

DOI: 10.1038/ncb2121

Figure S1 Purification of test proteins. (a) Purified *S. cerevisiae* ^fUbr1 and ^fUfd4 (see ref. 12). (a) Purification of reporter N-end rule substrates. His₁₀-tagged Ub-X-DHFR_{ha} fusions (X=Met, Arg, Leu) ^{54,55}, denoted below (and in the main text) without e^K, were purified from extracts of KSP22 (*aat*Δ) *E. coli*, using the Usp2-cc DUB enzyme⁵⁵ (see Methods). Lane 1, molecular mass markers

(staining with Coomassie). Lanes 2, 4 and 6, purified Ub-Met-DHFR_{ha}, Ub-Arg-DHFR_{ha} and Ub-Leu-DHFR_{ha}, respectively. Lanes 3, 5 and 7, deubiquitylated Met-DHFR_{ha}, Arg-DHFR_{ha} and Leu-DHFR_{ha}, respectively. (**b**) Coomassie-stained test proteins, purified as described in Methods and fractionated by SDS-PAGE. Lanes 1-4, GST-Rsp5, Sic1^{PV}, Ub-GST, and Ub-ProtA, respectively.

SUPPLEMENTARY INFORMATION

Figure S2 Pulse-chase assays with Cup9 and a UFD substrate. (a) Because overexpression of wild-type Cup9 is toxic in *S. cerevisiae*, these experiments utilized CUP9_{NSE}, a previously characterized, nontoxic, single-residue mutant with a reduced affinity to its cognate DNA sites but no significant changes in the rate of Cup9 degradation in vivo5. Cup9_{NSF} was expressed as ^fDHFR-Ub^{K48R}-Cup9_{NSE}, in which ^fDHFR was the N-terminally flag-tagged mouse DHFR moiety. DUBs cotranslationally cleave this fusion at the Ub^{K48R}-Cup9_{NSF} junction^{5,27}, yielding the long-lived reference protein ^fDHFR-Ub^{K48R} and the test protein Cup9_{NSF}. S. cerevisiae JD52 (wild-type) (lanes 2-5), and CHY194 (ufd4∆) (lanes 6-9) expressing ^fDHFR-Ub^{K48R}-^fCup9_{NSF} were grown at 30°C to A₆₀₀ of ~0.8, followed by labeling for 5 min with ³⁵S-methionine/ cysteine and a chase (in the presence of cycloheximide) for 0, 5, 10 and 15 min at 30°C. Cell extracts were immunoprecipitated with anti-flag, followed by SDS-PAGE and autoradiography. The bands of Cup9_{NSF} and ^fDHFR-Ub^{K48R} are indicated on the right. Lane 1, vector alone (control). (b) Quantitation of ³⁵S-patterns in a. Open and closed circles, relative levels of pulse-labeled

Cup9_{NSF} in wild-type and *ufd4*^{*Δ*} cells, respectively. Note a partial stabilization of Cup9_{NSF} in *ufd4* Δ cells. (c) Relative levels (enzymatic activity) of Ub^{V76}-V-βgal in extracts of S. cerevisiae RJD347 (wild-type), AVY26 (ubr1Δ) and CHY251 (*ufd4* Δ). Cells were grown to A₆₀₀ of ~0.8 in a SRGal medium at 30°C, followed by measurements of β gal activity in cell extracts. (d) No significant contribution by the Ubr1 E3 N-recognin to the rate of in vivo degradation of UbV76-Val-Bgal, a substrate of the UFD pathway. S. cerevisiae JD52 (wild-type) (lanes 1-3), CHY194 (*ufd4*^{*Δ*}) (lanes 4-5), CHY195 (*ubr1*^{*Δ*}) $ufd4\Delta$) (lanes 7-9), and JD55 ($ubr1\Delta$) (lanes 10-12) that expressed Ub^{V76}-Val- βgal were grown in SRGal medium to $A_{600}\, of$ ~0.8 at 30°C, and were labeled with ³⁵S-methionine/cysteine for 5 min, followed by a chase for 0, 10 and 30 min (in the presence of cycloheximide), immunoprecipitation with anti-ßgal, SDS-6% PAGE, and autoradiography. Bands of polyubiquitylated Ub^{V76}-Valβgal are indicated on the right. Although Ub^{V76}-Val-βgal is virtually completely stabilized in both $ufd4\Delta$ and $ubr1\Delta$ $ufd4\Delta$ cells (lanes 4-6, 7-9)³⁸, it is still partially monoubiquitylated in these cells, by an unknown E3.

SUPPLEMENTARY INFORMATION

Figure S3 Uncropped images of key immunoblots shown in individual figures.