produces a set of equations valid 
for flows having large Mach number. Another use­
fJ;ll case is that obtained by keepi~ terms of order 
ff, but dropping thos e of order 1-1 and 1-18. This 
yields equations containing acoustical nonlineari­
ties of higher order (see § VII). 

If both 1-1 and 8 are zero, eq.(2.l3)becomes 
the wave equation describing classical acoustics. 
But if 8'" 0 and the terms in 1-1 are retained (i. e. , 
8,1-1-+0 with 8/1-1->0), then perturbation terms of 
the order of the average Mach number remain. 
This limit is discussed in the following two sec­
tions. The complete equation is treated in § VII. 

Owing to the ordering of the terms retained in 
this procedure, it is sufficient (indeed, required) 
to use, on the right hand side of (2. 13), velocity and 
pressure fluctuations which are unperturbed by the 
mean flow field. This has the important conse­
quence that it is unnecessary to solve a separate 
problem for the velocity field. 

Then eq. (2. 5) is required only to set the 
boundary conditions on p' for use with (2. 10). The 
same expansion procedure applied to (2.5) leads to 
the condition on the normal gradient of p' : 

-+ -> -> 
A {ou' A -t - - .... AI 

n.\1p' = -1-1 .Po Bt'n+po(u"\1u+u·\1u').nJ 

-> ->} A I f -> .... } A 

-8(p u'·\1u' 'n+-lF'-a' ·n o 8 
(2. 15) 

The first term in the first brackets contains the 
coupling between unsteady motions and combustion. 
It has therefor e been shown to be of order 1-1, i. e. , 
the response of combustion is proportional to the 
average Mach number, based on present knowledge 
of the dynamical properties of a burning surface. 
Owing to this fact, and since terms of order 81-1 
have been ignored to obtain (2. 15), nonlinear be­
havior of combustion does not appear. This is po­
tentially a serious limitation of the approximation 
used here, and may eventually require that the 
analysis be carried out to higher order, so that 
terms of order 81-1 at least are carried in (2. 13) 
and (2.15). 

The purpose of the preceding discussion is 
chiefly to outline how various approximations can 
be systematically constructed within one general 
scheme. Higher approximations can be similarly 
produced, but in the following four sections, only 
those which are currently used will be discussed. 

III. Linear One-dimensional Problems 

There are two primary reasons for pursuing 
the one-dimensional representation: there are 
many practical instances of unstable motions 
which are closely approximated as one-dimension­
al flows; and the one-dimensional analysis pro­
vides approximations to essentially viscous pro­
cesses, occurring in boundary layers without in­
volving solution to the equations for viscous flows. 
A familiar example of this is the pressure loss 
computed in steady flow with mass addition at the 
boundary. The pressure loss is related ultimately 
to a dissipative and hence viscous process. 

From the complete equations of motion for 
one-dimensional flow (see § VI), one can extract 
the equations for velocity and pressure corre­
sponding to (2. 5) and (2. 10) above: 
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(3.2) 

where 2 
P = R 

1 c 
v 

[(u -u)F+ual+(e - u
2 

)w +(Q+Q )] 
p po p P 

(3.3) 

(3.4) 

w (3.5) 

(3.6) 

The source terms at the boundary arise from w, 
the rate at which gas is added per unit length of 
chamber, and w(p), the rate at which particulate 
matter is added per unit length. Thus, the first 
two terms of a1 represent momentum exchange 
between the material in the chamber and that 
entering or leaving at the boundary. 

Later calculations will show that the term 
R.6ToW leads to a particularly interesting conclu­
sion. By definition, .6 T is the difference between 
the stagnation temperature of the gases within the 
chamber, and of the gases entering at the combus­
tion zone. Hence, if the processes within the 
chamber are assumed to be isentropic, .6T repre­
sents the temperature decrement associated with 
nonisentropic processes. Consequently, if all 
processes, including the coupling between the flow 
and combustion, are isentropic, then.6T vanishes. 

The expansion procedure discussed in 9 II, 
when applied to eqs. (3.1) and (3.2), leads to the 
nonlinear wave equation and boundary condition: 

U_a2..J...~/s ~)- J ...!...~/S ~(uu')\ 
2 0 S oz I: c oz - 1-1('1 po S oz" c oz '/ ot c c 

{ I 0 ~ OU') v o· 0 ~ +8 '{ -- S u' -- _-L_(p'_ (S u') 
po S oz c OZ S at OZ c 

c c 

~/,'~) '{po~/, ,~)} - ot ,u oz + S OZ ,S c p ot 
c 

oP' a 2 
+..!. r_l _ --.£.~[S (F'-a' Jl 

8 L ot S OZ c 1 
c 

(3.7) 

~ _ {ou' a - } r oU'} 1 
OZ - -1-1 Poat+Pooz(uu') -€Vou'-at +,€(F'-ap 

(3.8) 

The boundary condition is of course applied at 
Z = 0 and Z = L. 

For linear problems, the bracket multiplied 
by 8 is dropped (€ .... 0). The equation can be 
solved formally for arbitrary motions, but it is 



usually adequate for practical purposes to consider 
only harmonic motions. The results then can be 
used to answer the question: will an initially small 
disturbance grow or decay? This problem, of line­
ar stability, is based on using the time dependence 
exp(ia kt) for all fluctuations. The complex wave­
num.be<f. is k, of which the real part gives the an­
gular frequency and the imaginary part provides 
the growth or decay constant a: aok = w-ia. In 
order that all disturbances be linearly stable, 0_ 

must be negative. 

With the assumed harmonic time dependence, 
p' = p exp(iaokt), the inhomogeneous wave equation 
to be solved is 

subject to the boundary condition 

d A 
A 

~ = - f (z = 0, L) 
dz 1 

where 

A d 2 _,. 1 d A A u: d A 

hI = -Po d 2 (uu)+s dz [Sc(F-0"1)]+ik2 ¥Z 
z c a

o 

(3.8) 

(3.9) 

(3. 10) 

(3.11) 

The ordering parameter !-.l has been suppres sed 
and the fluctuation of PI has been written out ex­
plicitly to the correct order. 

The simplest procedure for determining k has 
been covered previously (e. g. ref. 1) and will not 
be discussed here, except to note that it rests on 
comparison of the perturbed problem governed by 
eqs. (3.8) and (3.9) with the classical problem 
defined by 

d
A 

1 ~ (S P ,f,) + k 2 A = ° 
S dz '\ c dz ,f, P t 

c 
(3.12) 

(z = 0, L) (3. 13) 

The calculation eventually produces the iInportant 
formula for the complex wavenuxnber 

(3. 14) 

where 

2 L A2 
E t = ~ Pt Sc dz (3. 15) 

From the real part of (3. 14), one finds the results 
for the growth constant a: 

-",2 L 

2(~)(~)E: = {-pak-r,[(U' (r)pt+ ~~~)sbJ fl\ 
a a pa ° \J .. 

+akttpJJ~r)dq+~~T (r)J~dqJdz} 
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kt{ R L (") (") (i) 
+- -Jp,[~ 1W +e ~ 1+'0'+6) -Pow]S dz, 

a C v ° '" p p p p \; p '" p c 

- L (i)0d A 

a J (A A) - P,f ~ - -k u - a w -d'S dz ~ to p p z c J 
(3. J 6) 

Nuxnerical results require values for the approP2i­
ate clas sical mode shape p t and wavenuxnber k-t . 
This involves preliminary calculations discustled 
further in § XI. 

It is a familiar result for linear systern.s (see, 
e. g. refs. 1 and 11 for conunents on the present 
application) that if e represents the total acolJ.stic 
energy in the chamber, then 2a is equal to the 
fractional rate of change of energy 

1 de 
2a=-gdt' (3.17) 

The num.bered br ackets in (3. 16) have the following 
interpretations: o These are the coupling terms associated with 

surface combustion. The first terms are for 
end grains and the second are for lateral 
grains. o This represents a rate of change of acoustic 
energy, for the wave system in the chamber 
associated with the mass flux through the 
lateral boundary. For mass influx (m posi­
tive) this represents a loss of energy, \ecause 
the incoming flow must acquire energy. Con­
versely, this analysis formally shows that 
there is a gain of energy, if it is assuxned that 
the exhaust flow has no acoustic energy after 
it crosses the boundary. 

The first term represents the familiar dissi­
pation of acoustic energy due to the force act­
ing between particles and the gas. The second 
term is an energy loss due to the acquisition 
of acoustic energy by the particles flowing in 
at the boundary. It corresponds, for particu­
late matter, to the term 3 which is only for 
the gases. 

These obviously represent the influences of 
residual combustion. 

The preceding result has been used to examine 
the stability of small os cillations in motor s as 
well as in T-burners. Some of the experiences 
will be discussed later in § IX. For the present, it 
is most important to note the presence of the star­
red terms which are peculiar to the one-dimen­
sional problem. That is, they are as sociated with 
sources of-mass at the boundary, flowing in or out 
normal to the direction of the motions within the 
chamber. The term in the first brackets repre­
sents the coupling between waves and combustion 
for a lateral element of surface. 

By use of the perfect gas law and the defini-



tion of mas s flux, m = p u, it is a simple matter to 
show that the coupling per unit t1r~a for end and 
lateral surfaces can be written 11) 

end surface 

(no parallel 
acoustic 
velocity) 

lateral surface 

(acoustic veloc­
ity entirely 
parallel) 

(3. 18) 

(3. 19) 

These have been written in their complex forms, 
of which the real parts appear in eq. (3.16). It fol­
lows from (3. 18) and (3.19) that if the processes 
are nonisentropic (~T" 0), then the formal repre­
sentation of the coupling is different for the end 
and lateral surfaces: a factor 'Y multiplies ~T' in 
(3. 17). Hence, at least for this reason one must 
expect that the effective driving by surface com­
bustion depends on the relative orientation of the 
surface element and the local acoustic field. This 
subject is pursued further in § IX. 

The remaining starred terms in (3. 16) arise, 
for flow entering the chamber, because the flow 
must turn from the direction normal to the surface 
into the axial direction. This involves a process 
of inelastic acceleration, which in the real situa­
tion occurs in some sort of boundary layer. A por­
tion of the work done by the fluid in the chamber on 
that entering is dis sipated. Hence, it may not be 
surprising that there is a net energy loss for the 
acoustic field, as shown. A more elaborate dis­
cus sion of the meaning of the contributions to 0-

may be found in ref. 11. 

In addition to the practical utility of the one­
dimensional analysis, the features emphasized in 
the preceding paragraphs must be incorporated in 
the three-dimensional analysis. Contributions 
which are essentially due to processes occurring 
in boundary layers will arise in the latter case only 
if the complete equations are solved. That has not 
been done, and poses obviously complicated prob­
lems. Hence, the course followed here, based on 
ref. 11, is to patch the one-dimensional approxima­
tions onto the three-dimensional results. The ve­
hicle for doing so is the formula for the complex 
wavenumber. 

IV. Linear Three-dimensional Problems 

The formulation based on linear classical 
acoustics in a nonuniform flow field has been most 
commonly used for stability analysis and, in one 
form or another, is the 0Idest(l2-16). Set E: = 0 in 
(2. 13) and for harmonic motions, the equation to 
be solved is: 

where 

(4. 1) 

(4.2) 

A ~~.!.:: k~,. k,.. ~ k'" 
h= -p \I. (u· \lu+u· \lu)+i-u· \lp+iY5 p\l. u-i- P o - a a 

a 0 0 

-+ ,..,.. -+ 

f = ia kp u' n +p (ii· \1;:;+;:;. \lu)' n- (J:,~ - 0)' n 
o 0 0 

(4.3) 

(4.4) 
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-!"i for the one-dimensional case, the formula for 
k is found by comparing this problem with the un­
perturbed clas sical problem governed by the equa­
tion and boundary condition 

(4.5) 

n. \lP
N 

0 (4.6) 

The formula for k
2 

is 

(4.7) 

where 

(4.8) 

The imaginary part of 
the growth constant: 

(4.5) provides the result for 

w 2 
-20- -2 EN 

a 

kN'Y S ,,2 - s- ~ ~ (i)" } 
+ -- PNw dV+ w (u-u) • \lPNdV a p p p 

(4.9) 

The starred terms in (4.9) in fact do not arise in 
the three-dimensional analysis indicated above, 
but have been carried over from the one-dimen­
sional results, and correspond to the starred 
terms in (3.16). Difficulty in doing so arises be­
cause, as noted in § III, the lateral and end grains 
treated in the one-dimensional formulation are 
only special cases. To combine them in such a 
way as to accommodate an arbitrary relative ori­
entation of the acoustic field and surface element, 
the weighting factors 611 and 6.1. have been intro­
duced. They are defined as 

611 sin
2 e (4.10) 

(4. 11) 

where e is the angle between the local acoustic ve­
locity and the normal direction to the surface. In 
terms of the local acoustic field, the angle e is 
computed from the formula (ref. 11, Appendix A) 

tan e (4.12) 

where \III and \1.(. are the gradient operators in the 
directions parallel and perpendicular to the sur­
face, respectively. 

For many practical configurations, the 
acoustic modes must be computed numerically (see 



§ X). The weighting factors 611,6.1 can be expres­
sed in tenns of the nUIrlerical results. Let n, s be 
the coordinates in the direction nor:mal and parallel 
to the surface; the incre:ments (:mesh size) are 6p.' 
6s . Then one can show that for the acoustic :mode 
having frequency w, 

" \711.;;: p(6n)-p(0) 
"'" ipow (6n)2 

(4.13) 

These give the values required at the position 
n = 0, s. The point is that 611 and 6.1 can be co:m­

puted for any acoustic :mode. In special cases 
(such as for the :modes in cylindrical ports), ana­
lytical for:mulas can be deduced. 

The result for a given as eq. (4. 9) is the 
:most general presently available for studying line­
ar stability. It contains, by construction, the re­
sult (3.16) for one-di:mensional proble:ms. There 
are of course approxi:mations involved, particular­
ly in the :manner in which the starred ter:ms in 
(4. 9) have been introduced. It has not yet been 
possible to evaluate their correctness. It appears, 
however, as discussed further in § X , that they 
:may have significant influence on the nu:merical 
results. 

It is to be noted that (4. 9) exhibits explicitly 
contributions fro:m all processes which are pres­
ently regarded as i:mportant. The ter:ms repre­
senting residual co:mbustion in a solid propellant 
:motor (which is essentially all the co:mbustion in a 
liquid propellant :motor) are likely to be i:mportant 
in so:me cases, but little is known about the rele­
vant processes. 

v. Linear Analysis for High Mach 
NUIrlber of the Steady Flow 

All of the work described to this point involves 
the assu:mption that the Mach nu:mber of the aver­
age flow is s:mall. This of course does not :mean 
that it has been neglected, nor does it :mean that 
the steady flow has no influence on the acoustics. 
The co:mplete results show the influence of the 
:mean flow on both the co:mplex wavenu:mber (fre­
quency and growth rate) and on the :mode structure. 
However, the great si:mplification achieved by con­
sidering only the first order effect of the :mean 
flow is that the co:mplex wavenu:mber for a particu­
lar :mode can be calculated using only the unper­
turbed (classical) :mode shape. This infor:mation 
can be obtained quite easily, either in closed for:m 
or by nu:merical co:mputations. 

The restriction to s:mall Mach nu:mbers is one 
which :may be serious in :many :motors exhibiting 
co:mbustion instability. It is not possible to give a 
precise :meaning for "s:mall, " but probably the 
li:mit is around. Z - . 3. This is well below values 
often attained, particularly early in firings of :mo­
tors with low port-to-throat ratios. Extension of 
the analysis to higher Mach nu:mbers is therefore a 
subject which :must be considered, at least to gain 
an idea of how :much additional work would be re­
quired. It happens, as shown here, that the neces­
sary calculations, while requiring the use of a 
co:mputer, are well within present capabilities. No 
nu:merical results are yet available. The purpose 
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here is to develop the necessary for:malis:m and to 
de:monstrate that :more severe distortion of the 
acoustic field, by the :mean flow, can be handled in 
a straightforward :manner. 

The procedure is again based on the general 
sche:me outlined in § II. Only linear acoustics is 
considered, so the proble:m co:mes down to retain­
ing higher order ter:ms in the average Mach nu:m­
ber. Here, only ter:ms to order ~Z are retained. 
This :means that variations of the a:mbient :mean 
flow properties with flow speed :must be taken into 
account. As a first approxi:mation, the steady field 
is as s u:med to be is entropic, so with ( ) denoting 
stagnation values, the average values a~e 

T = 

p 

p 

a 

-Z 
T -T (Y..::.l)~ 

o 0 Z Z 

Z {'I-l)-Z 
a o -'---:r u 

a o 

(5. 1) 

The expansions used in the co:mplete conservation 
equations are therefore (5. 1) plus the perturba­
tions; for exa:mple, with the ordering para:meters 
~ and 8 shown, 

Z('IP 0) liZ 
p = p -~ --Z o Z; 

a 
o 

+ 8P' , etc. (5. Z) 

The perturbation, p', :must also be expanded to 
second order in~. However, it will be seen 
shortly that only the ter:ms to first order in u are 
requirfj,d to co:mpute the wavenu:mber to second 
order. ", 

Substitution of the expansions in the wave 
equation (Z. 13) leads eventually (8->0) to 

Z 1 Fl ' \7 p' -~-
a Z atZ -

o 

{
li a' a' ~ ~ -.\7(~)+l~\7.u 

Z at Z at 
a a o 0 

- ---+ .-. - 1 -> -> } 
-Po \/. (u. \7u'+u'· \7u)-"2 Sl 

a 
o 

Z{ v :: ~ ~ -z Z -u Zp'\7· (u. \/u)- Z u \7 p' 
a Za 

o 0 

(5.3) 

where Sl and Sz are the first and second order 
ter:ms in the expansion of S. 

',' 
This is a general feature of the techniq ues us ed 

here. The eigenvalue (kZ) can be calculated to one 
order higher than the eigenfunction (p' ). 



(5.4) 

There are no terms in S independent of the mean 
flow speed. The explicit forms of S 1 and S2 can 
easily be worked out, but they will not be sliown 
here. 

Expansion of the momentum equation (2.5) to 
the same order leads to 

a:~ +f\7p' = -~[~. \7~'+~" \7~-(;l-cr\)} 
o 

+~2{.! ....e...\7li2~ li
2 

\7p'+(F' _0-' )} 
2 Po 2po 2 2 

(5.5) 

for which the perturbation of (:F-O)/ p has been 
written 

I 

[i(F-C;)] =€~(Fi-C;1)+e:~2(F2_cr2) (5.6) 

Eq uation (5. 5) is used in two ways: first to fix the 
boundary condition on p', and second to compute 
the mode shape ii' including corrections for higher 
Mach number. The boundary condition is set by 
taking the component of (5.5) normal to the sur­
face, thus producing a formula for n. \7p' . 

For harmonic motions, (5.3) may be written 
in the form 

2 2 ,.. 2'" _ A 

\7 p+k p = fJh~l + ~ h~2 = h (5. 7) 

and the boundary condition from (5. 3) is 

,.. 2'" ". 
n.\7p = -~f~l-~ f~2 = -f . (5. 8) 

The most convenient method of solution is a per­
turbation iteration approach based on using a 
Green's function expanded in the unperturbed 
acoustic model (ref. 17, chapter 9, and ref. 16). 
The Green's function G(;/; ) satisfies the equa­
tion and boundary condition? 

2 2 ......... 
\7 G+k G = o(r-ro )' (5.9) 

n' \7G = 0 (5. 10) 

By standard operations, the formal solution to 
(5.7) can be written 

p = S:GGdV + J::i fGdS (5. 11) 

The expansion for G in terms of the PN (de­
termined from (4.3) and (4.4) is 

(5. 12) 

Suppose one is interested in the nth mode, so that 
p 1S nearly equal to P

N
' Substitute (5. 12) into 

(5. 11) and split off the nth mode from the series: 

p = P [ 2 21 2 UP hd V + Q PNfdS} ] 
n E (k -k) n 

n n 
N#n 

+2.") (5. 13) 
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But p(;) should have the form p ~PN plus correc­
tions, a requirement which produces both a formu­
la for k 2 and an expression for p: 

(5.14) 

These re~ults a,re the basis for the iterative 
solution, for hand f have been expanded in powers 
of ~ according to (5.7) and (5.8). Hence, (5.14) is 

2 
k2=k2+ ~ H O )+LH(2) (5.16) 

n ~ n E2 n 
n n 

Similarly, the mode shape is 

(5. 18) 

The wavenumber k can be eliminated from (5. 17) 
by using (5.16), and the mode shape (5. 17) can be 
written to second order in ~ as 

Numerical results for stability of waves are of 
course found from thE) ~eal part of (5. 16); b~t to ~ 
evaluate Hn(l) and Hn\2 , the mod~ shape",s p and u 
must be known for substitution in hand f under 
the integrals appearing in (5. 18). Now since HnO) 
is already multiplied by ~, only the mode sha~e 
with first or1ZJ corrections is re~uired in ~( ); 
and since Hn is multiplied by ~ , the unper­
turbed mode shape (Pn) is used in that term. 

The mode shape including the first order cor­
rection is given by (5. 19) with the terms in ~2 
dropped, and th~ Iplperturbed mode shapes used to 
evaluate the HN\ 1) . Hence, all that is required of 
the acoustics calculations is the set of unperturbed 
acoustic modes. To calculate the wavenumber to 
first order in the Mach number, only the single un­
perturbed mode is required; but the second order 
calculation uses all of the unperturbed modes in 
order to compute the perturbed mode shape to first 
order. In fact, of course, only a finite number of 
modes can be used in practice. How many are 
necessary for, say, five per cent accuracy cannot 
easily be answered without carrying out the calcu­
lation. Note that the contributions from the higher 
harmonics in the first sum of (5. 17) decrease be­
cause the wavenumber increases. 



For exam.ple, for longitudinal m.odes, kN = 
NIT / L, where L is the length of the cham.ber; so if 
one is studying the fundam.ental m.ode (n = 1), 

1 1 

k~-k~ = (7T/L)2 1_]'J2 

The first ten m.odes would likely be sufficient. 
This requirem.ent is easily and cheaply m.et with 
current num.erical techniques. It is possible that 
m.ore m.odes are required for m.ore com.plicated 
configurations, because they often tend to be m.ore 
closely spaced in frequency. 

VI. Num.erical Calculations of 
Nonlinear Com.bustion Instability 

The large source of energy in a solid-propel­
lant rocket m.otor, and the relatively weak dissipa­
tive m.echanism.s, im.ply that unstable m.otions 
m.ust be anticipated. Indeed, it is probably a fair 
statem.ent that the m.ajority of m.otor designs have, 
at one tim.e or other, exhibited instabilities. 
Under these circum.stances, it becom.es im.portant 
to learn how to control, reduce, or suppress the 
oscillations. Thorough understanding necessarily 
involves studying the nonlinear processes. 

There are several very interesting features of 
the observed waveform.s which should be noted. 
Linear behavior, in the sense that the am.plitude of 
unstable waves grows proportionately to exp(at), 
com.m.only persists to m.uch higher am.plitudes than 
one would expect. This has been seen in m.otors of 
all sizes, as well as in T-burners. Second, even 
at quite large am.plitudes (up to 20 % and m.ore of 
the m.ean pressure) the waves often have rem.ark­
ably little distortion and harm.onic content. The 
transient periods of growth to lim.iting am.plitudes 
are in m.any cases (see § X) accurately approxi­
m.ated by the behavior of a nonlinear oscillator. 
There are other peculiarities, such as relatively 
slow changes of the lim.iting am.plitude, non­
exponential variations of the am.plitude subsequent 
to pulsing, and DC shifts of the pressure which 
m.ust also be related ultim.ately to nonlinear proc­
esses. 

That m.uch of the obvious nonlinear behavior is 
delayed to the rather high am.plitudes noted above 
is contrary to what one would expect on the basis 
of classical acoustics in the absence of com.bustion 
and m.ean flow. For exam.ple, in a sim.ple reso­
nance tube driven by a piston at one end, distortion 
of the waveform. m.ay be clearly observed at am.pli­
tudes as low as 6 - 8 % of the average pressure. 
This reflects the generation of harm.onics caused 
by the gasdynam.ic nonlinearities; these are m.ainly 
Jl.ss£ciated with the convective m.otions (e. g. 
U· V'u ) and variations of the speed of sound. Hence, 
the coupling between the waves, com.bustion, and 
m.ean flow, m.ust act not only to produce growth of 
som.e waves, but sim.ultaneously either to attenuate 
or at least retard the growth of waves at higher 
frequencies. On the basis of the known qualitative 
characteristics of the dynam.ics of surface com.bus­
tion (§VIII), this is an appealing supposition. 

The correct interpretation of the behavior can 
not be established without the aid of analysis. In 
the next section, a m.ethod for approxim.ately com.­
puting nonlinear behavior is outlined. However, 
owing to the assum.ptions required to sim.plify the 
work (som.e of which have already been covered), 
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confidence in the results is not com.plete without an 
"exact" solution serving as a check. It is the pur­
pose of this section to sum.m.arize som.e recent 
work on a num.erical analysis of nonlinear behavior 
(ref. 18). 

Owing to the com.plicated nature of the calcula­
tions, only the one-dim.ensional problem. has been 
treated. The com.plete nonlinear equations for one­
dim.ensional flow, which have been treated in ref. 
18, are the following: 

cons ervation 
of m.ass (gas) 

a a 
at (pS )+ -a (puS ) = w+w S (6. 1) 

c z c p c 

conservation 
of m.ass 
(particles) 

a a (p) 
at (ppSc)+liZ(ppupSc)=w -wpSc 

(6.2) 

conservation 
of m.om.entum. 

au au ~_ 
p at +pu az + az - F-O"l (6.3) 

conservation aT aT....E.. a 
f pCvat + pucv liZ + S liZ (uSc) o energy c 

2 
a 

(--2.+.6.e ); +(e -e)w +(Q+Q ) 
'{ 0 c po 0 p p 

(6.4) 

Equations (6.1) - (6.4) were solved, in the 
case of unsteady m.otion, by using the m.ethod of 
characteristics. The following additional assum.p­
tions were us ed. 
(i) No residual com.bustion: w =Q=O. The energy 

exchange ~ then represerlts heat transferred 
between the particulate m.atter and the cham.­
ber gases. 

(ii) Uniform. port: Sc = constant. 

(iii) The speeds of the gas and particles vanish at 
z = O. 

(iv) The nozzle flow is com.puted using the constant 
fractional lag approxim.ation for the two-phase 
flow. 

(v) 

(vi) 

The nozzle behaves in a quasi- steady m.anner. 

The transient burning response is given by the 
sim.plest result quoted below (eq. (8.1 i). 
Hence, the com.bustion response is assum.ed 
to be linear. Although m.ost results are for 
pressure coupling, there are som.e prelim.i­
nary calculations using a very sim.ple m.odel 
for velocity coupling (see § VIII). 

(vi) Only a single particle size is treated. Both 
linear and nonlinear drag laws have been ex-
am.ined. 

The program. developed in ref. 19 com.putes 
first the steady- state flow field, and then the un­
steady behavior subsequent to initial disturbances. 
Both standing waves and pulses have been analyzed. 
Although som.e of the results have been obtained 
with a view to intergr~)ing a series of tests with 
sm.all- scale m.otor s-\ 1 ,m.uch of the work has 
been devoted to special cases. These have served 
to verify the correctness of the program. and have 
em.phasized the relative im.portance of the various 
contributions. 

In particular, it appears crucial to take proper 
account of the transient burning characteristics. 



The form used, eq. (8.1), typically has a peak, of 
which the width, height, and location in frequency 
depend strongly on the two parameters A and B. 
The tendency of the burning propellant to drive 
waves falls off rapidly with increasing frequency, 
and indeed, the combustion process may attenuate 
the waves. It seems at the present time that this 
is the reason for the low harmonic content re­
marked upon above. The numerical results ob­
tained to date support this conclusion, but more 
detailed work remains to be done. 

Since the instantaneous burning rate depends 
on the past history, much information must be 
stored during a calculation, and the computing time 
required for this is significant. Hence, the transi­
ent response was handled in this work in a manner 
which would be unsuitable for analytical work. The 
frequency response, eq. (8.1), can be treated as a 
Laplace transform, with the variable s == ill. The 
inverse transform then gives an explicit formula 
for the fluctuation of mass flux in response to an 
arbitrary pressure fluctuation: 

The difficulty in using this formula is that the ker­
nel introduces complex error functions which, for 
the sort of calculations required in this work, are 
uneconomical to handle numerically. 

This problem has been overcome in ref. 19 by 
rewriting the Laplace transform in such a way that 
inversion leads to an implicit formula for the per­
turbation of mass flux: 

This is an exact result, showing obviously the de­
pendence on the history of burning. The accuracy 
of the numerical calculations has been checked 
against special cases which can be expressed in 
closed form. 

Equation (6.6) is therefore the linear bounda­
ry condition used in the numerical analysis for 
pressure coupling. The transient behavior of the 
burning is due solely to the thermal wave in the 
solid phase (see § VIII). For the calculations with 
velocity coupling, it was assumed that the thermal 
wave again dominated, and the only change is that 
p'/p is replaced by a suitable function of the ve­
locity field: 

(6.7) 

where ut is the threshold velocity and 

( 0 \ ul < ut 
8

1 
lui> ut 

(6.8) 

{ 0 lui < ut 8 2 
lui> ut 
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This formulation then accounts for rectification20-2~ 
but none of the important physical processes asso­
ciated with the parallel flow. Better representations 
will be incorporated later in the work which is con­
tinuing. 

Some examples of the results which have been 
obtained so far are shown in Figs. 1-3. Figure 1 
shows a pressure trace for an unstable mode, the 
initial condition having the form of a standing wave 
at the fundamental freq uency of the chamber. For 
the conditions chosen, the second mode is stable, 
as shown by Fig. 2. The initial disturbance con­
tained equal parts of first and second modes, but 
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Fig. 3 Influence of Particle Size on the Growth 
of an Unstable Mode (ref. 18). 

after three cycles, the pressure contains almost 
no second harmonic. The transient combustion 
coupling is apparently crucial to this behavior; the 
response function for the values of A and B shown 
is quite large at the fundamental frequency and 
small at the frequency of the second mode. It may 
be noted also that the amplitude of the pressure 
does not immediately begin to grow; there is even 
a slight decrease after one cycle. The reason for 
this is that it takes several cycles for the transient 
burning rate to attain the value approximating that 
due to the pres sure disturbance introduced. Only 
after a time somewhat longer than one cycle is the 
response sufficient to cause the wave to grow. 

Figure 3 shows the important effect of chang­
ing particle size. The traces shown were calcu­
lated for the complete problem of an unstable dis­
turbance in a motor. The increased attenuation for 
increasing particle size is qualitatively consistent 
with the predictions of work on particle damping 
(refs. 24-26). 

VII. Approximate Analysis of Nonlinear 
Combustion Instability 

The cal~ulations discussed in this section are 
in progres s ( 7 J: although the formalism is com­
plete, no numerical results are yet available. 
Mainly, the purpose here is to convey the gist of 
the analysis and to demonstrate that the approach 
taken has considerable promise. 

Only a bare outline of the procedure is cov­
ered here. The formulation is given for the three­
dimensional case, but the special contributions 
arising in the one-dimensional problem (see § III) 
are included. Hence, an approximate nonlinear 
analysis for one-dimensional problems can be ex­
tracted for comparison with the numerical analy­
sis discussed in the preceding section. This is, in 
fact, potentially an important use for the numeri­
cal analysis, namely, to check the validity of the 
approximate calculations. 1£ satisfactory agree­
ment can be established, then the approximate cal­
culations can be used to study three-dimensional 
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problems which cannot be handled economically by 
numerical techniques. 

Since this analysis has been done, it has be­
come evident that the techniques used are essenti­
ally those referred to generically as the methods 
of weighted residuals, of which the best known is 
the Galerkin method . Use of the Galerkin method 
for studying nonlinear instabilities in liquid propel­
lant rockets has been reported in refs. 28-30. 
There are, however, several important differences 
in the present work. 

First, the basis for all the calculations is the 
single nonlinear wave equation (2. 10) for the pres­
sure field. The expansion of (2. 10) to first order 
in \-I and second order in E: leads to eq. (2. 13 ~ Be­
caus e terms of higher order in \-I and \-IE:, \-IE: , etc. 
have been dropped, it is sufficient for calculating 
the amplitude and frequency of p' to use functions 
for both p' and u' in which the spatial structure is 
independent of the mean flow speed. This is es s en­
tially the same conclusion discussed in § IV. In 
ref. 31 this argument was used as the basis for a 
calculation using a single mode approximation; but 
in general, many modes are present, and the more 
general form of solution is 

L 
00 
~ " ... (7. 1) 

Po 
i=O l\(t)Pi(r) 

... 00 TI.(t) 
~ 1 ,.. ~ u ' -0--2 'Vp.(r) (7.2) 
1- -yk. 1 

1 

where the p.(;) are the unperturbed classical 
modes. Not~ that (7.1) and (7.2) satisfy the classi­
cal acoustic equations. The problem here is to find 
the time dependence Tli(t) of each of the modes. 
Naturally, the actual pressure and velocity mode 
shapes have, in addition to (7.1) and (7.2), correc­
tions proportional to \-I. The se approximations ar e 
also valid if higher order terms in E: are retained 
in the nonlinear wave equation, providing that only 
terms linear in \-I are retained and those of order 
\-IE:, \-IE:2, etc. are dropped. 

The next step after substitution of these ap­
proximations is to multiply eq. (2.13) by Pn and in­
tegrate over the volume of the chamber. This 
eventually produces the nonlinear equation for ~ : 
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(7.7) 

(7.8) 

The additional contributions fro:m the one-di:men­
sional proble:m have been incorporated in (7. 3) ac­
cording to the argu:ment of § IV. For si:mplicity, 
the functions hv and fv' containing the influences 
of residual co:mbustion and gas/particle interac­
tions, have not been expanded; and in (7.3) the pa­
ra:meters \.l and 8 have again been suppressed. 

Unlike the work on liquid rockets cited above, 
a single equation corresponding to (7.3) can be 
used for calculations to higher order in 8. Those 
works :made use of the original differential equa­
tions rather than the nonlinear wave equation, and 
hence in higher order approxi:mations beca:me con­
siderably :more co:mplicated at this point. And of 
course, another i:mportant difference is that the 
for:mulation here accounts for the influences of 
particulate :matter, surface co:mbustion, and the 
nonunifor:m flow field necessarily present in a 
solid propellant rocket :motor. 

The :method used to obtain the ti:me-dependent 
a:mplitudes also differs fro:m that used in the refer­
ences cited and, particularly for approxi:mations to 
higher order in 8, is considerably si:mpler. Re­
sults for co:mparable proble:ms should be essential­
ly the sa:me, although this point has not been 
checked. The discussion here is less involved, and 
the :method is illustrated sufficiently well, by con­
sidering the special case in which only a single 
:mode is included in the expansions (7.lL~W (7.2). 
Also, the ter:m containi~g hv' hv' and w p , will 
be dropped. All subscnpts can be suppressed 
since only the values i=j=n are allowed; hence, 
eq. (7. 3) beco:mes 

•• 2 1 { • p{'" a [ 2 - J 
'fl+w 'fl- E2 D'fl+:!-d'p at ao=b +Rf:,.T'~(611+)'6.l.) dS 

1 [1 ·2 2 21 
- --2 -4 I'fl -a J'fl J = 0 

)'E k 0 

(7.9) 

The :most useful:methods of solution rely on 
the observation that for s:mall perturbations of the 
sort characterized by the linear ter:ms in \.l and the 
nonlinear ter:ms in 8, the solution to (7. 9) is ba­
sically Izar:monic, being do:minated by the co:mbina­
tion ;,;+w 'fl. The re:maining ter:ms caus e relatively 
slow changes in the a:mplitude; "relatively slow" 
:means that the fractional change of a:mplitude is 
s:mall in one cycle of the oscillation. These ter:ms 
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can be regarded as the force F acting on the har­
:monic oscillator having natural frequency w. The 
equation for fi is 

•• 2 -> 
'fl+W'fl = F (7.10) 

and the solution is assu:med to have the for:m 

fi"",A(t)sin(wt+cp(t) . (7.11) 

By either a :method of averaging (e. g. ref. 32) 
or by(th~ technique of expanding in two ti:me vari­
ables 33" differential equations for A and", can 
be deduced. It is really the a:mplitude which is 
:most useful here, and by the first :method one finds 
the first approxi:mation for the equation satisfied 
by A(t): 

dA 1 2rr 
ill = 2rrw ~ F(A sin 1\1, wAcos w)cos1\ld$ (7.12) 

where ~ = wt+cp. 

This equation is essentially an approxi:mate 
state:ment of the conservation of energy for the 
har:monic oscillator governed by (7.10). To see 
this, assu:me that the a:mplitude, frequency, and 
phase change little during a cycle. Then the ti:me­
averaged total energy is w2A2/2 and it changes at 
the rate wAA. The rate of doing work is force 
ti:mes velocity, FTJ "",FwAcos(wt+cp)= FwAcosW; but 
the average (over one period '1"= 2rr/w) of Fri is 

1 t+T A 2rr 
T S FwAcos(wt+cp)dt = T-- S Fcos $d$ 

t rr 0 

which :must equal the rate of change of ti:me-aver­
aged energy. This condition produces eq. (7.12). 

For prob1e:ms in which two or :more :modes are 
accounted for, there is an "oscillator" correspond­
ing to each :mode, whose behavior is governed by 
eq. (7.3). The approxi:mate ti:me dependence of the 
a:mplitudes of these oscillators can be found by ap­
plication of eq. (7.12) to each oscillator. It is on 
this basis that the following re:marks are :made. 

First, it can be shown that the linear ter:ms in 
eq s. (7. 9) and (7. 3) reproduce exactly the for:mula 
for the growth constant given by eq. (4.7). To do so 
requires that the co:mbustion coupling ter:ms (:mt 
and f:,.T') be replaced by functions proportional to 
p' and hence fi. That is, the response of the co:m­
bustion processes is assu:med to be that of a har­
:monic disturbance which has been applied for a 
very long ti:me in the past. Thus, the history of 
the :motions, in the sense discussed in § VII, is ig­
nored, just as it is in the linear stability analysis. 
The :more accurate transient behavior can be-ac­
counted for at the expense of increased co:mputa­
tional labor. 

When the nonlinear ter:ms of (7.9) are inclUded, 
eq. (7.12) gives an equation for A having the for:m 

dA 2 a ill = aA-f3A = f3A( j3 - A) . (7. 13) 

For 13=0, A~exp(at) in accord with the assertion 
of the preceding paragraph. For non-zero 13, the 
qualitative behavior can be seen easily fro:m the 
ph as e plot, a graph of dA/ dt given by (7.13) vs. A. 
Figure 4 shows the two possible cases of interest 
for 13k!. >0. If a> 0, a s:mall disturbance is unstable 
and develops into a li:mit cycle, a steady oscillation 
having a:mplitude a/f3. The arrows show the :motion 
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Fig. 4 Phase Plot for Equation (7. 13). 

of the system. In this approximation, then, the 
limiting amplitude is proportional to the linear 
growth constant. There is some experimental evi­
dence supporting this conclusion, but it is not gen­
erally valid. 

If the acoustic expansion is carried o~ to 
third order, producing terms in 1) 3, 113 , f]11 , etc., 
the equation for the amplitude has the form 

dA 2 3 ill = aA-(3A +yA = A(A-A
l

)(A-A2 ) (7.14) 

where the constants AI' A2 depend on the flow field 
and pos sible nonlinear "forces" such as viscous 
effects at inert surfaces. The phase plot, shown 
in Figure 5 for AI' A? >0, now has a qualitatively 
new feature. For IX <"0, small disturbances are 
stable. But the system is linearly unstable, since 
if the initial amplitude is greater than AI' the ulti­
mate motion is a limit cycle with amplitude A2· 
This "triggering" feature has been discus sed in 
the work on liq uid rockets. The conclusion here is 
consistent with those numerical results: in the 
single mode approximation, triggering limits are 
found only if the acoustics is carried out to third 
order. 

That a finite amplitude disturbance may be re­
quired to produce an unstable motion has been ob­
served. Quite extensive measurements have been 
reported in ref. 9 and earlier works, but there is 
presently no theoretical interpretation available. 

Now, in fact, harmonics are probably always 
generated. A limited amount of harmonic analysis 
of T-burner test records has shown that in many 
cases, when no distortion is obvious in oscillo­
graph records, there may in fact be higher har­
monics present having amplitudes as large as 5 to 
10 %. A contribution to the nonlinear coupling of 
harmonics is contained in (7. 3). For example, if 
two modes are accounted for, the equations for the 
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amplitudes have the form 

(7. 15) 

The coupling terms arise from processes causing 
a transfer of energy between modes. Once again, 
spontaneous growth to a limit cycle is possible, al­
though the behavior is more complicated and varie s 
considerably with the values of the constants. The 
phenomenon of triggering is not contained in this 
simple picture; it is necessary to go to the third­
order approximation, no matter how many modes 
are included. 

It seems likely, however, that if a more accu­
rate representation of the transient combustion dy­
namics is used, "triggering:' or nonlinear instabil­
ity (when the system is linearly stable) may be 
found. Some support for this speculation may be 
found in refs. 28-30, which did incorporate a time 
lag in the combustion coupling. However, in those 
works, a constant time lag was used, and it is well 
known that surface combustion responds with a 
time lag depending on frequency. (That is essenti­
ally the reason for the complications dis cus sed in 
connection with eqs. (6. 5) and (6.6). ) 

The single-mode approximation, expressed es­
sentially by eq. (7.14), has already been usefully ap­
plied to T-burner tests. It does appear, however, 
that harmonic coupling must be accounted for to ob­
tain wholly satisfactory results (see § X). 

Only the nonlinearities associated with the gas­
dynamics have been explicitl4" shown here. It is 
known from measurements(3 ) that nonlinear sur­
face heat transfer is significant in T-burners. 
Quite possibly, nonlinear behavior of the particu­
late matter may be important in motors. Nonlinear 
processes such as these can be accom.m.odated by 
the present analysis without seriously increasing 
the numerical effort. The only problem is to model 
the processes realistically. 

alA 
d7F 
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Fig. 5 Phase Plot for Equation (7. 14). 



VIII. Combustion Coupling and Dynamics 

At the present time there is widespread usage 
of only the simplest analysis of the influence of un­
steady motions of the flow field on surface com­
bustion(3). The need for more comprehensive an­
alytical work, and measurements, particularly of 
velocity coupling, is the most pressing in the en­
tire subject of combustion instability. 

Es sentially, the problem is to determine the 
changes of velocity ~ and mass flux mb of gases 
departing a burning surface in response to changes 
of the pressure and of the velocity parallel to the 
surface. By far most analytical work has been 
concerned with the response to pressure fluctua­
tions (pressure coupling), and moreover, most cal­
c ulations are founded on the following as s umptions: 

(i) Linearized motions, so that it is sufficient to 
treat harmonic disturbances. More general wave­
forms can b,e treated by superposition as, for ex­
ample, in eqs. (6. 5) and (6.6). 

(ii) Heterogeneities are smeared out in some 
unspecified averaged way, so that the problem can 
be treated as one-dimensional in space. 

(iii) Non-reacting solid phase. The conversion 
of solid to gas is s uppos ed to occ ur at an infini­
tesimally thin interface according to some law, 
such as expressed by an Arrhenius rate law. What 
law is used has no influence on the form of the 
final result obtained for linear problems. 

(iv) Quasi-steady behavior of the gas phase. 
This restricts the results to some range of "low" 
frequencies, but the upper limit is not known. 
The assumption can be justified mainly because 
the gas density is much les s than the density of the 
solid. The range of validity is then reduced at 
higher operating pressures. 

With these assumptions, all results for the re­
s pons e function Rb collaps e to the single form in­
dependent of the model used for the flame struc­
ture in the gas phase: 

'YrnAB+n (A-Ill - s 
(S. 1) 

A + ~ -(A+1)+AB 

The pressure index for the surface reaction is ns 
and n is the index appearing in the law for the 
steady linear burning rate, r ~pn. This is a com­
plex function of frequency through A, which arises 
from the transient behavior of the thermal wave in 
the solid: A(A-l)= ill, wh5e 0 is the normalized 
angular frequency 0= w'ft/r . 

Another complex function used to character­
ize linear transient behavior is the admittance 
function, Ab , which, for pressure coupling, is de­
fined as 

A = b 
(S.2) 

It is not difficult to show(ll), by use of the perfect 
gas law and the definition mb = pUb' that the non­
isentropic temperature fluctuation at the edge of 
the combustion zone (see § III) is given in terms of 
Rb and Ab by the formula 

f>T - 1 - - L -=-- [Ab +Mb + - (Ab +Mb -MbRb)J _ (S. 3) 
T 'Y 'YP o 

The definitions Rb and Ab can, of course, be 
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used in any linear analysis, and indeed, it is quite 
natural to introduce them as the discussions of 
§§ III and IV suggest. Similar functions can be de­
fined for velocity coupling; but without further com­
putations, such as those leading to the formula 
(S.l), or measurements, numerical values remain 
unknown. 

Experiments to obtain Rb and Ab are very dif­
ficult to perform and are subject to considerable 
uncertainties. It is likely that the best one can 
hope for under any circumstances is that measured 
values will have uncertainties no greater than 10%. 
Virtually all experimental work has been done in 
T-burners. Some recent results with metallized 
propellants are discussed in refs. S, 35-39, so the 
subject will not be covered in any detail here. 

However, it should be noted that quite apart 
from the difficulties of minimizing experimental 
errors, the interpretation of data to obtain the de­
sired numbers presents problems. The reason is 
that the T-burner is really just a peculiar form of 
rocket motor, so that the analys es dis cus s ed earli­
er must be used. ':' Measured values of the growth 
constant a are used with formulas such as (3.16) 
and (4. 9) to deduce numerical values for whatever 
quantity is used to represent the combustion re­
sponse. But for this procedure to work success­
fully, the remaining terms in the formula for a, 
must be known. See refs. Sand 35 for a discussion 
of the effectiveness and limitations of the method. 

Theoretical work on the combustion processes 
is neces sary to understand the meaning of experi­
mental results and is useful as an aid to formu­
lating propellants. It is firmly established that the 
formula (8.1) does represent, in a qualitative way 
at least, the frequency response of unmetallized 
propellants. Therefore, there is little doubt that 
the transient conduction of heat within the solid 
phas e is a dominant influence. Quantitative com­
parison with data leaves much to be desired(4). It 
is fairly clear that calculations must be performed 
with one or more of the as sumptions listed above 
relaxed. The following remarks cover briefly the 
present state of affairs. All of the works cited 
treat pressure coupling only. 

Nonlinear calculations for practical purposes 
will, in all likelihood, be entirely numerical. In 
ref. 40, limited results were presented for the re­
sponse to exponential changes of the impressed 
pressure. The gas phase was assumed to behave 
quasi statically; the computations involved mainly 
a finite differenc e solution to the nonlinear un­
steady energy equation in a homogeneous non­
reacting solid. This approach will probably also 
,be us ed in a continuation of the work in ref. IS, but 
with more elaborate treatment of the gas phas e. 
Analytical results for harmonic changes of pres­
sure have been discussed in refs. 41-43, but the 
results become so complicated by a large number 
of parameters that it seems best to resort to a 
wholly numerical procedure. Some interesting re­
sults for very special cases have been reported in 
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That is, if the data are eventually to be incorpo-
rated in stability analysis of motors. But if the T­
burner is used for comparing qualitatively the dy­
namical behavior of propellants, one is obviously 
much less concerned with precise results and very 
little analysis is necessary. 



ref. 44; they are not suitable for stability analyses. 

It is easy to see why nonlinear calculations 
are required. Realistic values of p'!-yp can be as 
large as .2 - . 3; values of the real part of Rb have 
been measured ai3 large as 3 or so. Hence, the 
fluctuation mi,/rnb may be greater than. 5, which 
is well outside the range one can reasonably ex­
pect linear analysis to be valid. 

Most propellants used in practice are compo­
sites containing large mass fractions of solids, 
sometimes as large as 100 \1 or more. Since the 
thermal wave has a characteristic length of the 
order of 10 - 50 \1, it is clear that the heterogene­
ous character of the material cannot be totally ig­
nored. There are very few treatments of this 
problem, the most recent being refs. 45 and 46. 
Although some rather detailed conclusions are 
given, available experimental data are probably 
not sufficiently accurate to check them. The ques­
tion has not been thoroughly studied. It appears 
that the most useful way of treating heterogeneities 
may be to determine the best method of averaging 
over the random properties of the material, and 
gas phase as well, to obtain a more tractable one­
dimensional representation. This problem re­
mains unsolved. 

The influence of chemical reactions or decom­
position in the solid p.hjse has been examined by 
several workers(47-2±9 , but the results have thus 
far had little impact on the interpretation of data 
or on studies of stability. The recent work of ref. 
48 deals with the influence of both chemical reac­
tions in the solid phase and of oxidizer particle 
size. Very promising comparison of observations 
with the heuristic, semi-empirical analysis has 
been shown for both steady and unsteady burning. 
Reactions in the solid phase have long been a sub­
ject of study by Russian authors dealing principally 
with steady combustion of double-base propellants. 
Apart from one brief note(49), the extension to un­
steady burning has apparently not been done, and 
no work has been reported for composite propel­
lants. 

In ref. 50 a technique combining simple analy­
sis and experimental data for steady- state com­
bustion has been suggested for determining the 
transient properties of a burning solid. In princi­
ple, it accounts for heterogeneities and, pos sibly, 
but in a crude way, reactions in the solid. It does, 
however, rest crucially on the assumption of quasi­
static behavior of the gas phase and requires ex­
perimental data not easily obtained to the precision 
necessary. The method amounts essentially to ex­
perimental determination of the parameters A and 
B in (8.1). Some success with the approach was 
reported. 

The assumption of quasi-steady behavior mer­
its examination, both because the frequencies of 
instabilities are often quite high, and because the 
approximation is less accurate at high pressures. 
Crude estimates in ref. 51 suggested that, indeed, 
there is basis for concern. Rec~)t1y, some nu­
merical results were reported(5 showing signifi­
cant changes in the linear response function when 
the as sumption is relaxed. No comparison with 
measurements has been attempted. 

The two most important aspects of transient 
burning which have not been treated analytically in 
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any depth, are the influence of aluminum or other 
metal additives, and velocity coupling. The situa­
tion is essentially unchanged from that described 
in ref. 1. 

IX. Attenuation by Particulate Matter 
and the Solid Phase 

The summary of the influence of particles giv­
en in ref. 1 still stands. Progress is slow, mainly 
because so little is known of the particles pro­
duced by a burning propellant. This problem is 
therefore intimately related to that of the combus­
tion of aluminum, both near the propellant surface 
and farther out in the volume of the chamber. Two 
aspects of the theoretical behavior of inert particu­
late matter have been examined briefly. 

In refs. 53 and 54 two detailed calculations for 
the attenuation by particles in rocket motors have 
been given. Well-known linear results(55, 56) for 
the behavior of a single particle have been used. 
The computations of ref. 53 provide numerical re­
sults for the damping of various modes with a non­
uniform mean flow field. In ref. 54, a distribution 
of particle sizes is accounted for; the calculations 
show mainly slight shifts in the curves of attenua­
tion vs. frequency. The changes are too small to 
be resolved within the data presently available 
from motor firings and T'-burner tests. Treat­
ments based on average particle sizes therefore 
are adequate at the present time, although it does 
appear necessary to assume that two sizes are 
present. Experimental observations of burning 
aluminum drops have established beyond serious 
doubt that, in addition to the relatively small smoke 
particles, a considerable fraction of the mass is 
tied up in larger residual particles. 

More interesting analyticallK is work on non­
linear behavior. Two works(57, 8) have dealt with 
this problem in essentially the same manner; pre­
liminary results using a somewhat different analy­
sis have been reported in ref. 59. The equation of 
motion for a single particle is solved assuming a 
nonlinear drag law. Then the time-averaged dissi­
pation of energy is computed. In ref. 57, Oseen's 
drag law was used, but ref. 58 is based on an ap­
proximation to the measured drag on a spherical 
particle. Qualitatively, the results are similar: 
the absorption or attenuation coefficient increases 
with amplitude for relatively low frequencies. The 
upper limit depends on the particle size. 

An important feature of particle attenuation is 
that there is an optimum particle size: for a given 
frequency, the attenuation has a maximum value as 
a function of particle radius. For typical conditions 
in a rocket motor, the optimum is in the vicinity of 
8 -10 microns at 800 Hz. The results of ref. 58 
show that the attenuation increases for sizes great­
er than the optimum, and that the optimum value 
shifts to larger sizes as the amplitude of oscilla­
tion increases. But the maximum value of attenua­
tion is essentially independent of amplitude. 

Although it is not the purpose here to review 
experimental work, yet in connection with particu­
late damping, the recent work reported in refs. 60-
62 must be mentioned. The results show very 
strikingly and indisputably the influence of certain 
compositional changes on the character of the ag­
glomeration and combustion of aluminum near the 
surface of the propellant. Moreover, the ultimate 



effect of those changes on the sizes of oxide parti­
cles produced, and hence on particulate damping of 
acoustic waves, was demonstrated qualitatively by 
data taken in T-burner firings. 

The most thorough treatment of attenuation by 
the propellant grain appears in ref. 63. Several 
examples of application to full-scale motors are 
covered. Although the contribution to losses of 
acoustic energy may be significant, particularly in 
larger motors, there is considerable uncertainty 
in the values of material properties required in the 
calculations. Nevertheless, this is a part of the 
problem which deserved attention in any serious 
program devoted to combustion instability. Any 
results for practical configurations must be ob­
tained numerically. 

X. Applications to Laboratory Devices and Motors 

To the present time, application of the analy­
ses discuss~d here has produced very spotty re­
sults. The best one can say is that there are ex­
amples for which qualitative behavior seems to 
have been correctly shown. There is no example 
of an accurate a priori prediction of a stability 
boundary for a motor. The mean reason is the ab­
sence of experimental results, particularly for the 
response and admittance functions of the propellant. 
Computation of the attenuation of waves due to the 
presence of particles is also uncertain because the 
distribution and sizes of particles are not well 
known. 

Apart from a few remarks concerning non­
linear behavior, the analysis of data taken in T­
burners will not be discussed. The reader is re­
ferred to works already cited. In qualitative re­
spects, much support for the approach outlined 
here has come from laboratory tests; indeed, cer­
tain observations have motivated the way in which 
the analysis has been developed. Linear behavior 
(in the sense that the amplitude of a wave grows or 
decays exponentially) is commonly seen in T­
burners. The nonlinear growth to a limiting am­
plitude is, particularly with unmetallized propel­
lants, likely to be influenced by processes which 
are less important in motors, such as heat trans­
fer to inert walls. But data are relatively easily 
obtained, and repetitive firings can be done at con­
siderably less expense than with motors. Hence, 
it is possible to make realistic checks of at least 
some parts of the analysis. What is learned from 
work with T-burners is for the most part directly 
applicable to motor problems, although this may 
not be immediately obvious. 

It is well to begin with an enumeration of the 
information required to obtain numerical results 
for motor s. 

(1) Classical Acoustic Modes and Frequencies 

All of the formulas obtained here for the com­
plex wavenumber - eqs. (3.14), (4. 7), and (5.16) -
and the nonlinear equation (7. 3) for the amplitude, 
contain the unperturbed acoustic modes and corre­
sponding wavenumbers. It is only in very simple 
cases, albeit important ones, that these functions 
can be easily represented analytically. For practi­
cal work with motors, by far the best procedure is 
to acquire this information numerically. For this 
purpose, the results of ref. 64,either as they are 
given there or in modified form, have proven very 

16 

useful. One dimensional and axisymmetric modes 
can be analyzed. General three-dimensional modes 
have not been studied, but these are much less im­
portant. 

An alternative is to measure the mode struc­
ture and frequencies in scale models with no flow. 
A sonic exhaust nozzle must be treated as closed 
port with a rigid surface placed somewhere in the 
divergent section. The precise position depends on 
the nozzle, and can in principle be found independ­
ently by analysis or measurement(2). However, an 
error in positioning the clos ure should have little 
influence on the acoustics information desired. 

(2) Transient Characteristics of the Nozzle 

The nozzle admittance function c?,n be either 
cOlYlputed or lYleasured. Recent work\2) has pro­
duced results for practical configurations when the 
flow is essentially roolYl telYlperature air. There 
is no way of deterlYlining at the present tilYle how 
the nozzle behaves when the flow consists of hot 
cOlYlbustion gases containing particles. This is a 
very ilYlportant problelYl, particularly if one is con­
cerned with longitudinallYlodes. The nozzle then 
provides a lYlajor contribution to the losses of 
acoustic energy. 

An interesting advantage afforded by the nozzle 
is that there is an opportunity to affect the stability 
of instabilities (at least if they are longitudinal 
lYlodes, and perhaps otherwise) by relatively silYlple 
changes of geolYletry. It has been known since the 
earliest work on this subject that for a given en­
trance/throat area ratio, a shallow convergent 
section offers lYlore attenuation than a steep sec­
tion. This is not due to the projected area of the 
side walls, which depends only on the area ratio, 
but rather is due to the influence of gradients in 
the mean flow properties. 

(3) Influence of the Propellant Grain 

Early work on this problelYl produced results 
in analytical forlYl, although extrelYlely cOlYlplicated, 
for cylindrical configurations. For other cases, 
nUlYlerical calculations are required. It seelYlS, 
however, that for practical purposes it is best al­
ways to use nUlYlericallYlethods, such as the finite­
difference techniques of ref. 63. The .absorption of 
energy by a grain varies widely with geolYletry, 
and hence during the firing of a lYlotor. The lYlajor· 
error appears to be due to the uncertainty in the 
values of propellant dynalYlical properties. 

(4) Propellant Response and Admittance Functions 

Analysis of cOlYlbustion coupling is useful at 
the present tilYle lYlainly as an aid to correlating 
data. For application to lYlotors, it is not necessary 
to have quantitative results, providing the appropri­
ate lYleasurelYlents can be lYlade. The quantities re­
quired for stability analysis, the real parts of 
(3.18) and (3.19), can in principle be extracted di­
rectly frolYl data taken in T-burners, therebyelilYl­
inating the need for analysis. 

Probably the lYlost useful qualitative features 
of the response function (8.1) produced by analysis 
are that there is a peak; that the phase between the 
lYlass flux and pressure is positive at frequencies 
below the peak (lYlb leads pI) and negative above 
the peak (lYlh lags pI); and that the appropriate di-
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mensionless frequency 1S 0= wx./r . For example, 
the peak for a given propellant occurs at a fixed 
value of O. Hence, if the burning rate is increased 
the angular frequency w at which the peak occurs 
is also increased. This is perhaps the strongest 
effect of changing the operating pressure, but 
measurements suggest that the response curve it­
self shifts in ways not predicted by the analysis. 
For some propellants the response at a given val­
ue of (1 increases with mean pressure, while for 
others it decreases; moreover, the shift is not in 
general uniform over the entire range of (1. 

For a fixed geometry, the frequencies wof the 
modes are fixed. Consequently, if one has a rough 
idea of the shape of the response function, the in­
fluence of changing pressure can be assessed. Or, 
if the pressure is fixed, changes of geometry giving 
changes in the frequencies can be examined for 
their effects on stability by checking shifts along 
the response curve. 

Measurements of pressure coupling for metal­
lized propellants are difficult to take, mainly be­
cause the large losses associated with the particu­
late matter require either pulsed or extended area 
firings. The presence of the particles seems also 
to increase the errors in the data and harm repro­
ducibility. But for velocity coupling, the situation 
is far worse: there is at the present time no satis­
factory technique for acquiring the needed data .. 
Under these circumstances, even a crude analysis 
would be helpful, particularly if the influence of 
aluminum could be represented. 

There are difficulties in using T-burners, 
even with unrnetal1ized propellants. They have 
been studied extensively and the most serious 
problems have been clearly delineated. In view of 
these difficulties, parti1lf.'3rly ~1e uncertainty of 
the influence of the vent ' 5-3 , one might sup­
pose that tests with small-scale motors would be 
more successful. Unfortunately, that is not true. 
The sonic exhaust nozzle presents its own prob­
lems; but the need for extended grains is the most 
serious difficulty, for it then becomes impos sible 
to separate the effects of pressure and velocity 
coupling. 

(5) Other Contributions 

Obviously, the mean flow field must be known, 
but this is easily obtained from the analyses of in­
ternal ballistics. The principal other contributions 
are the attenuation due to particles and the effects 
of residual combustion. They are not entirely 
disconnected, but at the present time, particulate 
damping is computed by using the results for inert 
particles. Until better information is available, 
there is little justification for doing otherwise. 
On the other hand, the problem of residual combus­
tion should receive more attention that it has. 
Particularly in motors having low L", the coupling 
between burning far from the propellant surface 
and unsteady motions could conceivably be impor­
tant. 

10. 1 Application to Laboratory Data 

It appears that the best available data for 
checking the linear stability analysis are the ob­
servations reported in ref. 61. There are some dif­
ficulties in interpreting the results since the high­
frequency in3trumentation was not adequate to pro-
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duce detailed records of the growths of unstable 
waves. However, the stability boundaries reported 
are probably good enough to check the validity of 
predictions. The influences of length, diameter, 
port/throat area ratio, and initial temperature 
were studied with cylindrical motors of unrnetal­
lized propellant (T-17). 

In an attempt to compare analysis and observa­
tions, T-burner firings with the T-17 .frgtfellant 
were carried out in a later program(3, ). It 
seemed initially that satisfactory agreement had 
been obtained, but further work proved the con­
trary. .r~gure 6 shows the comparison finally ob­
tained(3 J. The predicted curve is computed from 
linear stability analysis with T-burner data used 
for the propellant admittance function. 
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Observed and Predicted Stability 
Boundaries for a Small Cylindrical 
Motor (refs. 34, 11). 

There are several possible reasons for the_ 
poor agreement obvious in the figure. The unstable 
mode in this case is the lowest tangential mode 
having acoustic velocity components both parallel 
and normal to the surface: both 011 and Ol. defined 
in eq. (4.12) are non-zero. Hence, if the coupling 
is nonisentropic, then one must have data.taken 
with both end and lateral grains, as the discussion 
of I; III has shown. But the T - burner data us ed to 
construct the result shown in Fig. 10. 1 were taken 
only with end grains. Consequently, the complete 
analysis of § III, which has been worked out since 
the experimental work shown in the figure, has not 
been chec:;ked. The formulas obtained for cylindri­
cal ports (11) suggest that if the nonis entropic be­
havior is important, the theoretical boundary 
could be shifted significantly. 



Experim.ental work is in progress at the Jet 
Propulsion Laboratory to obtain T-burner data for 
'l'-17 propellant with lateral grains. The results to 
date show both qualitative and quantitative differ­
ences between end and lateral burning configura­
tions. 

The interpretation of T-burner data is dis-
cus sed at length in ref. 8. Here, only nonlinear be­
havior is briefly exam.ined. It was, in fact, the 
relatively sim.ple appearance of clean T-burner 
records which m.otivated the analysis given in ref. 
31. Initial com.parisons with T - burner records 
were very encouraging. Subsequent work based on 
eq. (7.14) has established that the growth to lim.iting 
am.plitude is represented extrem.ely well by the be­
havior of a nonlinear oscillator. Figure 10.2 is an 
exam.ple showing data and a num.erical (by' the 
m.ethod of least squares) fit of eq. (7. 14). (67) The 
principal difficulty is that equally good fits can be 
obtained with rather broad ranges of the values of 
the param.eters. Particular difficulties are en­
countered with data for m.etallized propellants. 
However, som.e progress has been m.ade in identi­
fying trends, and in certain cases the presence of 
nonlinear driving has been identified. A possible 
reason for the difficulties with this interpretation 
of the data is the presence of harm.onics. Analysis 
of records which visually show no distortion indi­
cates that in fact the am.Blitudes of higher harm.on­
ics m.ay be as high as 10'}6 of the fundam.ental. 
Hence, the question of harm.onic coupling seem.s to 
be worth investigating. 
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Fig. 7 Num.erical Fit of Equation (7. 14) to a 
T-Burner Pressure Record (ref. 66). 

The value of this work is twofold: (l) to as s es s 
the validity of the approxim.ate nonlinear analysis 
which, if favorable, can then be used to study m.o­
tor s; and (2) to gain quantitative inform.ation for 
the im.portant nonlinear processes such as heat 
transfer, attenuation by particles, and com.bustion 
coupling. The im.portance to analysis of m.otors is 
obvious. 
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10.2 Application to Motors 

Use of the linear stability analysis to study the 
transient behavior of m.otors consists in evaluating 
the various contributions to the expres sion (4. 9 )for 
the growth constant. The only case reported in 
published literature appears in ref. 68. The com.­
putations were based essentially on the analysis 
covered earlier in § IV except that the term.s intro­
duced from. the one-dim.ensional analysis were not 
included. 

Uncertainties in som.e of the input data were 
significant; for exam.ple, neither the response of 
the burning propellant nor the influence of the noz­
zle were known with great confidence; and the re­
sults were not in quantitative agreem.ent with ob-
servations of m.otor behavior. The predicted -1 
growth rates decreased from. several hundred (sec ) 
at the beginning of a firing to values less than one 
hundred after 15 - 25 seconds. The oscillations in 
the m.otor were always found to decay after approx­
im.ately 30 seconds. This comparison suggests that 
a trend in the behavior was correctly found, 1. e. , 
the driving decreases m.ore rapidly than the dam.p­
ing with tim.e; but the conclusion m.ay be unfounded 
since the connection between linear growth rate and 
changes in the am.plitude of oscillation is not clear. 

The m.otor analyzed had 4 nozzles; initially the 
port consisted of a small center perforation with 4 
slots. After a few seconds of burning the m.otor be­
cam.e an end burner. This configuration provided 
m.uch structural damping by the propellant. In fact, 
nozzle, propellant, and particulate m.atter all con­
tributed roughly the sam.e attenuation, of the order 
of 60 - 80 seCl initially. The driving by the propel­
lant was com.puted to be in the range 300 - 400 sec-I, 
using data taken in T - burners. 

Subsequent work(63) has shown that for a m.otor 
of size com.parable to the one just cited, but having 
a full-length center bore, the attenuation by the pro­
pellant grain is sm.aller by a factor of 25 - 30; but 
for that m.otor, the driving was also m.uch less, 
and the oscillations observed not only grew at 
sm.aller rates but attained considerably lower am­
plitudes. Full stability analysis of the m.otor also 
led to m.oderate qualitative success, but again, (69) 
serious uncertainties hampered the calculations . 

In general, experiences with the linear stability 
analysis of m.otors seem. to be sim.ilar to those de­
scribed. The results often show correct trends, 
som.etim.es m.ore strikingly than those quoted, but 
the known errors are too large for one to have con­
fidence in the quantitative predictions. 

Apart from. the num.erical calculations for 
sm.all m.otors discussed in § VI, there are no non­
linear results available for m.otors. 

An im.portant practical question which has not 
been exam.ined here is the use of suppression de­
vices. Given that unstable m.otions m.ay appear in a 
m.otor, and possibly when significant changes of de­
sign (geom.etry and propellant) cannot be m.ade, one 
m.ay have to find som.e other m.eans of suppressing 
the oscillations or at least reducing the am.plitude. 
What can be done depends very m.uch on experience 
and testing. The action of s uppres sion devices 
(acoustic liners, resonators, resonant rods or pad­
dles, etc.) can be represented and accounted for in 
the analytical framework covered hE!re. Som.e of 



the necessary information, and discussions of 
particular examples may be found in ref. 69. It is 
sufficient here to note that the influence of a sup­
pression device on the basic acoustics (mode shape 
and frequency) of a chamber, as well as the coupl­
ing to the unstable modes, must be accounted for. 

XI. Concluding Remarks 

It should be clear, particularly from the dis­
cus sion of the preceding section, that the analysis 
of transient motions in combustion chambers must 
be evaluated in the context of both application to 
motors and interpretation of laboratory results. 
There are parts of the problem, mainly the behav­
ior of the combustion processes and, to a lesser 
extent, the influence of the exhaust nozzle, which 
cannot be analyzed successfully from first princi­
ples. Experimental data are therefore essential to 
studying motors. On the other hand, analytical re­
sults are necessary for extracting the required in­
formation from small- scale labor atory experiments. 

The uncertainties of measurements are such 
that it is not possible to state with complete confi­
dence whether or not the analyses are correct or 
incomplete. At the present time the appropriate 
strategy seems to be to assume that the formal re-

exposed in motors. The most significant weakness 
is the lack of a technique for measuring velocity 
coupling. 

There are other problems which need attention, 
but those mentioned are the most pressing at pres­
ent. However, even though some of the crucial data 
may not be accurately known, much can be learned 
from analysis of a motor. It is pos sible, for ex­
ample, to evaluate with considerable confidence the 
influence of grain geometry and flow field. And by 
a combination of experience and tests with T - burn­
ers (despite present difficulties) reasonable esti­
mates can be made for the behavior of propellants. 
Hence, for practical purposes, one is generally in 
a position to make assessments of qualitative be­
havior, and of the consequences of possible changes 
in design. 
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