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In the flurry of experiments looking for topological insulator materials, it has been recently discovered that
some bulk metals very close to topological insulator electronic states support the same topological surface
states that are the defining characteristic of the topological insulator. First observed in spin-polarized angle
resolved photoemission spectroscopy (ARPES) in Sb [D. Hsieh e al., Science 323, 919 (2009)], the helical
surface states in the metallic systems appear to be robust to at least mild disorder. We present here a theoretical
investigation of the nature of these “helical metals”—bulk metals with helical surface states. We explore how
the surface and bulk states can mix, in both clean and disordered systems. Using the Fano model, we discover
that in a clean system, the helical surface states are nor simply absorbed by hybridization with a nontopological
parasitic metallic band. Instead, they are pushed away from overlapping in momentum and energy with the
bulk states, leaving behind a finite-lifetime surface resonance in the bulk energy band. Furthermore, the
hybridization may lead in some cases to multiplied surface-state bands, in all cases retaining the helical
characteristic. Weak disorder leads to very similar effects—surface states are pushed away from the energy
bandwidth of the bulk, leaving behind a finite-lifetime surface resonance in place of the original surface states.
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I. INTRODUCTION

The prediction and subsequent discovery of bulk topo-
logical insulators (TIs) has galvanized the condensed-matter
community, not in the least because of the unique physics of
the protected edge states on their surface.'” Many materials
adjacent to TIs, however, are bulk metals with the same he-
lical surface states, e.g., Sb,?°  Bij¢;Sbg, 3!
Bi,_,Mn,Tes,* and even undoped Bi,Ses,**** which initially
was thought to be a wide band-gap TI but now seems to have
a small but measurable bulk Fermi surface. In such materials
one would naively expect that a bulk Fermi surface would
simply swallow the surface states. Nevertheless, the same
helical surface states of the TI phase, continue to appear in
them, now coexisting with a bulk Fermi surface. We suspect
that more examples will emerge, especially since the helical
surface states are less sensitive to disorder than ordinary
(nonhelical) surface states (of the likes of those found on the
(111) surfaces of Cu), as has been already suggested by
surface-doping Sb with potassium.

The prevalence of metallic systems with surviving helical
surface states led us to ask: what exactly happens when a
surface state, which is the result of a TI bulk, is allowed to
hybridize with a “parasitic”” nontopological metallic band. As
we shall see below, not only do the helical edge states sur-
vive but they can actually multiply. When mixed, the surface
states are simply pushed away from overlapping in energy
and momentum with the bulk states. If the surface and bulk
do not overlap to begin with, the mixing is not effective, and
the surface states are only slightly modified. In those areas of
energy and momentum overlap between the bulk and surface
states, new “exiled” surface states appear above and below
the confines of the metallic band, and in place of the original
surface state a “ghost” surface resonance remains, with a
finite (and often very short) lifetime. Thus in one momentum
value, we may see ARPES signatures of two surface states at
energies above, and below, the metallic energy range (see

1098-0121/2010/82(19)/195417(11)

195417-1

PACS number(s): 73.20.At

Fig. 1), in addition to a surface resonance within the bulk
metallic band. The exiled states, as well as the remaining
finite-lifetime ghost resonances will retain the odd-number
distinction of surface bands, characteristic of helical surface
states, comprising an odd number of Kramer’s pairs of bands
in two dimensions (2D) and an odd number of Dirac cones in
three dimensions (3D).

In this paper, we explore the metal vs edge-state struggle
by first constructing 2D examples where a metallic band ap-
pears at the same energy as an edge state, and numerically
investigating its emerging spectral structure. Next, we ap-
proach the problem analytically by constructing a generic
model for a helical surface state interacting with a bulk
metal, based on the Fano model.>> From both approaches, the
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FIG. 1. (Color online) An energy-momentum sketch of the fate
of surface states when they overlap with a parasitic metallic bulk
band. The solid (light green) regions mark the bulk density of states,
the top and bottom bands being bulk states of a topological insula-
tor, and a parasitic metallic band in the middle. The original
surface-state branch (dashed line) overlaps with the middle (metal-
lic) band. The surface-state branch hybridizes with the bulk, leaving
a diffuse resonance in the bulk band energy range, as well as two
sharp edge-state branches appearing above and below the parasitic
metal energies. This demonstrates that the topological surface
states, rather than being obliterated, are simply pushed away from
overlapping with the bulk.

©2010 The American Physical Society


http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1103/PhysRevB.82.195417

DORON L. BERGMAN AND GIL REFAEL

generic picture of a helical metal arises, as is summarized in
Fig. 1.

II. CONSTRUCTION OF 2D HELICAL METALS

We begin our study by attempting to construct disorder
free-theoretical models in 2D where helical edge states co-
exist with a bulk metal in both momentum and energy. Such
helical metals can be achieved in at least two different ways.
One possible construction is to take a model of a TI, add a
new (initially decoupled) partially filled band, and then mix
it with the TI bands. A second possible construction is to add
a momentum-dependent chemical potential without adding
additional degrees of freedom, such that the gap closes
somewhere in the Brillouin zone (BZ). This can always be
achieved in a tight-binding model by adding appropriate
hopping terms that produce purely diagonal terms in the
multiband hopping model. We will consider an explicit ex-
ample of the former, demonstrating the construction in 2D.
An explicit example of the latter construction is relegated to
Appendix A, as the main physical features of it are no dif-
ferent than in the one example we show here. Our 2D ex-
amples can easily be generalized for models of topological
insulators in any dimension.

Our starting point is the first 2D model of a topological
insulator, the Kane-Mele model,* defined on a honeycomb
lattice. The first construction proposed above can be realized
by considering this model coupled to a very simple metallic
band: we add lattice sites at the centers of the honeycomb
plaquettes, as shown in Fig. 2, so that the new sites are now
those of a triangular lattice. To form a metallic band we
allow hopping between the nearest-neighboring new (trian-
gular) sites. With a Fermi energy crossing anywhere in this
band, we have a single Fermi surface, centered about q=0.
We then couple between the two parts of our model, by
allowing hopping between the honeycomb lattice sites and
the new triangular lattice sites (see Fig. 2). The Hamiltonian
is

H=-1 > [ajabja +H.c.]-1, > [cjacja +H.c.]
(ij)e (ij)e

+iN D [ajaajgszﬁvi,- +H.c.+(a—b)]
@j)asp '

> [cjaaja+c;fabja+H.c.]+h2 c;cj, (1)

(ij)er J
where i, j denote all the combined lattice sites, a,b,c denote
the fermion operators on the three sublattices (a,b for the
honeycomb, and ¢ for the triangular metal, see Fig. 2). In
addition, spin indices are denoted by a B, and v;; is as de-
fined in Refs. 1 and 3 (and shown in Fig. 2). For convenience
we have included an independent chemical potential % for the
triangular lattice.

Following closely the procedure in Refs. 1 and 3, we cal-
culate the spectrum of Eq. (1) using exact diagonalization of
strips that are terminated either at a zigzag or an armchair
edge, as these are representative edge cuts of generic bound-
aries of the honeycomb lattice. We calculate for one spin
polarization in order to avoid clutter, as s° is a good quantum
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FIG. 2. (Color online) A two-dimensional toy model for the
investigation of a helical metal. The model is based on the Kane-
Mele model (Refs. 1 and 3) on the honeycomb lattice, which is
denoted by dashed lines. The Kane-Mele model consists of nearest-
neighbor hopping #; (green) between the two (a,b) sublattices of
the honeycomb lattice (denoted by empty and filled circles, respec-
tively), and a complex second-neighbor hopping (a spin-orbit cou-
pling term) with opposite sign when clockwise (—i\, blue) and
counterclockwise (+i\, red), as indicated by the curved arrows in
the figure. In addition to sites of the honeycomb lattice, we include
a new set of sites (c) at the centers of the hexagonal plaquettes of
the honeycomb lattice, denoted by cross marks. The ¢ sites form a
triangular sublattice, and nearest-neighbor hopping between them 7,
(brown) forms a metallic band. To explore the interplay between the
topological insulators helical surface states and the bulk metallic
band we mix the two systems by allowing hopping between the ¢
sites and the honeycomb lattice sites, 73 (purple).

number in our model, and deviations from this are immate-
rial to the physics we explore here, and identify explicitly the
eigenstates localized at each edge of the finite strip. We
present the spectrum of the model in Fig. 3, when the
honeycomb-triangular hybridization parameter is zero, weak,
and strong (£3=0, 0.03, and 0.3, respectively) while keeping
the other model parameters fixed at #;,=1, A=0.5, £,=0.2, and
h=0.4. We choose the Bravais lattice vectors to be a;=ax
and a,=7(-%+ \EyA). The strip widths we use are 30 unit cells
and are terminated in a symmetric fashion. For the zigzag
geometry, states identified as edge states on one side of the
system have at least 0.85 of their total weight within a dis-
tance of y=30% from the lower edge (at y=0), and the edge
states at the other side of the sample have at least 0.85 of
their weight fraction above y=303\j % (for the armchair edge
strip, we take the limits for this procedure to be x < 30% and

x> 30%‘1, and consider 0.7 of the total wave-function weight
rather than 0.85). While the criterion we use to identify sur-
face states is arbitrary, we can provide further indication of
the validity of this procedure, by plotting the wave functions
in real space, and extracting a decay length. We show in Fig.
4 the wave functions of all states we identify as surface
states, for the system parameters of Fig. 3(e). We have also
fitted these surface states to a wave function profile |¢(x)[?
=Ae ™ sin(kx+ ¢)? and extracted a decay length for each
surface state. In Fig. 5 we plot the decay length vs the energy
of the surface states, where it can be seen that as we ap-
proach the bulk band edges, the decay length diverges.
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FIG. 3. (Color online) Spectrum of the modified Kane-Mele model in Eq. (1), with a metallic (triangular) band added (Fig. 2). Here we
use the parameters 1;=1, N\=0.5, 1,=0.2, h=0.4, and vary f;. We show spectra for both [(a), (c), and (e)] zigzag and [(b), (d), and (f)]
armchair edge strips, with mixing parameter values #3=0, 0.03, and 0.3. The strips are finite in one direction, and periodic in the other, so
the lattice is wrapped around a cylinder. The edge-state branches on different sides of the sample are denoted by thick lines, dark (blue), and
light (orange), respectively. All bulk states are colored light gray. Helical edge-state branches can still appear (at least when the Fermi energy
is shifted), as can be easily seen by counting the (ocld) number of surface-state branches on one side of the strip crossing E=0 between g=0

and the BZ midpoint (g=1 for zigzag and g=m/\3 for armchair).

A. Weak hybridization

In Figs. 3(c) and 3(d), we plot the spectrum of bulk and
edge state for an armchair and zigzag strip with weak hybrid-
ization, 13=0.03. Comparing with the decoupled spectrum in
Figs. 3(a) and 3(b), the numerical results clearly show that
essentially the same helical surface states appear in our
model without a bulk gap present—the helical surface states
are only weakly perturbed. Only in those areas where the
helical surface states overlap in both energy and momentum
with bulk states, do we see any appreciable change. Since
different momenta cannot mix in the absence of disorder, it is
not surprising the surface states are unaffected if they do not
overlap in both energy and momentum.

B. Strong hybridization

We consider also strong coupling (13=0.3) between the
honeycomb and triangular subsystems. In the spectra, shown
in Figs. 3(e) and 3(f), the surface-state branches have been

pushed out of those regions where the bulk states reside,
away from their original position, toward those regions of
the momentum-energy diagram where bulk states are absent.
This results in a doubling of the number of surface-state
branches for a single momentum, as can be seen in Fig. 3(e)
in the range 2.4 <g<3.2. One branch spans the region be-
low the metallic density of states, and another above.

It is noteworthy that for other parameter choices in this
model, one can also find instances where the number of co-
moving surface states changes upon bulk-edge coupling but
still with an odd number of surface branches on each side of
the strip (in Appendix B, an example is given where the
number of surface states changes from 1 to 3—still retaining
the odd number of branches).

Our numerical results suggest a tendency of surface states
to be pushed away from overlapping in (surface-projected)
momentum and energy with parasitic bulk states originating
from a nontopological band. Not only do they seem to per-
sist, at some momenta they seem to multiply. Motivated by
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FIG. 4. (Color online) The wave-function density |¢{? of all 191
eigenstates identified as surface states in Fig. 3(e). The graph shows
all wave-function profiles superposed (the point here is to demon-
strate that they all decay exponentially into the bulk) as a function
of the coordinate x perpendicular to the system boundary. All wave-
function curves are plotted with the same (blue) color.

this observation, we turn next to an analytic treatment of the
mixing between surface states and bulk states.

III. FANO MODEL APPLIED TO EDGE
STATES—BULK MIXING

Our numerical results confirm that edge states have re-
markable resilience. Even in the absence of a band gap in the
material, precise edge states form in empty spaces in the
projected energy-momentum state diagrams. Let us now ap-
proach the problem in its idealized form analytically. For this
purpose we write a model consisting of a surface-state
branch and a decoupled bulk metallic band, and then allow
them to mix. This most certainly describes the specific model
we have discussed here since an effective low-energy con-
tinuum theory would encompass precisely these elements.
We label the transverse momentum by q, and the momentum
in the direction perpendicular to the wall by k. In the clean
limit, the bulk and surface states are mixed by hopping ma-
trix elements which preserve q, and therefore states with
different q do not mix. This allows us to treat individual edge
states separately.

The model outlined above takes the form of the well-
known Fano model.?® Making use of the path-integral formu-
lation, the action for the model is

Si=13 J ¥ iliow, - @]+ f X'xiw,~E(k.q)]
B Jq k

+ f [ xg(k.q) + He.}, (2)
k

2n+1

and the surface and bulk states are denoted by the Grassmann
fields y=iiw,,q) and y=x(iw,,k,q), respectively, their de-
pendence on momentum and Matsubara frequency sup-
pressed for the sake of brevity. The surface and bulk state
energies are €(q) and E(k,q), respectively, and the coupling
between them is g(k,q). The exact solution of the Fano
model®’ can be most easily achieved by integrating out the
bulk degrees of freedom. Since the action is quadratic, this
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FIG. 5. (Color online) Plot of the surface-state decay length vs
the energy of the surface state. We use the same parameters as in
Fig. 3(e) (shown in the inset). The energy range 0.6 <e<1 is where
the metallic bulk band appears, and hence a surface-state branch is
absent. At all ends of a surface-state branch, where a bulk band
appears, a divergence in the decay length is evident. In all cases, the
decay lengths are no longer than 3, in a system of size ~50. The
multivaluedness at the low- and high-energy extremes is due to the
surface states curving a bit up in energy as one approaches the
original topological insulator bands, as is shown in the inset.

can be done exactly, resulting in an effective action for the
surface-state degrees of freedom (i) alone,

1 o |g(k,q)|2]
B; wal - | S @

This action reveals the fate of the spectrum of the surface
states. The retarded Green’s function extracted from the ef-
fective action above is

g (k. q)|*
4
{ - ela- ,fa) E(k,q)+id | “
From  which  the  spectral  function A(q,w)=

-2 Im[G,,,(q,w)] can be extracted.

The most important feature of the spectral function
A(q,w) is that the original surface states, when their energy
is within the bandwidth of the bulk, acquire a lifetime, which
is roughly 7~ m [where v(E) is the density of states and

E the Fermi energy]. This lifetime describes the typical time
scale in which the edge probability density leaks into the
bulk states. In addition, new delta functions appear at ener-
gies outside the bandwidth of the bulk metallic band both
above and below. We illustrate this by considering a constant
coupling g, and a uniform density of states »(E), in a bulk
band with energies E; <E<E,. The spectral function is

-2Im(3)

2 2
(R e

where \=|g|*(Er) and Im(2)=-n\ for E,<w<E,, and
zero if w lies outside the bandwidth of the bulk band, thus
producing the aforementioned delta functions. Figure 6
shows the spectral function for particular values of the pa-
rameters. If the original surface-state energy lies outside the
bulk bandwidth, it remains as a delta function outside the
bandwidth, slightly shifted from the original surface-state en-

Al(w) = . (5
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FIG. 6. (Color online) Typical spectral weight function of the
Fano model. We take the spectral weight in Eq. (5), with parameters
E;=-1, E,=+1, the surface-state energy €=0.5 (within the band-
width). For o values outside the bulk bandwidth we take N=10"* to
approximate the delta function outside the bandwidth. For the con-
tinuous (red) curve we take |g|*»(Er)=0.04, and for the dashed
(blue) curve we take |g|*v(Ep)=0.2. At the lower coupling value
(continuous curve), the widened peak near w=0.5 is the remnant of
the original surface state, and the modest weight in one delta func-
tion already appears very near the band edge (the weight of the
other delta function is too small to discern). For the stronger cou-
pling value (dashed line) traces of the surface state are largely ob-
scured in the bulk bandwidth but both the delta functions outside
the bandwidth appear prominently.

ergy, and with most of its spectral weight retained. In addi-
tion, a new delta-function peak will appear on the other side
(in energy) of the bulk band, with a small spectral weight,
and some spectral weight will appear within the bulk band-
width.

These features of the Fano model depend only weakly on
the details of the density of states, as can be demonstrated by
considering a more realistic bulk band dispersion E(k)=—u
—2t cos(k). Using the dimensionless variable u= (w+u)/2t,
the integral for the self-energy can be solved analytically,

yielding Re(E)zé{rzg‘gﬁ—El and Im(2)=0 when |u|>1, and

Vil~1
Re(2)=0 and Im(E):—T% when |u|<1. The resulting
spectral function is qualitatively no different than that of Fig.
6, which corresponds to Eq. (5).

The remarkable structure the Fano model implies can be
further intuitively understood by considering an impurity
state (d) coupled to a flat band of bulk states (f,) at zero
energy, H=ed'd+g>,[fid+H.c.] (the coupling g is taken
constant without loss of generality), with n=1---N. The
characteristic polynomial of the Hamiltonian matrix Det(E
—H)=(-1)N"'EN"Y(E>— eE—Ng?), has N—1 zero modes left
from the original N flat band states, and two roots at E
=€/2+ e /4+Ng?, outside the flat band, which, assuming
Ng?>> €%, become E~ + \Ng+€/2. As in the Fano model
above, exact energy eigenstates appear above and below the
band. While this is an extremely artificial example (flat band
states being most sensitive to coupling to other states), it
demonstrates how the salient features of the Fano model can
be understood—the impurity state “hijacks” one effective
mode from the band, and mixes with it, producing two eigen-
states with energies outside the band, which correspond to

reduced-weight delta functions in the spectral function for d.
Similarly in the general case, the appearance of the second
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pole in the spectral weight implies that one effective bulk
state is hijacked while the effect on most of the band will be
minute.

A. Fano model implications

We can interpret the numerical results of Sec. II in terms
of the salient features of the Fano model as follows. The
Fano model tells us that for those edge-parallel momenta q
where the surface states and bulk states do not overlap in
energy, the surface states are only slightly shifted in energy.
This is demonstrated in those regions in Fig. 3 where the
original surface states did not overlap with the bulk states.
On the other hand, if the surface states overlap in energy
with the bulk state energies, the surface states are exiled
from the bulk bandwidth, and form states at (very different)
lower and higher energies, in addition to leaving ghost sur-
face resonances overlapping with the bulk states, close to
where they originated. The exiled states are still surface
states, mixed with a superposition of bulk states localized at
the surface, since any eigenstate existing in a bulk gap in
energy-momentum space, must be an evanescent wave into
the bulk (below we will use this fact to derive the penetration
depth of these states). The surface-state spectrum e(q) is a
continuous function of q, and assuming the coupling g(k,q)
is also a continuous function of momentum, the exiled sur-
face states will also form a q—continuous energy branch.
The helical nature of the surface states will also be preserved
in the new exiled surface states: it will correspond to an odd
number of Dirac cones in 3D (and an odd number of Kram-
er’s pairs of bands in 2D). The exiled states are evident in the
numerics in Figs. 3(e) and 3(f), in particular, in Fig. 3(e) in
the range 2.4 <g<<3.2. Indeed, the exiled states retain the
surface-state branch continuity, as well as their helical na-
ture. The ghost surface resonances are not pure surface
states, and so are not distinguished in the spectra in Fig. 3. In
order to identify the “ghost state” signatures in our numeri-
cal, we probe the explicit spectral weight function of our
model in the next section.

Experimentally, we expect that on different facets of the
crystal the two scenarios could be realized, and so if a helical
surface state appears on one facet of the metal, crossing the
Fermi energy, but not on the other facets, it may simply be
significantly shifted in energy, and can in principle still be
observed outside the energy range of the bulk band.

In topological insulators, the surface-state branches
should be anchored at one end in the valence band, and at the
other end at the conduction band. In finite size TI systems,
the connection of the topological surface state and the bulk
bands is actually avoided only by a finite-size minigap, pre-
sumably of order 1/L, where L is the system size (this can be
seen explicitly in Fig. 1 of Ref. 1). Likewise in our system,
the exiled states come infinitesimally close to the bulk band
edge—only a finite-size limited gap of order 1/L should
appear between the surface branch and the bulk band. The
Fano model predicts the exiled states come infinitesimally
close to the band edge. Therefore, the helical surface-state
“connecting effect” is no different from that in proper TI
band structures.
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In order to learn something about the exiled states, we can
use the fact that they appear in band-gap regions to estimate
their skin depth. Assuming a surface state is at an energy ()
close to only one band, and far away from all other bands, it
can be thought of as an evanescent wave at the interface
between the vacuum and a solid with the dispersion relation
of the bulk E= A+%, where A > >0 is the energy of the
bottom of the band. This dispersion relation translates into a
wave equation in space time

EXVES (A— ﬁaﬁ)zp, (6)

for x>0 (in the solid) while A—0 (and perhaps the mass
changes) in the vacuum (x<0). For x>0, the wave function
should be of the form i~ e™4-/¢ with some penetration
depth d, having a positive real part. Substituting this in the
bulk wave equation, we find

d=[2m(A - Q)] (7)

As the surface state gets closer to the band edge () — A, the
penetration depth diverges, as seen in Fig. 5.

While the rough analysis above strongly suggest that the
surface states’ lines appearing in the band gaps can only
represent exponentially decaying eigenstates, a more thor-
ough analysis is possible. Starting from Eq. (2), we consider
one parallel momentum point ¢, which for the sake of brev-
ity, we will omit it from our notation. As explained above,
there appear two eigenstates in the gaps above and below the
bandwidth of the bulk band. Choosing one of them (with
energy (1), the (surface) eigenstate in the hybridized system
must be some superposition of the original surface state and
the bulk states | )= |+ [ B x) The spatial wave function
is found as

) = () = el + f Bulel) ~ ae™ + f f,
k k
®)

The first term above is clearly exponentially decaying—this
is the part coming directly from the original surface-state
wave function. The second term, however, may at first sight
have a very different functional shape. It is this function
f(x)=[,Be™ we wish to calculate. The details of deriving
this quantity are a bit involved, and we leave them for Ap-
pendix C and simply state the result here

— —ikxﬂ
f) fk v (9)

which for the simple example of g=const and Q—E;=A
+2t[cos(k)+1] can be shown to result in

F(x) ~ e me In{1+(A220+\[1 + (A/Zt)]z—l}’ (10)
clearly an exponentially decaying function.

B. Numerical evidence for the surface resonance

In this section we will present numerical evidence for the
ghost state surface resonance in the model described in Sec.
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FIG. 7. (Color online) Numerical calculation of the surface-state
spectral function. We take the surface-state eigenstates in the decou-
pled case [y(q)] and find their distribution among the eigenstates
of the coupled system ¢,(q) by calculating the overlaps A(q,)
=(h(q)| ¢,(q))|*. This is expected to approximate Eq. (5). We use
the same parameters as the strongly hybridized zigzag edge strip in
Fig. 3(e), and the overall spectrum is manifestly identical in the two
images. We plot the surface-state spectral weight function versus
transverse momentum (horizontal axis) and energy (vertical axis).
Dark (blue) points have A(w)>0.06, intermediate gray (green)
points have 0.06 > A(w) >0.02, and all points with 0.02>A(w) are
very light gray. The exiled surface-state branches are manifest, and
the ghost spectral resonance is identifiable as a faint peak overlap-
ping with the bulk band, between the two exile branches. In addi-
tion, the lower spectral weight points map out the shadow of the full
bulk spectrum.

II. First, we calculate explicitly the surface-state spectral
weight function [Eq. (5)] described above in the Fano model
analysis. This is done by calculating a probability distribu-
tion to find the original surface-state eigenstates at a given
energy and momentum in the new, coupled spectrum. We
take the surface-state eigenstates iy(q) in the decoupled
case, and calculate their overlap with the various eigenstates
of the coupled system, squared. In particular, if we denote by
¢,(q) all the eigenstates of the coupled system, with ener-
gies w, the spectral weight is A(q, ®)=[((q)| ¢,(q))|>. The
results of our numerics, for the surface-state branch along
one edge of the sample in the strong coupling case (13
=0.3), are shown in Fig. 7. A faint but discernible diffuse
peak is seen to overlap with the bulk states in between the
upper and lower exiled surface-state lines, thus confirming
the predictions from the Fano model analysis.

The spectral weight function [Eq. (5)] is not necessarily
what ARPES or scanning tunnel microscope will measure. In
order to give a clear experimental signature that can be mea-
sured, we perform one additional numerical analysis. We
take the density profile of each eigenstate ¢,(q), and con-
volve it with a weight factor f(y)=e™/4, to yield the total

weight J(@,q)=(,(@)|f()|b.(a)|>. The decaying expo-
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FIG. 8. The ghost surface resonance observed in surface probes.
The quantity J measures the weight of each eigenstate ¢, con-
volved with an exponentially decaying weight factor, mimicking the
penetration depth of the experimental surface probes J(w,q)
=, ()|f )| p,(q))|>. Here we plot J versus transverse momen-
tum q and energy w, both in (a) 3D and (b) 2D plots. The grayscale
color scheme is such that higher values are colored dark gray. We
find significant values of 7 only for the surface states and the sur-
face resonances, which are manifestly positioned in between the
exiled surface states [most clearly in the 2D plot (b)]. In addition,
the very light gray points map out the bulk states.

nential mimics the finite penetration depth surface probes
can achieve. Advantageously, the calculation of J is unbi-
ased by the “band archeology” in calculating A(q, w), which
required comparison with the eigenstates of the decoupled
system. We plot J(w,bfq) versus w and q in Fig. 8. Those
eigenstates with a significant part localized at the surface
should have a sizable value of 7. Indeed, we see in Fig. 8
that between the exiled surface states the signature of the
ghost surface resonance appears. In conclusion, careful
analysis of our numerical results shows that surface-state
probes could identify the ghost surface resonance.

IV. DISORDERED HELICAL METAL WITHIN THE
FANO MODEL

Going beyond the clean limit, we now consider edge-bulk
hybridization in the presence of disorder. A random disorder
potential scatters surface states into other surface states, as
well as into the bulk. For simplicity we ignore, however,
disorder scattering between bulk states, concentrating only
on the fate of the surface states. Within the weak-disorder
approximation® we will see that the Fano picture by and
large still applies.
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Disorder scattering can easily be quantified by slightly
modifying Eq. (2),

S3=é§ fq l//*df[iw,,—e(q)]+fk)(*x[iwn—E(k»q)]

+J [x*t//’g(k,q,q’)*+H-C-]+f ATCRORE
k,q' q/
(11)

where we use the shorthand notation ¢’ =ifiw,,q’) (and
similarly for ¢/ later on). The coupling term g(k,q,q’) no
longer conserves transverse momentum and is determined by

the overlap of the surface () and bulk (¥) state wave func-
tions represented by the various fields weighted by the ran-

dom potential, g(k,q,q’)=fr¢qu(r)*U(r)jZk,q(r). Integrating
out the bulk fermions, we are left with the effective action,

S4=lz |:f wub{iwn_ 6(‘1)]"‘] lﬂ;;lﬂqIV(q,q’)
B, q q.q'

_ 8k a,q")"g(k.q,9") 12
J;,q,q’,q”(w) v iw, - E(k,q) ’ (12)

Next we average over disorder, assuming the disorder has
a Gaussian distribution U(r)U(r')=C(r-r')=i?8(r-r’),
and surface and bulk wave functions i~ e 9R-1/d and ¥
~ ¢'dR+ikx (where the edge-parallel and perpendicular coor-
dinates have been separated as r=(x,R), and d is the skin
depth of the surface states). Finally, expanding in the limit of
weak disorder we find the leading contribution from disorder
is a term quadratic in i (higher order terms in ¢ are weaker
in this limit)

1 u?
SS:EEI '/’TW{[iwn—G(Q)]— P k) |
n Jq kq' 'Wn— >
(13)

where u differs from # by some numerical constant. It is
important to note that this leading term originates solely
from the bulk-surface-state scattering, and can also be de-
rived by simply taking the disorder mean of the action in Eq.
(12). This gives a Green’s function nearly identical to that of
Eq. (4) but we notice that while transverse momentum is
now once again a good quantum number, disorder, even after
averaging, couples all bulk states to any one of the surface
states. Therefore, the separation in energy and momentum
picture no longer holds here, and any surface state that does
not exist in a full energy band gap will suffer the effects of a
Fano mode impurity state in the energy bandwidth of the
bulk band. From the original surface-state branch, a ghost
feature will remain in the spectral function, and exiled
surface-state delta functions appear outside the bulk band-
width. When disorder is very weak, the ghost surface states
will actually be the most noticeable feature and will simply
seem as ordinary surface states with a lifetime to leak into
the bulk, determined by the strength of the disorder.

A simple experimental test for our predictions follows
from the observation that the scattering strength is propor-
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tional to impurity density: u20<p,-mp. In samples where the
disorder scattering of surface states into the bulk dominates
over other effects (phonon scattering and electron-electron
interactions), the surface-state lifetime must be inversely pro-
portional to the impurity density. Very recent work® has al-
ready measured a quasiparticle lifetime for the surface states
in Bi,Se;, which is one of the main candidates to be a helical
metal as mentioned above, and concluded from the energy
dispersion of the surface-state lifetime that disorder scatter-
ing seems to be the dominating scattering mechanism. It
would be particularly interesting in such experiments to
search for the exiled states, which should be above and be-
low the bandwidth of the bulk band. We leave a theoretical
study of the nature of the exiled states in disordered helical
metals to future work.

The difference between helical surface states and nonhe-
lical surface states becomes paramount when considering
disorder. Nonhelical surface states, in the clean limit, consist
of an even number of bands that can mix via time-reversal
preserving terms. In 2D materials with one-dimensional (1D)
surface states, nonmagnetic disorder, of the likes we consider
here, can backscatter between two such bands since their
spin configurations are nonorthogonal, and therefore strongly
localize them (although a strong spin-orbit interaction may
mitigate this effect*’). A helical edge state on the other hand
is a chiral 1D conductor, which suffers no backscattering. In
3D materials the surface states are two dimensional, and non-
magnetic disorder would lead to weak localization.*' 3D he-
lical surface states, however, always exhibit antilocalization
of a single Dirac cone. Nonhelical surface states may also be
in an antilocalization class due to spin-orbit coupling but
unlike the helical states, they are (topologically) smoothly
connected to a spin-rotationally symmetric 2D electron gas
(2DEG), which suffers weak localization. The additional pro-
tection that helical surface states exhibit against localization
effects indicates that the surface-bulk Fano effects will domi-
nate over localization effects, whereas the opposite may be
true for nonhelical systems.

V. CONCLUSIONS

Topological band insulators are characterized by their
surface-state properties. Helical states on the surface of a TI
have odd, rather than even, number of either Kramer’s pairs
of 1D surface channels in a 2D material, or 2D surface met-
als with a Dirac dispersion in a 3D material.'-3% In our
work we demonstrated that even materials that are generi-
cally metals retain features of the helical structure of the
surface states, and therefore a similar classification can apply
to metallic states.

Furthermore, we find that the mixing between surface
states and bulk states in metals results in a generic rearrange-
ment of the surface-state spectrum. At energies where sur-
face and bulk states overlap and mix (either when they over-
lap also in momentum parallel to the surface or due to
disorder) the surface states are reduced into surface reso-
nance ghosts, with a diffused spectral function peak centered
near the original energy of the surface states. In addition, the
bulk-surface mixing produces “exiled surface states” outside
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the confines of the bulk parasitic metal energy bandwidth.
Therefore, the surface-state spectral structure emerging from
this mixing contains for each surface momentum q (where
surface states exist) two sharp surface states above and be-
low the parasitic metal bands where there is a bulk gap (for
that momentum number, or, when weak disorder is at play, a
complete bulk gap), and a diffuse surface resonance overlap-
ping with the metallic density of states. Surface resonances,
despite being immersed in the bulk states, can still be iden-
tified in ARPES measurements due to the fact that they have
very weak k, dispersion*? (and ideally none), in contrast to
bulk states. Following the surface resonance peak for differ-
ent ’s should roughly parallel the sharp surface-state spec-
trum above and below the band. The location of the sharp
exiled states and the diffuse ghost resonance may change for
surfaces made of different facets (cuts) of the crystal. For
instance, at a particular energy a sharp edge state on one
facet may correspond to a mere ghost resonance when we
consider another surface.

The evolution of the surface-state spectrum in the hybrid-
ized system, as described above, makes it clear that the he-
lical characteristic of the surface states will remain un-
changed. The topological insulator has only one Kramer’s
doublet of surface-state branches: this degeneracy cannot be
lifted by the mixing with the bulk band, and therefore it is
sufficient to consider a generalized Fano analysis of only a
single surface branch with the bulk. In the nontopological
case we would always have to consider two surface
branches, which may mix due to the hybridization with the
bulk. Strikingly, in some cases the number of surface-state
branches at each edge can change but the parity of the num-
ber of surface bands will remain odd (see Appendix B, where
the one surface-state branch gets multiplied to 3).

Effects of disorder were only briefly and crudely consid-
ered here. Nevertheless we can already indicate intriguing
features which may arise. Following the disordered Fano
model for the case of a metallic band overlapping in energy
but not in momentum, the hybridization will broaden a sur-
face state (say at momentum q) into a ghost but will also
produce sharp (surface) energy eigenstates at energies above
and below the energy overlap range, so long as there is an
empty patch as a function of energy that can support them.
An ARPES measurement should be able to observe all these
features for metals with an appropriate band structure, where
a metallic parasitic band overlaps in one range of energies
with topological edge states, but not in momentum, and
above or below this energy range bulk gaps exist. Tunneling
measurements should also be able to observe the spectral
features we describe here. We will explore this situation
more closely in future work. A more mundane prediction of
the disorder analysis which should be easily accessible in
experiment is the quasiparticle lifetime decrease due to in-
creasing disorder.

Topological insulators (and topological phases in general)
are characterized by a topological invariant that assumes
only quantized values, and is thus robust to infinitesimal de-
formations to the model. The presence of edge states is
deeply connected to topological order, and the presence of
helical edge states in the metallic models we present here
would suggest some sort of topological order may exist.
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However, conventional understanding of topological phases
depends crucially on having a robust global gap in the sys-
tem. The “helical metal” phase we consider here is gapless,
though in a clean system local gaps in the BZ may appear. It
is therefore unclear whether one can define a topological
invariant in general. However, one incarnation of the topo-
logical invariant for the topological insulators (in both d
=2,3), involves Bloch states only at time-reversal invariant
momenta in the BZ.® If there is a local gap at these points in
the BZ, the same topological invariants are still well defined.
In the helical metal phases we introduce here, each of these
points can either be locally gapped or not. It is also unclear
what could be a topological invariant for the helical metal in
the presence of disorder. Going forward, the question
whether a topological invariant exists for the systems we
introduce here is perhaps the most enticing, and we leave its
determination to future work.

The abundance of materials exhibiting topological prop-
erties suggests that there must be many materials which are
helical metals—metals with an odd number of chiral surface
states at some energy ranges for each facet. Such materials
can presumably be found in the vicinity of topological insu-
lators and vice versa, which is supported by the materials
observed so far, Sb, Bi;_,Sb,, and Bi,Se;. The spectral ef-
fects which we explore here should be accessible in all of
these materials and provides another challenging system
where interaction and disorder may have important and in-
teresting effects.
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APPENDIX A: ALTERNATIVE CONSTRUCTION OF A
HELICAL METAL MODEL

Here we explore an example of an alternative construction
of a helical metal model, without introducing new degrees of
freedom. Both constructions were briefly outlined in Sec. II.
We start with the Kane-Mele model,'? and add second
neighbor hopping 7, (which involves hopping only on the
same sublattice). This realizes the construction leading to a
momentum-dependent chemical potential. We adjust the sec-
ond neighbor hopping and overall chemical potential to be
strong enough to close the bulk gap while having a near zero
value near those momenta at which the surface states appear,
on the zigzag edge surface of the honeycomb lattice. We
explore both this edge as well as the armchair edge. Our
model is most simply and succinctly written as
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FIG. 9. (Color online) All pictorial conventions are exactly the
same as in Fig. 3, including the system size, and the criteria for
identifying surface states. Here we use parameters A=0.3, ©=0.8,
t;=1, and 7,=0.4. We show the zigzag spectrum in (a) and the
armchair edge spectrum in (b).

H=—1,2, [ajabja +Hel-p> a;aaja+ (a—b)

(ij)er ja

+ > [afaam(— 50,5+ iNsgpv;) +Heeo + (a — b)],
LihaB
(A1)

where as in Eq. (1), a,b denote the fermion operators on the
two sublattices, i,j denote the lattice sites, the spin indices
are denoted by «, 83, and Vi is as defined in Refs. 1 and 3
(and shown in Fig. 2). Repeating the finite strip numerical
diagonalization for both zigzag and armchair edges, we find
the results of Figs. 9(a) and 9(b), demonstrating yet again the
presence of helical surface states coexisting with a bulk
Fermi surface. The surface states in the armchair edge geom-
etry seem as if they have been pushed away from overlap-
ping with the bulk states, reminiscent of the exiling effects
we discussed in the main text.

Note that some examples of helical metals may also have
surface states on some faces but not on others, as would be
the case in the above model if the second-nearest-neighbor
hopping were sufficiently strong such that no bulk gap would
exist. Generically, such surface states will be unstable to
strong disorder, and will be subject to a finite lifetime as
described in Sec. IV above.

APPENDIX B: SURFACE-STATE MULTIPLYING

Another revealing example of the model in Eq. (1) shows
the helical nature of the surface states being preserved de-
spite significant changes in the band structure. The param-
eters used here in this example are A=0.08, t,=-1, 1,=1, h
=2, and #;=0.5, and we, once again, repeat the same numeri-
cal calculation on both the zigzag and armchair edged strip
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FIG. 10. (Color online) All pictorial conventions are exactly the
same as in Fig. 3, including the system size, and the criteria for
identifying surface states. Here we use parameters A=0.08, r,=-1,
t1=1, h=2, and 13=0.5. We show the spectrum of both zigzag and
armchair edge strip geometries. The same expulsion of the surface
states occurs, as in Fig. 3, and in addition we find the number of
surface branches has tripled to three Kramer’s pairs on each wall of
the strip.

geometries. The various spectra are displayed in Fig. 10 and
show that on both edges, the single surface-state branch has
multiplied into three copropagating surface-state branches,
albeit not crossing the Fermi energy (though that can be
changed with the overall chemical potential) so that the total
number of helical surface states on one edge has changed
from one Kramer’s pair of bands to three. There are still an
odd number of surface-state branch pairs, which means the
system has the same helical classification. This numerical
result again confirms the robustness of the helical nature of
the surface states in this model, despite strong mixing with
an ordinary metallic band. We will leave the exploration of
the edge-state multiplication effect to future work.

APPENDIX C: CALCULATION OF THE HYBRIDIZED
WAVE FUNCTION FORM

Our goal is to calculate the quantity B;={x;| ¢), defined
in Sec. IIT A. We can find this using Green’s-function meth-
ods. The Green’s function of the full hybridized system can
be written in its spectral decomposition as

SN

, Cl
N o+in—Q, €D

where (), are the eigenstate energies. We are interested in a
particular (surface) eigenstate, with the isolated energy value
of Q,. Taking a contour integral C, in @ surrounding only
this pole of the Green’s function we find
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From this point on we will drop the subscript N. The quantity
we are after can then be calculated from

B =Gulndn=¢ SE0lln. ()

It is useful to note that the quantity ({G|) is precisely the
retarded Green’s function of Eq. (4), and we will now show
that (x,|G|#) can easily be calculated using ({G|#). With a
Hamiltonian Hy+H, corresponding to the action in Eq. (2),
with H; being the hybridization term, the full Green’s func-
tion can be written as

[

G=[Gy' - H\I"' =[1 - GeH I"'Gy= 2 (GoH,)" Gy,
n=0

(C4)

where G51=w+i 6—H,, and in the spectral decomposition

ey J XXl
Go_w+i5—e+ w+io—E; €5
and
H1=Jg(k)|x><¢|+H-C- (C6)
k

Using the facts that (x|Go|#)=0 and <X|G0H1=J§§‘_%k<¢| we
find that

(XIGlW) = (X2 (GoH "Gl
n=1

o

=(x|(GoH ) 2 (GoH,)"Go| )
n=0

=(X[(GoH )Gl

0]
= wdl. )
Using Eq. (4), we then have
d
B =§ﬁ S Gl
Co 2
[ deo gk 1
_fco 2miw+id—E, 0+id-2(0)’ (C8)

where the self-energy 2 (w) is that appearing in Eq. (4). The
contour C, by definition encircles only the pole of the
(YG|) part, and since we already know this energy ()
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appears in the bulk gaps, the poles E; in the integral are
outside the contour. Then by the residue theorem

. g(k) 1
_ c9
Pra Q+is-E 53 (©9)
0(1) QO

Since «a is a constant, all the momentum dependence comes
only from the factor
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(k)
~— C10
Bk QO+id- Ek ( )
and we finally can write
—ikx ke 8(K)
= ~ —_— Cl1
@) Jke B fke Grio-E W

which is precisely (after 5— 0) Eq. (9) in the main text. Note
that since the energy () is outside the bandwidth of E,, the
denominator in the integrand has no singularity.
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