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Abstract-The approximate analysis developed in Part I of Ihis work is apl'lied 10 sever:,1 'I'ecific 
problems. One put"pose is to illu,;trate the lise of tht' formalism. and a ,;ecnnd is In demon~trale the 
vftlidity of the method by comparing results with numerical solutions. obtained ebewhere, for the 
"exact" equations. A simple problem is treated first. the decay of a standing wave in a box containing a 
mixture of gas and suspended particles; one example of the !>teepening of an initially sinusnidal wave 
in pure gas is included. Viscous losses on an inert snrface are treated essentially according to cla~~ical 
linear theory; recent experimental results are used as the hasis for incorporating approximately the 
influence of nonlinear he,,! transfer in unsteady Il11W. All of the preceding results are combined in 
caJc::ulations of two examples of ullstahle motions in a snlid propellant rocket molor and in a T·burncr. 

I. Introduction 

IN THE first part of this work (Culick, 1976). hereafter referred to as I, a general 
formalism is described for treating both linear and nonlinear processes ass0-:iuted 
with acoustic waves in comhustion chambers. The method.is suitable for studying 
many problems involving waves in chambers; a few relatively simple examples 
are described here. Ultimately, specific results can be obtained only by numerical 
integration ora set of coupled nonlinear first-order ordinary differential equations. 
One of the purposes of this paper is to show how the representations of certain 
kinds of physical processes are incorporated prior to numerical computations. For 
convenience in reading, a brief summary of the development of the analysis is 
given below. Some of the formulas required in subsequent discussion are 
inCluded, but Part J will frequently be referred to in later sections. 

It is simplest to treat problems involving no flow or combustion. The analysis 
then describes the development of waves in a closed cham her. Some examples for 
the attenuation of waves in a gas containing particles are given in Section 2; a 
special case is the steepening of sinusoidal waves into triangular waves in a pure 
gas containing no particles. Some cnmparisnns arc made with "exact" numerical 
solutions to the conservation equations for one-dimensional motions. For the 
conditions examined, the approximate anc.lysis appears to be quite accurate, and 
is, of course, considerably cheaper to use. 

The viscous losses at inert surfaces are often important; these are treated in 
Section 3. For linear behavior, the classical results are derived in a slightly 
different manner from that usually given. Some recent global measurements of 
losses are incorporated to provide a means of estimating the effect of nonlinear 
behavior. 
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FinaJly. in Section 5 unstahl~ motions in a small sol ill pmpdlant rm.:kct motor alld 
in a T-hurner arc analy l.ed. The disLllssion is inlt:ndell only to providl! 
illustrations of thc mclhod. and 1101 as an exhaustive account. Once again. 
comparisons with numerical solutions arc made. 

All of the examples disLusscd here involve only longitudinal modes, for which 
the natural frequencics an: integral lIIultiples of the fundamental. Formula.,> valid 
for any geometry. i.c. any sct of normal modes. have heen deduced hy Culick 
(1975). but to date no numerical results have heen obtained. Eventually. an 
important application of the approximate analysis will be for three-dimensional 
problems which are prohibitively expensive to solve by more exact numerical 
techniques. It is a necessary preliminary step to demonstrat!! the validity of the 
approximate analysis. as far as possible. by the sorts of comparisons with "cxact" 
solutions discussed here. 

In broad outline, the formalism of the approximate analysis is develop.-:d in the 
following three steps. The conservation equations are first manipUlated (S..:ction 2 
of I) to produce a nonlinear inhomogeneous wave equation for the preSSlIr!! 
disturbances, with an inhomogeneous houndary condition: 

(1.I ) 

n ·Vp'=-f. (1.2) 

The functions" and / contain representations of all perturbations of the classical 
acoustics problem for the actual geometry being considered. Two important 
points should be noted. First, the speed of sound ii. and other physical properties 
not explicitly shown. are those for a two-phase (or in general a multiphase) 
mixture. This is a consequence of combining the original conservation equations 
to give a description of the flow as that for a single average fluid. Second, the 
forms of the functions hand / depend on what order of perturbations are 
considered. The procedure is based on expansion in two small parameters, the 
Mach numbers M and M' of the average and fluctuating flows. Terms in It and f 
which are linear in M' also depend linearly on M; these produce results for 
problems of stability. In the present work. nonlinear terms from the gasdynamics 
are carried to order M'2 only and are independent of M. Other nonlinear terms will 
arise, for example. in the treatment of nonlinear particle damping di<;cussed in 
Section 2. 

The second step is based on expansion of the unsteady pressure and velocity 
fields in normal modes I/J;(r) of the chamber, with time-varying amplitudes 1"//(t): 

(1.3) 

, = ~ Ti/(t)V,"'( ) u L.J -k 2 '/'. r 
i-I "Y I 

(1.4) 



Nlm/irl<'ur '",/ravil/,ol ,,("oustk "'''1','.\ ill "",,,"u.~t;lI" dwm".'r.~-·-·ll 7\7 

where k. = iitd, is the wavenumher for the ith mode. After (1.1) ha~ heen 
multiplied by 1/' .. (r) and inlt:grated over the volume of the chamber. the ordinary 
differential equation for Tin (t) Can he deduced: 

( I.'i) 

with 

( 1.6) 

Finally, in the third step. the method of averaging is applied to reduce the 
second order equations (1.5) to first onkr equations. The amplitudes are written 

Tin =, A .. (I) sin w .. l + Un (I) cos w"t, ( 1.7) 

and averaging over the time interval (I, t + '1') leads to the first order equations for 
the A" (I) and the B .. (I): 

(1.8) 

dB. --I j'h p ' 'd ' -d == -- .. Sin w .. 1 t. 
t W,,'T, 

( 1.9) 

For the special case of longitudinal modes (ill" = nw,), the interval of averaging is 
taken as the period of the fundamental mode. l' = 7', = 21T/c,) " and the limits on the 
integrals may be changed to (0,1',) for any function F" arising in problems of 
interest in this work. 

If only the nonlinearities arising from the gasdynamics are shown. the force F" 
has the general form 

(J. 10) 

For longitudinal modes, F,. simplifies considerably (see Part l) and the equations 
(1.8) and (1.9) are 

dB .. _ H (3n ~ J dt - a .. ,,- 8,.A" + -2 LJ [A,(Bn - i + Hi n - Bn.;) + Bi(A,.. i -- A i-. + An-.) . 
. =. 

(1.1 1) 

(J.] 2) 
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The linear c(lenkil~nts Un. n" arc relaled 10 Ihl~ l'oeflkicllts I) .. ". F"" ill (1.10) hy 

1 
2/)"'" tI" (1.1 ~) 

This is a useful rule, hecause lYn is thc familiar growth constallt for linear motions. 
and 0" is proportional to the shift of frequency. 

2. An approximation to the Iint"ar :lIId lIonlineur :IUenuation 
of waves by gus/particle interactions 

Particularly in solid propellant rockets using metallized propellants, but in 
other systems as well, some of the comhustion products appear in the form of 
liquid or solid particles. The viscous interactions hetween the particles and the gas 
may, under suitable conditions, provide a significant dissipation of energy. It is 
often the case that the Reynolds number hased on the particle diameter is outside 
the range in which Stokes' law is valid; it is necessary to use a more realistic 
representation of the drag force. This introduces another nonlinear influence in 
the general problem. 

Let F"(P) denote that part of F" in eqn (1.6), representing the influences of inert 
particles. The terms involved are those containing J)F~ and J)Q~. the fluctuations of 
(2.8) and (2.9) in I. By tracing the devt:lopment in I from (2.10) and (2.11) to (3.16), 
with H defined by (3.15) in I, one finds that the terms in question are 

F. (P)- ii_J![-.l R ~("Q' "'.F' ),1 "F"V"']dV " - E 2 - 2 -; ~ (I ,. + u Up ,,'l" + (J p '1'" • 
P .. ~" E It C •. (t 

(2.1) 

Formulas for J)F~ and J)Q;. can be found only by solving the equations of motion 
for the particles. Numerical calculations (l.evine and Culick, 1972; 1974) have 
shown that for nlany practical cases, nonlinear interactions are likely to he 
important. The approximate analysis here will be based on the nonlinear laws for 
the force J<'p and heat transfer Qp lIsed in those works: 

F =., ('j .1~J~(u .. u) [I + -61 Re 21\] 
p ." 2 I' p,(T 

(2.2) 

(2.3) 

where 

(2.4) 

Hereafter, the real flow will he treated only in a local approximation so that the 
particle motions may he treated as one-dimensional; interactions het\\ieen 
particles are assumed to be negligible. Results will be given for stcady-<qate 
harmonic Illotion; short term transient motions are neglected. Details of the 
analysis may be found in the report by Culick (1975). The linear part of the force. 
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for longitudinal modes, is 

(F. ""] - __ K_ [x + (y- - 1)-(' X 11'/ 
" Ii" - I + K I C

P 
2 " 

II" K - [' -- HI_ + (y - I ),5~ __ !),L, J 
' .. I -I K I -I n./ c,. 1 -I no' 

where 

x, -, «(,,"0.,)/(1 I H./) 

X} (w"il,)/(II H/). 

(2,5) 

(2.6) 

(2.7) 

A point not to be forgotten when this result IS u~ed is that the entire 
approximate analysis is founded 011 an iteration/perturbation procedure. This 
strictly requires that the force Fn on the right hand side of the oscillator equation 
11 .. + w .. 2 T'f .. = F .. be small, in the sense of the inequality 

Application of this constraint to the first term of (2.25) gives the requirement 

(2.8) 

Because the procedure followed here is different from that used by Temkin and 
Dobbins (1966) to treat this problem, so also are the limits of validity. Their 
simplified results, which exhibit the same frequency dependence CiS (2.20) and 
(2.21), are valid for K ~ I. Consequently, the present formulation should have the 
advantage of being applicable over a broader range of particle loading. 

By applying the rule (1.13) above, one finds for the linear contributions from 
gas/particle interactions: 

a (p) = _1 (_K_) [X + (y- - I) ~' X J 
.. 2 1 + K I L',. 2, 

(2.9) 

(J <.,) = ~...!!(-~-) [-.J1L + (y _ I)~ _ 0/ ] 
n 2 1 + K 1 + Hi c" I + 0/ . 

(2.10) 

Rece,nt numerical results reported by Levine and Culick (1974) have shown that 
the result (2.9) is quite good for smaller particles, and if the frequency is not too 
high. Beyond limits which are presently not well-defined, the Reynolds number 
(2.4) becomes too large for the linear drag and heat transfer laws to be accurate. 
Further comments on the accuracy and some examples are given below. 

The problem of analyzing nonlinear particle motions is avoided here. A correct 
treatment would involve solving the equations of mCltion with the nonlinear laws 
(2.2) and (2.3). A very much simpler course is taken here: the linear solutions are 
used to compute the next approximation in an iteration procedure (Culick, 1975). 
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Eventually the terms to be incorporated in the equations for the An amI R" arc 
found to be: 

[
dAn]('" (K) ---- =- ("._. {V (lJ - n A )I- V (I) . n,A",)} 
dt non.... "1 -f K "I" ,'" n"" 

(2.11) 

(2.12) 

where 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

A few results have been obtained for the attenuation of a standing wave 
initially excited in a box of length L containing a gas/particle mixture. These have 
been carried out for direct comparison with the numerical results reported by 
Levine and Culick (1974). First, one case will be given in some detail. The particle 
diameter is 2.5JL. the particle loading is K = 0.36 and the frequency based on the 
equilibrium speed of sound ii is HOO Hz in each .se. The material and 
thermodynamic properties are listed below: 

Specific heat of the gas 
Specific heat of the particle material 
Isentropic exponent of the gas 
Prandtl number 
Temperature 
Pressure 

C" = 2021.8 J /kgm-OK 
c.. = 0.68Cp 

'Y = 1.23 
Pr= O.S 
T= 3416°K 

p .. = 500 psi 

( 
T )0"" Viscosity of the gas JL "-" 8.834 X 10-4 3485 kgm/m-sec 

Density of the condensed material P. = 1766 kgm/ m 1 

The initial amplitude of the disturbance is /lp /p" = 0.15. 

Figures 2. t and 2.2 show the waveforms obtained from the approximate and 
numerical analyses. The approximate results are the solutions to eqns (1.11) and 
(1.12) with the linear coefficients an. 8" given by (2.9) and (2. to) and with 
additional nonlinear terms by (2. t I) and (2.12). The period used to normalize the 
time scale is the period 2L /ii for linear waves based on the speed of sound of the 
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Fig. 2.2. Attenuation by 2.5-1-' particles at 800 Hz according to the numerical analysis. 
Ap(O)/p. =0.15. 
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mixture. Tht! similarities hctwet'Jl the w:tvdorlll'i and the generation and decay of 
the even harmonics is apparent. hut thelt.: is a dilral~IKc ill the rclativl~ pha"c.'i 
hetween tht! even harmonics and the tnlal waveform. This seems to arisl~ almost 
entirely in the first l~yde of the o-.cillalion; it may he du~~ to ddails of thl~ 

nUJl1t!rical routincs and the way in whil:h Ihc computations hc~in. This dilf{~n~nce 
may therdore not rdlt'(:/ a gcnuilw ditferelKc hetwecn the approximate alltl 
"cxact" analyses. 

A more quantitative JlIeasure nf tht: behavior is the instantaneous vaillc of the 
decay constant, lX,,, calculated for successivc peaks of the waveform. This history 
of Q p is shown in Fig. 2.3. Further remarks on the behavior of Q p may be found in 
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Fig.2.3. The decay constant for the cases shown in Figs. 2.1 and 2.2. 

Section 7 of the report by Levine and Culick (1974), The purpose here is only to 
demonstrate that the approximate analy,>is does give fairly reasonable results for 
this case. However, there are limitations. not yet clearly ddined, which arise from 
the approximate treatment of the nonlinear acoustics as wdl as the gas/particle 
interactions. 

The linear behavior used here. described essentially by velocity and 
temperature lags, is in fact quite restrictive. Although it is not ap'parent from the 
analyses presented here, the work reported by Levine and Culick shows that the 
results are accurate only when WTd is small. If this condition is met, then SUp and 
STp are rdatively small, which is consistent with the general nature of the 
perturnation analysis lIsed here. For the 2.5-JJ. particles, W7d = 0'()8 at 800 liz. 

A case exhibiting more nonlinear behavior is shown in Fig. 2.4. The waveform 
calculated with the approximate analysis is shown for 30-JJ. particles at 1500 Hz 
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Fig. 2.4. Allenudtion hy JO-IL part ide" at 1'l0() Ill. ac<,nrding to the approximate analy\i~; 
t.p (0)/ p. ~. 0.03. 

(WTd = 25.8). The value of ll'p is -70 sec' at an amplitude of 1%. and the numerical 
analysis gives - 148 sec". Note that the fractional error between the appru:>;imate 
and numerical results for ll'p increases with increasing (JJTd' The greater amount of 
harmonic content present when larger particles are considered is due mostly to the 
reduced drag and hence reduced attenuation at the higher frequencies. The results 
from the approximate analysis can be improved for higher values of WTd by using 
different functions X" X 2 instead of (2.6) and (2.7). 

Wave propagation in a gas/particle mixture is dispersive; the speed of 
propagation depends on the frequency and particle size. through the parameter 
UYT"d, as wen as on the amount of condensed material present. For the problems 
treated here. the length of the box, and hence the wavelength of the waves. is 
fixed. Consequently, a change in the speed of sound is reflected as a shift of 
frequency. The periods of the waveforms shown in Figs. 2. J, 2.2 and 2.4 are not 
exactly equal to the period hased on the equilibrium speed of sound. It is obvious 
from the figures that the frequency shift increases with WTd' In Section 5 of Part I, 
it is shown that to first order, the frequency shift due to linear dispersion is 
of = - (J /27r; here, 0 is given by (2.10) for thc. nth modc. The actual frequency 
change is dominated hy 0,; values of 0, and of calculated from the waveforms for 
several cases are given in Table 2.1, a summary of the computations discussed 
here. 

These results serve to demonstrate that the nonlinear generation of harmonics 
has substantial influence of the detailed character of the attenuation of waves. 
The rather close agreement between the approximate results and the numerical 
calculations under conditions when the approximation to the gas/particle 
interaction is more accurate suggests that the approximate treatment of the fluid 
mechanics is realistic, at least for moderate amplitudes. 
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Parlid~ 

Diameter /. " Ftf /1, (n,. )". (0,. ), .. 

(14 ) (Hz) (111.) , 
h/';"d (H.I.) 21r (se.: ') (sc.: ') 

-------.-- -.--.-----. ----------....--.---~--.~--.. .----_.----------
25 

Approximate xoo 1)~4 XOO OOX 11.74 .~() 61 
Numeri<.:al XOO t)~4 2'111 11.011 511 W 
Approximate I~OO 1711li 150'; 0.1 ~ 'i 4.11 203 204 
Numerical I~()II 17XII 15()4 0.15 4 - 201 ·204 

10 
Approximate 1500 17XX 1695 :!,4 195 189.9 ··509 '-530 
Numerical 150(} 17XII 174() 2.R 24() ··509 -X70 

30 
Appnnimate 1500 178K 1740 21.6 240 224.1 67 . ·7() 
Numeri.:al l'iOO 17XII I7X7 2~.8 287 (,9 1411 

f. fn:quC'n.:y ha~l'd (III tht' l''1l1ilihriulIl 
" frcqllell':y hased Oil thc sp~ed for th" !:a~ (,"Iy, a. I(-y" I)C.TI'" 
, frC(llIem:y or the calculated wav" 0, ". / -/. 

(ap lion decay constant for linear wav,,~ 
(ap )" decay constant for the calculated wave at approximately 1% amplitude 
No/e. Small differences arise in "orne quantities (W'Td and «(t. )u.) which should have 

the same values when .:akulated by the approximate and numerical methods. This is due 
to a small difference in the value of some property, most probably the viscosity. 
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Fig. 2.5. Steepening of a standing wave in a 
pure gas according to the numerical analysis; 

/ "'900Hz. 

Fig. 2.6. Steepening of a $tanding wave in a 
pure gas according to the approximate 
analysis with ten modes accounted for; 

/:0 900Hz. 
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From the point of view of reducin1! data for the attelluatitln hy partil'lc/gas 
interactions, it is alllH>ying tlmt the valUt~ of the decay con.,talll ch,lIlg\'s so mlll'h 
as the waves die out (d. Fig. 2.:1). It is possihlc Ihal if the higher harllllHlics arc 
filtered from the waveform, the hchavior of tr for the first harmonic "ltHIC Il\ay not 
be so extreme. Calculations have not hecn done to dleck this pI)int. 

Perhaps the simplest chc::ck of the fluid mechanics alone i-. calculation of the 
hehavior of a wave in a hox with 110 particles present. In this ca-.e, the wave mllst 
of course steepen, eventually formillg a shock wave. Neither the exact IIor 
approximate analyses call accomllmdate strnng shock waves, hut the initial period 
of development may usefully be examined. Figure 2.S shows the exact result, and 
Fig. 2.6 shows the result of the approximate analysis when ten modes are 
accounted for. Again, the qualitative agreement is quite good. As one would 
anticipate, the period of the wave decreases as the amplitude increases. For ooth 
the approximate and numerical analyses, ooviolls distortion of the peak occurs at 
about the fourth cycle. (The sharp jags in Fig. 2.5 may be due in part of the 
numerical routine.) 

3. An approximation to nonlinear viscous losses 
on an inert surface 
There arc two reasons for examining the influence of viscolls stresses and heat 

transfer at an inert surface: thl:se processes can he significant staoiii.fing 
influences; and in the presence of oscillations, the average heat transfer increases 
substantially. The second is a nonlinear effect which has on occasion caused 
seriolls structural problems, particularly in liquid rocket motors. The main 
purpose l)f this section is to show one way of incorporating some experimental 
results within the analysis developed earlier. As part of the argument, the more 
familiar linear results will also be recovered. 

The viscous stresses and heat transfer at a surface are, of course, associated 
with a boundary layer, but they can be accommodated here by suitable 
interpretation of the force F and heat source Q in the equation~ developed in Part 
1. It is only those terms which are required in this discussion, so the wave equation 
for the pressure fluctuation is simply 

iJ
2
p' -2"2' _ R aQ' -2" F' ---a v p --:::----a v' at 2 C. at . 

The boundary condition is 

It ·Vp'",ii ·F'. 

(3.1) 

(3.2) 

For this problem, then, the equation for the amplitude of the nth harmonic is 

The heat source Q' is taken here to be associated with the heat flux vector it', and 
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the forc~ F with the viscous stress tcmor T: 

(3.4) 

Both q' and if' are significantly non-/'cro only in thin regions near the boundary. 
Then jf y denotes the coordinate normal to the wall, measured positive inward, 
d =dy dS and 

(3.5) 

The conventions used here ale that (/~. the component of q' normal to the surface, 
is positive for heat transfer to the wall. and .F', being parallel to the surface, is 
positive when the force tends to accelerate the gas. In the volume integrals of 
(3.3), 1/1" and V 1/1" are essentially independent of y, so (lne can write 

f Q'I/I" dv = f f dSI/'" L' -~~~ dy = - f f q~I/I" dS (3.6) 

f F' . VI/I" dv = f f dSV'/'n . L~ ~:: dy = - f f T~' Vl/ln dS. (3.7) 

Here. the surface stress is 'T~= -J.t(eJu'fcJy)"" where u' is the velocity tluctuation 
parallel to the surface, so 

p.8) 

Only the linear stress will he trt.!ated, hut both linear amI nonlinear 
contrihutions to the heat transfer will he accommodated by writing 

(3.9) 

Owing to the thermal inertia of the wall, T:' = 0; the temperature fluctuation T:' far 
from the wall is that associated with the acoustic field. The average heat transfer 
coefficient, ii, will be assumed in a manner described below, to depend on the 
amplitude of the acoustic field. 

Equation (3.3) can now be written 

•• 2 --~ff(~) ·VI dS_R1C·.!!.ff(kilT') dS 71. + W" 'TIn - E 2 J.t iI 'if" E 2 dt d!/ln po n Y w Po n Y .. 

-!'i.~ d~ f f jjT~.,,," dS. (3.10) 

First, calculation of the linear part" will be outlined. The known solutions for 
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the velocity and temperature fluctuations in a sinusoidal acoustic tidd an: 

II' II( I .. e ., Ie'''· 

(U I) 

where ,;, t arc the amplitudes far fWIll the wall, and 

0.12) 

Thus, for purely harmonic oscillations, 

These formulas are for steady oscillations. For transient motions, exad results 
can be obtained, but those are too complicated for the purposes here. Instead, the 
following approximation is used. Note that for sinusoidal motions. j may be 
replaced by w-ia/iit. This replacement will be made, and u and f will be taken to 
stand for the values associated with each mode. For the nth mode one eventually 
finds that (3.10) may be written' 

•• 2 -. 2 ("'(' ) R/C,(-Y-')r d ff h- .I,2dS 'TI .. + w .. 'TI .. - - a.. TI .. - W .. TI.. - - E'i ---- "d-- TI"'I'" 
p .. ~"1' t 

(3.13) 

where 

(v,=(w"ii/2)IIZ 1 II [(V"'")2+ -y-l II.,,2 dS 
lX.. 2(1 + K) E"2 k" y(Pr) '1'" • 

(3.14) 

It has been assumed that the motion far from the wall is isentropic, so 
r:.,::=: (-y - 1)(T"p' !-yp,,). For a longitudinal mode in a straight cylindrical tube, 

I I (~~" r dS = If .p"2 dS = 'tTDL 12 

and with K == 0, (3.14) becomes the familiar result for the decay constant for a 
standing longitudinal wave: 

h., _. 2 '(Wni?\ (1 -y - , ) 
lX" - Y5V 2-) + V'(Pr) . 

The treatment of the remaining term in (3.13) rests on appeal to some recent 
experimental results. Perry and Culick (1974) have reported measurements of the 
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time- and space-averaged values of the lwat Iransft.:r cOl'flicicn\ in a T··hurller with 
propellant discs at tht: ends. Denote thi ... L'odlkient hy (/~). Tht: data could be quite 
well represented hy the expression 

(/i)~ 
k ' O.044Rt' .. "! (1.15) 

where 

Ut'" 
l(iJ .. ~ 
ILli 

(1.16) 

The symhollrJl, .. represents the maxilllum amplitude of the prt:ssurc fluctuation, 
namely that measured at the end of the T-hurner; this is equal to [J .. llJ .. 1 for the nth 
mode. 

In the absence of any other information, two assumptions will he made. First, 
it is reasonable to assume that the local time-averaged heat transfer coefficient is 
also proportional to the square root of the pressure amplitude, as (3.15) shows for 
the space-averaged value. Hence, for the nth mode, 

(3.17) 

where Kn is a constant to be determined, The second assumption is that (3.17) is 
valid for all modes. From the definitions of fi and (fi), 

- 1 II - I f." -(h) '''" -;- II dS =- h dz 
S L n 

(3.18) 

for a cylinder. It follows from (3,15)-(3.18) that the constant K .. is given as 

The integral has the value 

so 

K =0057,k V(P,,>(Wn )"4 
n ••• "/(1-1(1) 2 ii . (3.19) 

Note that the mode shape cos (k"z) i ... lI:'.ed to obtain (1.19) because the data was 
taken in a uniform tuhe. The assumptions introduced above imply that the result is 
supposed to be valid for a local surface ekment whatever may be the mode in the 
chamber. 

After the method of averaging has bet:n applied, and various integrals have 



hecn evaluated (see (''''ick, 19 7'\), e411aliolls for A" and /1." wilh only tilt" vi-.;co"s 
losses shown are 

dAn 
lit 

dH" 
dt 

n,,(·"(A .. f H,,)·· 0.4'\7lf,,/J"(A,,' I H/)"4. 

(.~.lO) 

0.21) 

In the special circumstancc whcn these c4uations arc applied to waves In a 
cylindrical chamber with an inert lateral houndary, 

where R,.. is the radius of the chamber; and 

1.143 Y - 1 [( ii )( f.. )( a )'1"" 0.457 Hn = ~ Pry 1/2 10.-4 \000 1000 . 

where the units are: R, m; ii, m'/sec; tn, Hz; and G, m/sec. 

4. An approximation to the influence of transient 
surface C'ombustion 

The source of the energy for unsteady motions in a combustion chamber is the 
combustion itself. Interactions between combustion and unsteady fluid motions 
are commonly represented by some sort of frequency response function, which is 
particularly appropriate for studying the stability of sinusoidal disturbances. The 
use of a response function is not limited to linear problems, but the problem is 
much more complicated for nonlinear behavior. Only the simplest representation 
of the influence of unsteady combustion processes will be covered here. 
Elementary results for linear response to harmonic pressure variations form the 
basis. Certain of the features of truly tnmsient behavior will be ignored in the 
interest of obtaining formulas which are clear and inexpensive to use. Only 
surface combustion will he discussed, but the same strategy may he used for 
combustion within the volume. 

The influence of surface combustion is contained in 9Jl, defined by eqn (3.18) of 
Part I. It follows from (3.16) and (4. t) of I that the corresponding contribution to 
the force F .. in (1.6) is 

F t<) - Y a J( ~d>.I. dS 
n - -E '-a :tr ='I'n . P .. In t 

(4.1) 

To simplify the discussion, consider only one of the pieces of C3l; e.g. let I}J. = 1, 
t5K= 0, so (3.18) of I is 

0) ,- p' (I ) ( , - ~ T') :71 = {Jou,,+ U"-2 = + K m .. + m .. - T -- . 
ad 0 

(4.2) 
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It is best here also to avoid tht" cOlllplicltit)IIS as.,oci<lkd with a l'on,kll';t'(\ phas\.:: 
set K == 0, so the following results apply to propellallts lIot l'olltaining Illdal. 

There exi.,ts a class of analyses. di.,cussct! hy (,,,lick (I')M'). which prodUCt'S a 
formula for ni" I 111", lh~ 1111ctuation of lIlass flux due to a sinusoidal variation of 
pressure. This is a linear result, "i" I ,i,,, being proportional to the pressure 
fluctuation: 

The response function, Rb • is a complex function of frequency, 

Rio 
nAB 

. - - ._-- ---------
A ' 

A+······(t+A)+AB 
A 

(4.3) 

(4.4) 

in which A is proportional 10 Ihe activation energy for the surface reaction, and H 
depends on both A and the heat rclea.,ed hy the surface reaction. Oul of the same 
analyses, one can extract the formula for 6. trro; and with these results, (4.2) 
becomes, for sinusoidal motions, 

g1 = POiib[(t + f. C A fJ) [<" _ (11 t .£ A~ + Y - ) )]_~ 
To Cp E To Cp E y p" 

= poiid~(r) + io/l(iI]i-. 
p" 

(4.5) 

Note that ~(r) and ~(iI are dimensionless function'> of the frequency and the other 
parameters; if nonisentropic temperature fluctuations are ignored, ~i') = Rb(r)(w;) 
and 'J?t) == Rb(i)(W;). 

Now the formula (4.5) is, by construction, for steady sinusoidal variations 
only. As in the preceding section. the replacement i-"w-' (J/iJt will be made in 
(4.5), and the result is assumed to apply to all modes. Thus, ij Ip" stands for TtiIP;, 
and for an arbitrary pressure field expanded in the form (1.3), M. in (4.1) will 
hereafter be taken as 

til) - ~ [. ,J)(r) 1 (jll(') a] " :}. = P 11 L. .0" + -.--;7~ _ .. - Tt' . 
" It I I ."' (AJ

1 
4 at ; ,. (4.6) 

The subscript ( )i on 9Jl/ r
) ami M/" means that each function is evaluated at the 

frequency of the ith mode; these quantities can be calculated from (4.5) and (4.4). 
The force (4.1) can now easily he evaluated, and the rule (l.I3) gives directly 

the contributions from surface combustion to an(C) and On(') to be used in (1.1 I) and 
(1.12): 

a (e) = _yii~{jl>(r) J{ .1. 2 dS 
n 2£/;7<, 11' ,/,n 

(4.7) 

~ (i) 

() 
(e) _ n (e) 

n - - ~,,(r)a,. (4.8) 
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The same procedure can he applied II) plopcllants containing metal: only sOllie 
details arc changed to account for K /'0. 

A similar approximation can he useu for handling comhu,,(ioll within the 
volume of a chamber as nne finds ill liquid rod.ets, thrust augmentnrs, and solid 
rockets exhibiting residual combustion. Althou!!,h other contriouti,)ns will in 
general arise, associah;:d with mass and momentum eXl.:hange. the direct 
contrihution of energy release is represented by the terms containing Q and W" in 
cqn (2.2) of I. The dynamical twhavior of combustion within the volume may, for 

example, he represented hy some sort of response function; the well-known n-T 
model developed by Crocco ct al. is a special form. In any case, the contrihutions 
to the individual harmonics can he approximated as surface combustion was 
handled above. No results for bulk comhustion have been obtained. 

5. Application to the stability of longitudinal 
modes in a rocket motor 

It has already heen showlI that the nonlinear terms simplify cOllsiderably for 
the case of longitudinallllodes. This situation will be treated here for one example. 
Some preliminary results were reported by Levine and Culick (1974). Applil.:ction 
to large motors was examined by Culick and Kumar (1974). The discussion here is 
to demonstrate how the approximate analysis can be u~ed to study practical 
configurations and to provide a limited comparison with the more exact numerical 
results reported elsewhere. 

For all the calculations reported in this section, the following material and 
thermodynamic properties are used: 

Specific heat of the gas 

Specific heat of the particle material 
Thermal diffusivity of the propellant 
Prandtl number of the gas 

Viscosity of the gas 

Isentropic exponent of the gas 
Linear burning rate of the propellant 
Density of the propellant 
Density of the condensed material 

J 
Cp === 2021.8

k 
OK gm-

C. = O.68Cp 

I( = 10-7 m l lsec2 

p, = 0.8 

J.L = 8.834 x 1O-4
( T 13485)OMJ<J~~ 

m-sec 
y = 1.23 

f = O.OOR J 2({Ju /500)" 1 m/sec 
Pc = 40()O kgm/m) 
{J.t = 1766 kgm/m\ 

Because the nonlinear acoustics terms represented by the series in (1.11) and 
(1.12) are given explicitly, the first step in the analysis consists in evaluating the 
contributions to the linear coefficients an and en. Four contributions to linear 
stability are included; arising from the nozzle, the condensed material in the gas 
phase, the surface combustion processes, and the one-dimensional approxima­
tion to inelastic acceleration of flow issuing f:-nm the lateral surface ("flow 
turning"). The formulas for the corresponding values of an are 
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Nozzle 

Particles 

Flow Tumi"K 

Combustion 

I'. F. (' ("ulid 

.... ~ (I :'K) I X I I (it . I) -~ ~. X ., 
("" • , .. ~ I, ... 

_ 1 - - (SI» R Cr> 
an - '2 yu" Vb' 

(5.1 ) 

(S.2) 

(5.3) 

(5.4) 

The formula (5.1) is based on quasi-steady behavior; the velocity fluctuations are 
in-phase with pressure fluctuations at the nozzle entrance. Hence, the response 
function has no imaginary part and, as shown by eqn (4.10), the value of On for the 
nozzle is zero. The term representing flow-turning is the last one of (3.17) in I; 
there is no corresponding Eni • so 8 .. i<.; also zero for flow turning. The only non-zero 
values of 8. are for the gas/particle interactions and combustion; the first is given 
by (2.12) and the second by use of (4.8) and (5.4): 

Particles 

(5.5) 

Combustion 

(5.6) 

The two examples treated here were discussed in Section 7.4 of Culick and 
Levine (1974), where the result of the numerical analysis is given. Each is for a 
motor having a cylindrical hore and length 23.5 in. The mean pressure, port area, 
and throat area differ and are given helow: 

(a) (h) 

Length (in.) 23.5 23.5 
Port area (in2

) 3.33 4.73 
Throat area (in2

) 0.439 0.562 
Pressure (psia) 1568 1412 



These are the first and last cases given in Table 7.1 by Culick and Levine (1974). 
The fundamental freqlJency is 900 Hz. 

For both cases, the particle diameter i ... assumed to be 2.0p. and the mass 
fraction is K = 0.36. The comhustion response is taken to be the rt:presentation 
(7.4) given above. with A = 6.0 and R =- 0.56. Because the pressures are different, 
so are the flame temperatures in the two cases; for (a). T, = 3525c K and f<'r (b). 
T, = 3515°K. The small dilTerence has only minor influence on the results. 

With the above values, and the formula" (5.1)···('i.4), waves for case (a) arc 
found to he stahle. The vall".'s of the decay constants for the first fivc modes arc 
given in Table 5.1. Thc numcrical calculations produced an unstable wave which, 
with an initial amplitude of 5% (flllldarnentalmode) eventually reached a limiting 
amplitude of 4.2%. III view of the successful u)lllparison for the ca'>l'S treated in 
Section 2 for attenuation by particle damping, and because the representation of 
the comhustion response is the same in the approximate and numerical analysis, a 
likely source of the difference in the results is the hehavior of the nozzle. 

Tahle 5. \. VRlues of 0. an.\ 0" for three ca~cs 
of lIn~lcady molions in a SIIl"n rnolor 

Case (a) Case (aa) Case (b) 
(sec ') (sec ') ("ec") 

o. -·IX.5 8.0 -9.! 
a, -369.3 -342.8 -334.8 
a, -610.1 -583.6 -566.5 
0, -915.9 -889.4 -871.4 
0, -1289.2 -1262.7 -1244.0 
0, 12.9 12.9 64.0 
fl, 4(,.8 46.X 34.9 
0, ·-29.3 -29.3 -35.6 
8, - J3 1.0 -131.0 -135.0 
fl, "280.0 -280.0 -283.0 

In the numerical analysis, the calculations for the entire two-phase flow were 
carried out to the nozzle throat. The influence of the nozzle is buried in the results 
and its contribution to attenuation cannot he determined. For the approximate 
analysis, the influence of the nozzle is represented as a surfacc admittance 
function evaluated at the nozzle entrance. The result (5.1) is strictly valid for 
quasi-steady behavior of a gas only; it has heen extended to the case of two-phase 
flow by using the value of l' for the mixturc. The point is that there is reason to 
expect that the contribution of the nozzle is different in the two analyses. 

As a means of comparing the analyses, the value of the attenuation constant 
associated with the nozzle is chosen to obtain the same limiting amplitude as 
found in the numerical analysis. This procedure rests on the observation that the 
values of the limiting amplitudes are quite sensitive to the values of the linear 
coefficients an, On. 

Not a very large change is required. Equation (5.1) gives an = -153.25 sec-I. 
If this is changed to - ]26.75 sec-I, then al = 8.00 and the limiting amplitude is 
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about 4.2%. The values of the (~n and (In for five modes are given in Tahle 5.1. for 
the case denoted (aa). Figure 5.1 shows the amplitudes of the five harmonics 
considered; the functions An and I1n an: shown in Figs. 5.2 and 5.3. The waveform 
at limiting amplitude shows no ohvious evidence of distortion from the 
fundamental mode. 

The attenuation hy the nozzle is assumed to vary linearly with the ratio J of 
throat area to port arca. havin~ the value -·126.75 sec I when J has the vallie 
(0.132) for case (a). Then with the other required data given ahove, the 

OOlr- ~a2 

00 ~~o., -_~j-.~-".-.~.~._.-____ . __ .. __ .. 
00 ov. O:J 0 I~ 0.20 0 2~ (dO 

Time, sec 

Fig. 5.1. Amplitudes for unstanle o'>.:illations in a motor, case (aa) of Table 5.1_ 

O()~, r' ,. ._, 

1 I A, 

I 
002r- -j 

I 
I A, I I .----_.L_.(A, 

-000 ./ _. -_.1' '""" 

"'to 

-J 
-on') 1. I L ... _ I .. _L _. J 

00 O(/J 0:0 01':> 020 025 0.30 

Time, sPC 

Fig. 5.2. The functions An (I) for case (aa) of Table 5.1. 
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Fig. 5.3. The fUlKtions n. (t) for case (aa) of Table 5.1. 

approximate analysis applied to case (b) produces the results shown in thc last 
column of Table 5.1. The initial disturhance is stable. the decay constant for the 
first harmonic being a, = -9.12 sec -I. After twenty cycles (0.02222 sec) the 
amplitude is roughly 3.5% according to the approximate analysis. The numerical 
analysis gave an amplitude of 3.02% after twenty cycles. It appeared that the wave 
may have stabilized at a limiting amplitude, but the calculation was not carried 
further. In view of the slow decay found with the approximate analysis, it may be 
that the conclusion based on the numerical analysis, for only 20 cycles, is 
incorrect, based on incomplete results. If a true limit was indeed reached, then of 
course the approximate analysis gives the wrong result. A limit of 3% would be 
reached only if a, is positive, having a value less than 8.00. 

That nonlinear influences are in fact active, even at such relatively small 
amplitudes, is easily established. Consider a wave having a decay constant equal 
to -9.12 sec-' and a frequency of 900 Hz. According to linear behavior, the 
amplitude would be 4.0R% after 20 cycles if the initial amplitude is 5%. The more 
rapid decay shown by the nonlinear analysis is evidently due to the transfer of 
energy, through the nonlinear processes, from the fundamental oscillation to 
higher harmonics which arc then attenuated much more rapidly. Nonlinear 
particle damping was included in the approximate analysis but, as one should 
expect for the small amplitudes arising in these examples. its influence is 
negligibly small. 

An example of longitudinal modes in a T-burner has been treated elsewhere by 
Culick (1976). 
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Appendix A 

Nomenclature 
Some symbols defined \II the text and u~ed 

but briefly are not included here. A compkte 
li~t of symbols appears in Part I. 

ii' 

A. 
B. 
C 

C,. C, 
C •. t. 

E., 
k 
k, 

k. 

m. 

M. 

p 

p .. 
q 
R 

"'iT' .. /P. average speed of sound for the 
mixture 

eqn (1.7) 
eqn (1.7) 
specific heat of particulate material 
specific heats of gase~ 
specific heats of gas/particle mixture 
eqn (1.10) 

complex wavenumber. k = (", .- in )/a .. 

wavenumher for longitudinal or ax ia! 
modes 

wavenumher for three-dimen~i()nal 

normal modt:s 
length of chamber 
mas' flux of ga~cs inward at Ihe 

humin/( surface 
rna,s flux of particulate material in­

ward at the hurning surfact: 
Mach number of tht: 1':.,es al the edgo: 

of the comhu';lion 7Ulle. ii./ll .. 
pre .. sllre 
average pre"urc 
perimeter of the chamber cro,s sectio" 
mass·averagt:d gas constant 

R . mass-averagt:d gas constanl for the 
gas/particle mixture 

~ eqn (4.2) 
S. tolal area of burning surface 
S. cross section area 
T temperature of gases in the chamber 

T. 
T. 

II 

v 
a 

I( 

"I. 

P 

p. 

temperature of particulate material 
temperature of gases at the edge uf the 

combustion zone 
velocity of the gases 
velocity of the particulate material 
speed of ga~es entt:ring at the burning 

surface 
volume 
attemH.tion ur growth con~tant 
ratio of specific heats for the gase~. 

Cp/C. 
ratio of specific heats for the 

gas/particle mixture, C./C. 
mass fraction of particular.: material. 

pp/P. 
eqn (1.7) 

den,ity of the gas/particle mixture, 

p p. + {'. 
density of the gast:s 
averag.:: value uf P. 

den~ity of the particulate matter (ma\~ 
per unit volume 9f chamber) 

averag.:: valu.:: of p. 
averag.:: density of the gas/particle 

mixturt: 
a diameler of particles 
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T. T, nCl'rt2(;.)T. 

ob, normal nl\'Kh" 'hap .. ~ ... 

dillleJ\~ioJ\'" I'rohklll' 

ob. nllfrnal mnJc shapcs 
dimensional prohlems 

fnr Olle.> 

for three-
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"" ,rngul;lI freqlH'IKY for IIm··,lilllen,iollal 
fH H ,"al Illu<lt"\ 

•.•• alll~lllar r. <"<11lt'lIl'Y ror 
dillll'lI,ioual 1I0fll 1<1 I lIu)llcs 

H ... H. n.. ,or .• ; H. b'T. 
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