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Abstract—The approximate analysis developed in Part 1 of this work is applied to several specific
problems. Oue purposc is to illustrate the use of the formalism, and a second is to demonstrate the
validity of the method by comparing results with numerical solutions, obtained elsewhere, for the
“exact” equations. A simple problem is treated first, the decay of a standing wave in a box containing a
mixture of gas and suspended particles; one example of the steepening of an initially sinusoidal wave
in pure gas is included. Viscous losses on an inert surface are treated essentially according to classical
linear theory; recent experimental results are used as the hasis for incorporating approximately the
influence of nonlinear heat transfer in unsteady flow. Al of the preceding results are combined in
calculations of two examples of unstable motions in a solid propellant rocket motor and ina T-burncr.,

1. Introduction

In THE first part of this work (Culick, 1976), hercafter referred to as I, a general
formalism is described for treating both linear and nonlinear processes associated
with acoustic waves in combustion chambers. The method is suitable for studying
many problems involving waves in chambers; a few relatively simple examples
are described here. Ultimately, specific results can be obtained only by numerical
integration of a set of coupled nonlinear first-order ordinary differential equations.
One of the purposes of this paper is to show how the representations of certain
kinds of physical processes are incorporated prior to numerical computations. For
convenience in reading, a brief summary of the development of the analysis is
given below. Some of the formulas required in subsequent discussion are
included, but Part I will frequently be referred to in later sections.

It is simplest to treat problems involving no flow or combustion. The analysis
then describes the development of waves in a closed chamber. Some examples for
the attenuation of waves in a gas containing particles are given in Section 2; a
special case is the steepening of sinusoidal waves into triangular waves in a pure
gas containing no particles. Some comparisons are made with “exact’ numerical
solutions to the conservation equations for one-dimensional motions. For the
conditions examined, the approximate anzlysis appears to be quite accurate, and
is, of course, considerably cheaper to use.

The viscous losses at inert surfaces are often important; thesc are treated in
Section 3. For linear behavior, the classical results are derived in a slightly
different manner from that usually given. Some recent global measurements of
losses are incorporated to providc a means of estimating the effect of nonlinear
behavior.
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736 F.E.C.Culick

Preliminary  to  treating  unstable  waves in combustion  chambers, an
approximate way of accounting for traunsicat combustion is discussed in Section -
Finally, in Section § unstable motions in a small solid propellant rocket motor and
in a T-burner are analyzed. The discussion is intended only to provide
fllustrations of the method, and not as an exhaustive account. Once again,
comparisons with numerical solutions are made.

All of the examples discussed here involve only longitudinal modes, for which
the natural frequencies are integral multiples of the fundamental. Formulas valid
for any geometry, i.c. any set of normal modes, have been deduced by Culick
(1975), but to date no numerical results have been oblained. Eventually, an
important application of the approximate analysis will be for three-dimensional
problems which are prohibitively expensive to solve by more exuact numerical
techniques. It is a necessary preliminary step to demonstrate the validity of the
approximate analysis, as far as possible, by the sorts of comparisons with “exact™
solutions discussed here.

In broad outline, the formalism of the approximate analysis is developed in the
following three steps. The conservation equations are first manipulated (Section 2
of 1) to produce a nonlinear inhomogeneous wave equation for the pressure
disturbances, with an inhomogeneous boundary condition:

=5~V =k (D
i Vp'=—f (1.2)

The functions h and f contain representations of all perturbations of the classical
acoustics problem for the actual geometry being considered. Two important
points should be noted. First, the speed of sound 4, and other physical properties
not explicitly shown, are those for a two-phase (or in general a multiphase)
mixture. This is a consequence of combining the original conservation equations
to give a description of the flow as that for a single average fluid. Second, the
forms of the functions h and f depend on what order of perturbations are
considered. The procedure is based on expansion in two small parameters, the
Mach numbers M and M’ of the average and fluctuating flows. Terms in h and f
which are linear in M’ also depend linearly on M these produce results for
problems of stability. In the present work, nonlinear terms from the gasdynanics
are carried to order M'? only and are independent of M. Other nonlinear tarms will
arise, for example, in the treatment of nonlinear particle damping discussed in
Section 2.

The second step is based on expansion of the unsteady pressure and velocity
fields in normal modes ;(r) of the chamber, with time-va;ying amplitudes n;(t):

P 3 n (o) (1.3)

o

R 10))
W =2 V(D) (1.4)
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where k; = dw;, 18 the wavenumber for the ith mode. After (1.1) has been
multiplied by ¢,(r) and integrated over the volume of the chamber, the ordinary
differential equation for 7,(1) can be deduced:

d?

(:i_[n; i (l),,77'n ’ "‘n ( | q)
with
. a’ o
Fos oSGt [ e av § e sy (1.6)

Finally, in the third step. the method of averaging is applied to reduce the
second order equations (1.5) to first order equations. The amplitudes are written

M = An(t) sin wuf + B, (1) cos wat, .7

and averaging over the time interval (¢, t + 7) leads to the first order equations for
the A,(t) and the B,(t):

dA
dr (1.8)
dB
ar w,,*r[ F, sin w,t'dt’. (1.9)

For the special case of longitudinal modes (@, = nw,), the interval of averaging is
taken as the period of the fundamental mode, 7 = 7, = 27 Jw,, and the limits on the
integrals may be changed to (0, r,) for any function F, arising in problems of
interest in this work.

If only the nonlinearities arising from the gasdynamics are shown, the force F,
has the general form

2 [D .77: + Lm"l: E 24 [Amu"l:"h + Bnu"h"h] (]lo)

vk

For longitudinal modes, F, simplifies considerably (see Part 1) and the equations
(1.8) and (1.9) are

d d
e ity + 0.8, + B2 (A(A L A~ A~ B(B. 4 B+ B,
int
(1.1
aB,

= —8,.A, +B"2[A (Bui+ B, »— B..)+Bi(An , — Ai + A, )]
i=t

(1.12)
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The linear coceflicients «,, 0, are related to the coeflicients 1, E,.,, in (1.10) by

1 .
@, - 2 l),"" (’" 2("; ".,.,,. ( 1.1 ;)

This is a useful rule, because a, is the familiar growth constant for linear motions,
and 0, is proportional to the shift of frequency.

2. An approximation to the linear and nonlinear attenuation
of waves by gas/particle interactions

Particularly in solid propellant rockets using metallized propellants, but in
other systems as well, some of the combustion products appear in the form of
liquid or solid particles. The viscous interactions between the particles and the gas
may, under suitable conditions, provide a significant dissipation of energy. It is
often the case that the Reynolds number based on the particle diameter is outside
the range in which Stokes’ law is valid; it is necessary to use a more realistic
representation of the drag force. This introduces another nonlinear influence in
the general problem.

Let F,” denote that part of F, in eqn (1.6), representing the influences of inert
particles. The terms involved are those containing 8 ¥, and 8Q,. the fluctuations of
(2.8) and (2.9) in 1. By tracing the development in [ from (2.10) and (2.11) to (3.16),
with H defined by (3.15) in I, one finds that the terms in Guestion are

Fo = ;—};H—H; (f{ £(5Q;+ uy - F, ), + ¥, - thl,.] av. @

Formulas for 8F, and 8Q),, can be found only by solving the equations of motion
for the particles. Numerical calculations (I.evine and Culick, 1972; 1974) have
shown that for many practical cases, nonlinear interactions are likely to be
important. The approximate analysis here will be based on the nonlinear laws for
the force ¥, and heat transfer Q, used in those works:

N ./ 1 m] 2
F, = P"p,rr’ u, u)[l + 6Re (2.2)
2 0 ,.1,2(.’1'L’f T T . 037y 055 3]
Q. = pp l’rp,rrz( 1, - T)1+023Pr*VRe®™ (2.3)
where
Re = P;-",u, ~ul. ' (2.4)

Hereafter, the real flow will be treated only in a local approximation so that the
particle motions may be treated as one-dimensional; interactions between
particles are assumed to be negligible. Results will be given for steady-state
harmonic motion: short term transient motions are neglected, Details of the
analysis may be found in the report by Culick (1975). The linear part of the force,
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for longitudinal modes, 1s

) K o] ok [ ilwﬁﬁw]
[Fe T [X.+(y I)EP,X,]n,. @ x[H nJ:+(y I)C. 17 Q7
2.5)
where
Xy = (w, Q)1 -”'.l‘!) (2.6)
X, = (w, Q)4 QD). Q.7

A point not to be forgotten when this result is used is that the entire
approximate analysis is founded on an iteration/perturbation procedure. This
strictly requires that the force F, on the right hand side of the oscillator equation
N + w1, = F, be small, in the sense of the inequality

F, < 0,1,

Application of this constraint to the first term of (2.25) gives the requirement

K Qd___ <
TR ET AL (2.8)

Because the procedure followed here is different from that used by Temkin and
Dobbins (1966) to treat this problem, so also are the hmits of validity. Their
simplified results, which exhibit the same frequency dependence as (2.20) and
(2.21), are valid for k < 1. Consequently, the present formulation should have the
advantage of being applicable over a broader range of particle loading.

By applying the rule (1.13) above, one finds for the linear contributions from
gas/particle interactions:

o= =3 () [ %+ 7 -0 Ex] 2.9)
,
wowf * \[ Q5 o C O ]
6. 2(1+K)[l+ﬂ,.24 o ”C‘,, 1+Q7F @19

Recent numerical results reported by Levine and Culick (1974) have shown that
the result (2.9) is quite good for smaller particles, and if the frequency is not too
high. Beyond limits which are presently not well-defined, the Reynolds number
(2.4) becomes too large for the linear drag and heat transfer laws to be accurate.
Further comments on the accuracy and some examples are given below.

The problem of analyzing nonlinear particle motions is avoided here., A correct
treatment would involve solving the equations of motion with the nonlinear laws
(2.2) and (2.3). A very much simpler course is taken here: the linear solutions are
used to compute the next approximation in an iteration procedure (Culick, 1975).
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Eventually the terms to be incorporated in the cquations for the A, and B, are
found to be:

74 1 Y . S - : -
[—:’_t— ]nonlln - ‘l)ﬁ(l + K){an(lin (l"A") U V":'(,J" S—l‘AN)} (2] ‘)
W)
[si.!i_n_] ( X ) (Vi - AL QUBD V(- A, - QL) (2.12)
dt Join I+ s
where
[{
an = .l';:;)(! Wlll(An2 '_ l’:ﬁ)“”“' (2' l3)
[ 4
Vs - 0—';);“§ W.(AZ+ B, (2.14)
2 7i )
W,.. - —:(0(\98)(l + Qd?)e,/:K'(Lf_)_(_-)‘ (__Xl ), (2]5)
T YW, w, Qd
- _2__ ~ 2\E, 20 = C (&X'_)fz(_.&"_)
War= 206401+ 0077 - DZ Ko 524) (25) (2.16)

A few results have been obtained for the attenuation of a standing wave
initially excited in a box of length L. containing a gas/particle mixture. These have
been carried out for direct comparison with the numerical results reported by
Levine and Culick (1974). First, one case will be given in some detail. The particle
diameter is 2.5u, the particle loading is « = 0.36 and the frequency based on the
equilibrium speed of sound a is 800 Hz in each .se. The material and
thermodynamic properties are listed below:

Specific heat of the gas C,=2021.8 J/kgm-°K
Specific heat of the particle material C,=0.68C,
Isentropic exponent of the gas vy=1.23
Prandtl number Pr=03
Temperature : T=13416°K
Pressure P, =500 psi

. . T \°%
Viscosity of the gas n = 8.834 x l()"(ﬁgg) kgm/m-sec
Density of the condensed material p. = 1766 kgm/m’*
The initial amplitude of the disturbance is Aplp, =0.15.

Figures 2.1 and 2.2 show the waveforms obtained from the approximate and
numerical analyses. The approximate results are the solutions to eqns (1.11) and
(1.12) with the linear coefficients «,, 8, given by (2.9) and (2.10) and with
additional nonlinear terms by (2.11) and (2.12). The period used to normalize the
time scale is the period 2L /a for linear waves based on the speed of sound of the
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Fig. 2.1. Attenuation by 2.5-p particles at 800 Hz according to the approximate analysis,
Ap(0)/p, = 0.15.
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Fig. 2.2. Attenuation by 2.5-x particles at 800 Hz according to the numerical analysis,
Ap(O)fp, =0.15.
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mixture. The similarities between the waveforms and the generation and decay of
the even harmonics is apparent, but there is a duference in the relative phases
between the even harmonics and the totid waveform. ‘This seems to artse almost
entircly in the first cycle of the oscillation; it may be due to details of the
numerical routines and the way in which the computations hegin, This difference
may therefore not reflect o penuine ditference between the approximate and
“exact”™ analyses.

A more quantitative measure of the behavior is the instantaneous value of the
decay constant, «,, calculated for successive peaks of the waveform. This history
of a, is shown in Fig. 2.3. Further remarks on the behavior of a, may be found in

1
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Fig.2.3. The decay constant for the cases shown in Figs. 2.1 and 2.2.

Section 7 of the report by Levine and Culick (1974). The purpose here is only to
demonstrate that the approximate analysis does give fairly reasonable results for
this case. However, there are limitations. not yet clearly defined, which arise from
the approximate treatment of the nonlinear acoustics as well as the gas/particle
interactions.

The linear behavior used here, described essentially by velocity and
temperature lags, is in fact quite restrictive. Although it is not apparent from the
analyses presented here, the work reported by Levine and Culick shows that the
results are accurate only when w7, is small. If this condition is met, then du, and
8T, are relatively small, which is consistent with the general nature of the
perturbation analysis used here. For the 2.5-u particles, wr, =0.08 at 800 Hz.

A case exhibiting more nonlinear behavior is shown in Fig. 2.4. The waveform
calculated with the approximate analysis is shown for 30-u particles at 1500 Hz
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Fig. 2.4. Attenuation by 30-u particles at 1500 Hz according to the approximate analysis;
Ap(0)/p, = 0.03.

(w74 = 25.8). The value of ¢, is —70 sec™' at an amplitude of 1%, and the numerical
analysis gives — 148 sec™'. Note that the fractional error between the approximate
and numerical results for a, increases with increasing wr,. The greater amount of
harmonic content present when larger particles are considered is due mostly to the
reduced drag and hence reduced attenuation at the higher frequencies. The results
from the approximate analysis can be improved for higher values of w7, by using
different functions X,, X, instead of (2.6) and (2.7).

Wave propagation in a gas/particle mixture is dispersive; the speed of
propagation depends on the frequency and particle size, through the parameter
wTs, as well as on the amount of condensed material present. For the problems
treated here, the length of the box, and hence the wavelength of the waves, is
fixed. Consequently, a change in the speed of sound is reflected as a shift of
frequency. The periods of the waveforms shown in Figs. 2.1, 2.2 and 2.4 are not
exactly equal to the period based on the equilibrium speed of sound. It is obvious
from the figures that the frequency shift increases with wr,. In Section 5 of Part I,
it is shown that to first order, the frequency shift due to linear dispersion is
8f = —@/2w; here, 8 is given by (2.10) for the nth mode. The actual frequency
change is dominated by 0,; values of @, and 8f calculated from the waveforms for
several cases are given in Table 2.1, a summary of the computations discussed
here.

These results serve to demonstrate that the nonlinear generation of harmonics
has substantial influence of the detailed character of the attenuation of waves.
The rather close agreement between the approximate results and the numerical
calculations under conditions when the approximation to the gas/particle
interaction is more accurate suggests that the approximate treatment of the fluid

- mechanics is realistic, at least for moderate amplitudes.
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Table 2.1, Sununary of results for waves attenuated ua pas/particle mintw e

Particle
Diameter f, /, 5]’ B _". (",- | (",. i
() (Hz) (M2) f wr, (H2) 2ar (sec ) (sec ')
25
Approximate 800 954 800 0.08 1 0.74 59 6!
Numerical ]800 954 8 0.08 1 - 5 59
Approximate 1500 1788 1505 0.15 5 4.8 <203 - 204
Numerical 1500 1788 1504 0.15 4 e - 201 --204
10
Approximate 1500 1788 1695 24 195 189.9 -509 =530
Numerical 1500 1788 1740 2R 240 — --509 --870
30
Approximate 1500 1788 1740 216 240 224.4 - 67 --70

Numerical 1500 1788 1787 258 287 - - 69 - 148

f.  frequency based on the equilibrivm

f, frequency based on the speed for the gas only, a, - (y - NC, T

[ frequency of the calculated wave

o =f- 1.

(a, ) decay constant for linear waves

(a,)» decay constant for the calculated wave at approximately 1% amplitude

Note. Small differences arise in some quantities (w7, and (c, J.) which should have
the same values when calculated by the approximate and numerical methods. This is due
to a small difference in the value of some property, most probably the viscosity.
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Fig. 2.6. Steepening of a standing wave in a
Fig. 2.5. Steepening of a standing wave in pure gas according ta the approximate
pure gas according to the numerical analysis; analysis with ten modes accounted for;

f=900Hz. f=90Hz
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From the point of view of reducing data for the attenuation by particle/gas
interactions, it is annoving that the value of the decay constant changes so much
as the waves die out (¢f. g, 2.3). It is possible that if the higher harmoaics are
filtered from the waveform, the behavior of « for the first harmonic alone may not
be so extreme. Calculations have not been done to check this point.

Perhaps the simplest check of the fluid mechanics alone is calculation of the
behavior of a wave in a box with no particles present. In this case, the wave must
of course steepen, eventually forming a shock wave. Neither the exact nor
approximate analyses can accommodate strong shock waves, but the initial period
of development may uscfully be examined. Figure 2.5 shows the exact result, and
Fig. 2.6 shows the result of the approximate analysis when ten modes are
accounted for. Again, the qualitative agreement is quite good. As onc would
anticipate, the period of the wave decreases as the amplitude increasces. For both
the approximate and numerical analyses, obvious distortion of the peak occurs at
about the fourth cycle. (The sharp jags in Fig. 2.5 may be due in part of the
numerical routine.)

3. An approximation to nonlinear viscous losses
on an inert surface

There arc two reasons for examining the influence of viscous stresses and heat
transfer at an inert surface: these processes can be significant stabilizing
influences; and in the presence of oscillations, the average heat transfer increases
substantially. The second is a nonlinear effect which has on occasion caused
serious structural problems, particularly in liquid rocket motors. The main
purpose of this section is to show one way of incorporating some experimental
results within the analysis developed earlier. As part of the argument, the more
familiar linear resuits will also be recovered.

The viscous stresses and heat transfer at a surface are, of course, associated
with a boundary layer, but they can be accommodated here by suitable
interpretation of the force F and heat source Q in the equations developed in Part
I. Itis only those terms which are required in this discussion, so the wave equation
for the pressure fluctuation is simply

azpl_—z 2 ,__E_aQ'__-z ’
PYE Vip =G ot av-r. 3.1
The boundary condition is
i-Vp'=1i-F. 3.2)

For this problem, then, the equation for the amplitude of the nth harmonic is

Tla + @ M, = :-; { ]Q ¢, dV —a? IF’ Vi, dV} 3.3)

p(l

¢, dt

The heat source Q' is taken here to be associated with the heat flux vector q', and
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the force F with the viscous stress tensor 7:

Q =V-q ¥=V-7", 3.4
Both ¢’ and 7' are significantly non-zero vnly in thin regions near the boundary.
Then if y denotes the coordinate normal to the wall, measured positive inward,

d =dy dS and

vy e 9Ty
Q% ay” @

The conventions used here are that ¢, the component of q' normal to the surface,
is positive for heat transfer to the wall, and F', being parallel to the surface, is

pusitive when the force tends to accelerate the gas. In the volume integrals of
(3.3), ¢ and V¢, are essentially independent of y, so one can write

[t [[asn [ Hidy =~ [[qiu.as 3.6)
jF’-le,. dv zf dS vy, f ‘;‘;”dy =—” +L- Vi dS. G.7)

Here, the surface stress is 7., = —u(du'/dy)., where u’ is the velocity fluctuation
parallel to the surface, so

- [[ v as - [](» ). - Vi as. (3.8)

Only the linear stress will be treated, but both linear and nonlinear
contributions to the heat transfer will be accommodated by writing

q’ (k'yv-)k +i(TL~ T2, (.9)

Owing to the thermal inertia of the wall, T = 0; the temperature fluctuation T. far
from the wall is that associated with the acoustic field. The average heat transfer
coefficient, i, will be assumed in a manner described below, to depend on the
amplitude of the acoustic field.

Equation (3.3) can now be written

R awy o ,R/Cd”(ar')
Tin ¥ ©a' e pE” (“ ay ) Vi 4S5~ Er dr Yn dS

- f ’EC; (;-’t— f f T, dS. (3.10)

First, calculation of the linear parts will be outhined. The known solutions for
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the velocity and temperature fluctuations in a sinusoidal acoustic field arc

w = aifl--e M)e™

T: . -I“ll e (I'r)‘“hvl ch.g (zl l)

where &, T are the amplitudes far from the wall, and

;;(1 Vi) 8 Qo). (3.12)

Thus, for purely harmonic oscillations,

(’)ll' o N A
——— = = U
(p.a ) 8(l+t)u e

3_’1_:: ._!S 1201 1 YT it
(kay )w—-B(Pr) (1-+i)T e,

These formulas are for steady oscillations. For transient motions, exact results
can be obtained, but those are too complicated for the purposes here. Instead, the
following approximation is used. Note that for sinusoidal motions, i may be
replaced by w'd/4t. This replacement will be made, and d and T will be taken to
stand for the values associated with each mode. For the nth mode one eventually
finds that (3.10) may be written

Tin + @ N = — 20, (M0~ @a7,) 5)/};.2( T) ,.a% fj hnwidS  (3.13)
where
o' = (3’(1”121‘;1: JJ1GE) +Zn [[ o as (3.14)

It has been assumed that the motion far from the wall is isentropic, so
TL=(3 — I)T,p'l¥p.). For a longitudinal mode in a straight cylindrical tube,

” (%)zds=ff¢n’ds= nDL[2

and with x =0, (3.14) becomes the familiar result for the decay constant for a
standing longitudinal wave:

a2 =5y () (1+ )

The treatment of the remaining term in (3.13) rests on appeal to some recent
experimental results. Perry and Culick (1974) have reported measurements of the

*
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time- and space-averaged values of the heat transfer coeflicient in o T-buraer with
propellant discs at the ends. Denote this coeflicient by (). The data could be quite
well represented by the cxpression

QB"—’ - 0.044Re,"” (3.15)

where

ke, 08 (3.16)
pud

The symbol |3],. represents the maximum amplitude of the pressure fluctuation,
namely that measured at the end of the T-burner; this is equal to p,|n,| for the nth
mode.

In the absence of any other information, two assumptions will be made. First,
it is reasonable to assume that the local ime-averaged heat transfer coefficient is
also proportional to the square root of the pressure amplitude, as (3.15) shows for
the space-averaged value. Hence, for the nth mode,

h = Kn:' n"nl”z (3']7)

where K, is a constant to be determined. Theﬁsccond;‘assump!i(m is that (3.17) is
valid for all modes. From the definitions of h and (h),

_ 1 _ L
<h>"§ffh dS—LL hdz (3.18)
for a cylinder. It follows from (3.15)-(3.18) that the constant K, is given as
k+/(p.) Wn [ I w2 :l
K. —0044\/(#0) 2V |@n |'* dz

The integral has the value

1t N
—L—f I:J/,,]”zdz—trf jcos k,z|'"*dz = 0.765

SO

kv/(p.) (@.\"
= 575 . 3.
K. = 0057500 () (3.19)

Note that the mode shape cos (k,z) is used to obtain (3.19) because the data was
taken in a uniform tube. The assumptions introduced above imply that the result is
supposed to be valid for a local surfuce element whatever may be the mode in the
chamber.

After the method of averaging has been applied, and various integrals have
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been evaluated (see Culick, 1975), equations for A, and B, with only the viscous
losses shown are

dd/j (AL B 04STHAL(AT 1 By (3.20)
d’f" (v), 2 2\ H/4
(AL B 04STHL (AL B (3.21)

In the special circumstance when these equations are applied to waves in a
cylindrical chamber with an inert Jateral boundary,

_ 1836
L=

where R, is the radius of the chamber; and

B3 y-1 (L)(“f;)(_i_)zl”' 29
0.457H, =—p Pry'”[ 10-/\1000/\ 1000/ (3.22)

where the units are: R., m; », m’[sec; f., Hz; and d, m/sec.

4. An approximation to the influence of transient
surface combustion

The source of the energy for unsteady motions in a combustion chamber is the
combustion itself. Interactions between combustion and unsteady fluid motions
are commonly represented by some sort of frequency response function, which is
particularly appropriate for studying the stability of sinusoidal disturbances. The
use of a response function is not limited to linear problems, but the problem is
much more complicated for nonlinear behavior. Only the simplest representation
of the influence of unsteady combustion processes will be covered here.
Elementary results for linear response to harmonic pressure variations form the
basis. Certain of the features of truly transient behavior will be ignored in the
interest of obtaining formulas which are clear and inexpensive to use. Only
surface combustion will be discussed, but the same strategy may be used for
combustion within the volume.

The influence of surface combustion is contained in &, defined by eqn (3.18) of
Part 1. It follows from (3.16) and (4.1) of I that the corresponding contribution to
the force F, in (1.6) is

F = p ;“zft—#%([h dSs. 4.1

To simplify the discussion, consider only one of the pieces of R e.g. let §, =1,
5;=0, so (3.18) of I is
o9 = p“u;,‘i- Eh%i =(1+ K)(nl Wt n_l,,_\—T'I;). 4.2)

o o
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It is best here also to avold the complications assoctated with a condensed phase:
set k =0, so the following results apply to propellints not contiuning metal.

There cxists a cluss of analyses, discussed by Culick (1968), which produces a
formula for s, /i, the fluctuation of mass flux due to a sinusowdal variation of
pressure. This is a linear result, m, /i, being proportional to the pressure
fluctuation:

P o R PR iR (4.3)
m, Po Po

The response function, R,. is a complex function of frequency,

R, - AB (4.4)

A+ :‘\\ -1+ A)+AB

in which A is proportional to the activation cnergy for the surface reaction, and R
depends on both A and the heat released by the surface reaction. Qut of the saume
analyses, one can extract the formula for AT/ T.: and with thcsc results, (4.2)
becomes, for sinusoidal motions,

. - T C AB T, C AB 'y—l)]ﬁ
O — — e NSt dou G TN SRR I [
R p,,u,,[(] + : E )R (n :

= pois [R + i%“"]f—. (4.5

o

Note that B and R are dimensionless functions of the frequency and the other
parameters; if nonisentropic temperature fluctuations are ignored, 2" = R,(w;)
and R/ = R (w;).

Now the formula (4.5) is, by construction, for steady sinusoidal variations
only. As in the preceding section, the replacement i — o ™' 9/dt will be made in
(4.5), and the result is assumed to apply to all modes. Thus, p/p, stands for nub,
and for an arbitrary pressure field expanded in the form (1.3), @ in (4.1) will
hereafter be taken as

N 1 L d
R = Polin 2' v‘(”'l i (—‘;"0 ‘( )5;] nitp;. (4.6)

The subscript ( ). on R and A" means that each function is evaluated at the
frequency of the ith mode; these quauntities can be calculated from (4.5) and (4.4).

The force (4.1) can now easily be evaluated, and the rule (1.13) gives directly
the contributions from surface combustion to .’ and 8, to be used in (1.11) and
(1.12):

an(c) — _2}_;;%‘%"(') ﬁ l!/,.z ds (4‘7)
)
0, = R, A . (4.8)

TR
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The samc procedure can be applied 10 propellants containing metal: only some
details are changed to account for « <.

A similar approximation can be used for handling combustion within the
volume of a chamber as one finds in liquid rockets, thrust augmentors, and sohd
rockets exhibiting residual combustion. Although other contributions will in
general arise, associated with mass and momentum exchange, the direct
contribution of energy release is represented by the terms containing Q and w, in
eqn (2.2) of 1. The dynamical behavior of combustion within the volume may, for
example, be represented by some sort of response function; the well-known n-7
model developed by Crocco ¢t al. is a special form. In any case, the contributions
to the individual harmonics can be approximated as surface combustion was
handled above. No resuits for bulk combustion have been obtained.

5. Application to the stability of lon;,lludm.xl
modes in a rocket motor

It has already been shown that the nonlinear terms simplify considerably for
the case of longitudinal modes. This situation will be treated here for one example.
Some preliminary results were reported by evine and Culick (1974). Application
to large motors was examined by Culick and Kumar (1974). The discussion here is
to demonstrate how the approximate analysis can be used to study practical
configurations and to provide a limited comparison with the more exact numerical
results reported elsewhere.

For all the calculations reported in this section, the following material and
thermodynamic properties are used:

. J
Specific heat of the gas C, = 2021.8———-—kgm_°K
Specific heat of the particle material C, =0.68C,
Thermal diffusivity of the propellant - = 1077 m*fsec?
Prandtl number of the gas Pr=0.8

cos _ . e kg
Viscosity of the gas n = 8.834 x 107%(T/3485) Msec
Isentropic exponent of the gas vy =123
Linear burning rate of the propellant F = 0.00812(p,[500)" m/sec
Density of the propellant pe = 4000 kgm/m?
Density of the condensed material p, = 1766 kgm/m’

Because the nonlinear acoustics terms represented by the series in (1.11) and
(1.12) are given explicitly, the first step in the analysis consists in evaluating the
contributions to the linear coefficients a, and 8,. Four contributions to linear
stability are included; arising from the nozzle, the condensed material in the gas
phase, the surface combustion processes, and the one-dimensional approxima-
tion to inelastic acceleration of flow issuing {rom the lateral surface (‘“‘flow
turning”’). The formulas for the corresponding values of a, are
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Nozzle

J 2 0 MG
Particles

| K ) ¢
Sl e ')'(.",_,'X"l.“...m (5.2)
Flow Turning
1_(S

o, - ill,,(-d—’) (5'3)
Combustion

o, = %‘7& (;’;”) R, 5.4

The formula (5.1) is based on quasi-steady behavior; the velocity fluctuations are
in-phase with pressure fluctuations at the nozzle entrance. Hence, the response
function has no imaginary part and, as shown by eqn (4.10), the value of 6, for the
nozzle is zero. The term representing flow-turning is the last one of (3.17) in I;
there is no corresponding F,;, so 8, is also zero for flow turning. The only non-zero
values of 0, are for the gas/particle interactions and combustion; the first is given
by (2.12) and the second by use of (4.8) and (5.4):

Particles
Wi K Q7 ; - _nC Qz
o =S o DE T+ a; ] -5
Combustion
— L Sh) m
0, = Zy (VR (5.6)

The two examples treated here were discussed in Section 7.4 of Culick and
Levine (1974), where the result of the numerical analysis is given. Each is fora
motor having a cylindrical bore and length 23.5 in. The mean pressure, port area,
and throat area differ and are given below:

(a) (b)
Length (in.) 23.5 235
Port area (in?) 3.33 4.73
Throat area (in%) 0.439 0.562

Pressure (psia) 1568 1412
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These are the first and last cases given i Table 7.3 by Culick and Levine (1974).
The fundamental frequency is 900 Hz.

For both cases, the particle diameter is assumed to be 2.0u and the muss
fraction is « = 0.36. The combustion response is taken to be the representation
(7.4) given above, with A = 6.0 and B = 0.56. Because the pressures are different,
so are the flame temperatures in the two cases; for (a), T; = 3525°K and for (b),
T, = 3515°K. The small difference has only minor influence on the results.

With the above values, and the formulas (5.1)-(5.4), waves for case (a) are
found to be stable. The values of the decay constants for the first five modes are
given in Table 5.1. The numerical calculations produced an unstable wave which,
with an initial amplitude of 59 (fundamental mode) eventually reached a limiting
amplitude of 4.29%. In view of the successful comparison for the casces treated in
Section 2 for attenuation by particle damping, and because the representation of
the combustion response is the same in the approximate and numerical analysis, a
likely source of the difference in the results is the behavior of the nozzle.

Table 5.1. Values of a, and 0, for three cases
of unsteady motions in a small motor

Case (a) Case (aa) Case (b)

(sec'") (sec’") (sec™')
a, - 18.5 8.0 -9.1
@, -369.3 ~342.8 —-334.8
ay ~610.1 -583.6 —566.5
a, -9159 —889.4 ~871.4
as —1289.2 -1262.7 ~1244.0
8, 129 129 64.0
f, 46.8 46 8 349
@, --29.3 -29.3 ~35.6
A, -131.0 ~131.0 ~135.0
6, --280.0 -280.0 -283.0

In the numerical analysis, the calculations for the entire two-phase flow were
carried out to the nozzle throat. The influence of the nozzle is buried in the results
and its contribution to attenuation cannot be determined. For the approximate
analvsis, the influence of the nozzle is represented as a surface admittance
function evaluated at the nozzle entrance. The result (5.1) is strictly valid for
quasi-steady behavior of a gas only; it has been extended to the case of two-phase
flow by using the value of y for the mixture. The point is that there is reason to
expect that the contribution of the nozzle is different in the two analyses.

As a means of comparing the analyses, the value of the attenuation constant
associated with the nozzle is chosen to obtain the same limiting amplitude as
found in the numerical analysis. This procedure rests on the observation that the
values of the limiting amplitudes are quite sensitive to the values of the linear
coeflicients «a,, ..

Not a very large change is requiréd. Equation (5.1) gives a. = —153.25 sec™.
If this is changed to —126.75 sec™’, then «, = 8.00 and the limiting amplitude is



754 F. L. C.Culick

about 4.2%. The values of the «, and 0, for five modes are given in Table 5.1, for
the case denoted (aa). Figure 5.1 shows the amplitudes of the five harmonics
considered; the fuactions A, and B, are shown in Figs. 5.2 and 5.3. The waveform
at limiting amplitude shows no obvious evidence of distortion from the
fundamental mode.

The attenuation by the nozzle 1s assumed to vary linearly with the ratio J of
throat area to port area, having the value —126.75 se¢ ' when J has the value
(0.132) for case (a). Then with the other required data given above, the

°<’5‘\“ i e ¥ 1 ! }
\\»‘

1_ i

004} "
003~ 7

002+ .

Amplitudes
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00 00% 0 0B 020 025 030

Time, sec

Fig. 5.1. Amplitudes for unstable oscillations in a motor, case (aa) of Table 5.1.
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Fig. 5.2. The functions A_(t) for case (aa) of Table S.1.
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Fig. 5.3. The functions B, (1) for casc (aa) of Table 5.1,

approximate analysis applied to case (b) produces the results shown in the last
column of Table 5.1. The initial disturbance is stable, the decay constant for the
first harmonic being «, = —-9.12sec™'. After twenty cycles (0.02222sec) the
amplitude is roughly 3.5% according to the approximate analysis. The numerical
analysis gave an amplitude of 3.02% after twenty cycles. It appeared that the wave
may have stabilized at a limiting amplitude, but the calculation was not carried
further. In view of the slow decay found with the approximate analysis, it may be
that the conclusion based on the numerical analysis, for only 20 cycles, is
incorrect, based on incomplete results. If a true limit was indeed reached, then of
course the approximate analysis gives the wrong resuit. A limit of 3% would be
reached only if «, is positive, having a value less than 8.00.

That nonlinear influences are in fact active, even at such relatively small
amplitudes, is easily established. Consider a wave having a decay constant equal
to —9.12sec”™ and a frequency of 900 Hz. According to linear behavior, the
amplitude would be 4.08% after 20 cycles if the initial amplitude is 5%. The more
rapid decay shown by the nonlincar analysis is evidently due to the transfer of
energy, through the nonlinear processes, from the fundamental oscillation to
higher harmonics which are then attenuated much more rapidly. Nonlinear
particle damping was included in the approximate analysis but, as one should
expect for the small amplitudes arising in thesc examples, its influence is
negligibly small,

An example of longitudinal modes in a T-burner has been treated elsewhere by
Culick (1976).
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Appendix A

Nomenclature
Some symbuols defined in the text and used R eqn (4.2)
but briefly are not included here. A complete S, total area of burning surface
list of symbols appears in Part L S, cross section area
T tcmperature of gases in the chamber
T,
T,

a* yp.lp. average speed of sound for the temperature of particulate material

mixture temperature of gases at the edge of the
A, eqgn(1.7) combustion zone
B, eagn (1.7) u velacity of the gases
C specific heat of particulate material u, velocity of the particulate material
C,.C. specific heats of gases u, speed of gases entering at the burning
_,. C. specific heats of gas/particle mixture surface
E. eqn (1.10) V  volume
.  complex wavenumber, k = (@ -- ie )a, « attenuation or growth constant
k, wavenumber for longitudinal or axial y ratio of specific heats for the gases.
modes C,IC.
k., wavenumber for three-dimensional ¥ ratio of specific heats for the
normal modes gas/particle mixture, C,/C,
L length of chamber x mass fraction of particulate material,
m, mass flux of gases inward at the o,
burning surface 7. tqn (1.7)
my" mass Aux of particulate material in- p density of the gas/particle mixture,
ward at the burning surface P petp,
M, Mach number of the gases at the edpe p. density of the gases
of the combustion zone, a4,/a. 0. average value of p,
p pressure p. density of the particulate matter (mass
p. average pressire per unit volume of chamber)
q perimeter of the chamber cross section p,. average value of p,
R mass-averaged gas constant p. average density of the pas/particle
R ~mass-averaged gas constant for the mixture

gas/particle mixture o diameter of particles
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